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A nonlocal pseudopotential theory of the optical-phonon deformation potentials in 11 di-

amond and zinc-blende semiconductors is presented. The one-phonon deformation poten-

tials associated with the major conduction- and valence-band states at the I, I., and X point
are calculated. The effect of the spin-orbit interaction on the optical deformation potentials

is examined in detail. The published experimental data are compared both to one another

and to the present theory. In addition, an analytical linear combination of atomic orbitals

(LCAO) model is developed which predicts the optical deformation potentials for any

tetrahedral semiconductor in a simple yet accurate way. The optical deformation potentials

are. presented for 37 semiconductors. The LCAO model also yields an analytical expres-

sion for the optical deformation potentials in terms of the observed optical gaps of the

semiconductors.

I. INTRODUCTION

The dominant scattering mechanism of charge
carriers in semiconductors is provided by the
electron-phonon interaction except at the lowest
temperatures. This paper is specifically concerned
with the interaction between charge carriers and op-
tical phonons in semiconductors. The
electron —optical-phonon interaction enters the

- Ohmic and non-Ohmic mobility and provides the
dominant energy-loss mechanism for warm and hot
carriers. ' It is responsible for the phonon Raman
scattering and plays a crucial role in the free-carrier
absorption. ' ' The phonons which usually dom-
inate in the scattering probability are long-

wavelength optical phonons. In first-order Raman
scattering processes this follows from momentum
conservation and in transport this is the case for
intravalley scattering.

The long-wavelength optical phonons set up a
short-range potential in the crystal which shifts the
electronic band states. In polar semiconductors,
the longitudinal optical phonons are also accom-
panied by a long-range macroscopic electric field

which produces additional scattering. This long-

range polar-optical interaction potential is strictly
additive to the short-range potential ' and its cou-
pling constants are well established. It will not be
considered in this paper.

The nonpolar optical-phonon —electron interac-
tion dominates in diamond-type crystals, particular-
ly in n Ge, and in the t-otal (nonpolar plus polar)
optical-phonon scattering rate for holes in p-Ge,

p-Si, p-type III-V's, and II-VI's. The shifts of the
band states per unit ionic displacement associated
with a long-wavelength optical phonon are called
deformation potentials. The deduction of optical
deformation potentials (ODP's) from either trans-

port or Raman data is quite involved. The corre-
sponding analysis of low-field transport data in @-

type materials was developed by Bir and Pikus,
Lawaetz, ' and Costato et al. ,

" and the deduced
ODP's have been reviewed by Wiley. ' A sensitive

probe for ODP's is provided by the shifts and the
broadening of the Raman lines with increasing car-
rier concentration as observed in p-type semiconduc-
tors. Such data were analyzed by Cerdeira and Car-
dona' for Si and Ge and recently by Lawaetz' for
most standard semiconductors. The ODP's deter-

mined from Raman experiments have been reviewed

by Richter. Theoretical model calculations of
ODP's have been performed mostly for Si (Ref. 15)
and Ge (Refs. 16 and 17) and for a few other cases
(see Table III). As a consequence of the rather in-

direct measurements, the ODP's which appear in

the literature for a particular band state and materi-

al vary substantially, up to 50% and more.
In this paper we present a systematic theoretical

investigation of optical deformation potentials for a
large class of tetrahedral semiconductors. The pur-

pose of this analysis is to establish a set of con-
sistently determined values for the various optical
deformation potentials in semiconductors. We have

performed a nonlocal pseudopotential calculation of
ODP's at the main high-symmetry points of the
conduction and valence bands for 11 semiconduc-
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tors. In addition, a simple LCAO model is
developed which allows one to predict the ODP's
for any tetrahedral semiconductor in an exceedingly
simple yet quantitatively meaningful way; we
present the results for 37 materials. Both methods
give results consistent with one another and with the
majority of the experimental data. The linear com-
bination of atomic orbitals (LCAO) model yields
analytical expressions for the ODP's in terms of the
band structure and reveals the origin of the weak
chemical trends of ODP's.

The outline of this paper is as follows. The pre-
cise meaning, the notation, and the symmetry-prop-
erties of ODP's are given in Sec. II. Section III
contains the detailed definitions of the ODP's for
the various band states and k points. The main
results of this paper appear in Tables III—VI,
which summarize the outcome of the pseudopoten-
tial calculations presented in Sec. IV. In Sec. V the
LCAO model is presented; its results are shown in
Table VIII.

function
~

n k + q ) and H,~t(q, r) in Eq. (2.1) in
powers of q. For q ~0 Eq (.2.1) can then be writ-
ten in the form

Mk (opt) = (nk ~V,~t(~) ~nk) u„t

opt( ) u tel (2.2)

where u d is the relative sublattice displacement,
which can be expanded in normal modes. D,~t( k )

is the shift of the band-state energy per unit relative
displacement of the sublattices by virtue of
Feynman's theorem' and is called the optical defor-
mation potential. For degenerate states, the long-
wavelength limit is tricky because the Bloch func-
tions are not analytic functions of the wave vector.
The matrix element Mk for this case has been given

by Bir and Pikus and Lawaetz. ' In any case,
however, the determination of the electron —one-
optical-phonon scattering probability for a long-
wavelength phonon can be reduced to the deter-
mination of band energy shifts induced by u d.
Terms of higher order in q in Eq. (2.2) are small
and usually neglected. '

II. THE ELECTRON —OPTICAL-PHONON

INTERACTION

A. Electron-phonon matrix elements

The matrix element for scattering from an elec-
tron state k in band n to k + q,n' with absorption
of a single optical phonon with wave vector q can
be written as

Mk (opt) = (N~ —l,n'k + q ~H,~t(q, r)
~

n k,N~),

(2.1)

where H,~t( q, r) is the electric potential induced by
the displacement field associated with the optical
phonon and Xq is the phonon occupation number.
In this paper we consider specifically scattering by
long-wavelength optical phonons, q ~ 0, and intra-
band scattering, which includes the scattering
between energetically degenerate states.

In general, the potential H,~t( q, r) consists of
long-range and short-range contributions. In polar
crystals, the long-range part of H,„,(q, r) gives rise
to the polar-optical Frohlich interaction. Here we
will be concerned solely with the short-range part of
H,~t( q, r ). It dominates in diamond-type crystals
and in most p-type (diamond or zinc-blende)
semiconductors.

In a long-wavelength optical phonon the two sub-
lattices vibrate rigidly against each other. For a
nondegenerate band state one can expand the Bloch

5=diO: diO s (2.3)

where i denotes the irreducible representation of the
group of k obtained from decomposing the
I 25(I't5) deformation according to this group. The

B. Notation

The space groups of the two crystal classes con-
sidered are Ol, (diamond) and Td (zinc blende).
The three optical phonon branches at q = 0
transform as (xy,yzgx), which corresponds to the
point group representation I 25 for O~ and to r»
for Td . Henceforth, we treat the representations of
O~ and Tq together and use the notation I 25(I t5).
The splitting of transverse optical and longitudinal
optical modes at q = 0 in zinc-blende crystals can
be ignored for our purposes; this is consistent with
the neglect of the long-range fields. From the point
of view of symmetry, the q = 0 optical phonons
can be treated in the same manner as the traceless
part of a strain caused by a (111)stress with
I'2+s(I ts) symmetry. The physical parameters and
the actual atomic displacements are different, how-
ever, for a macroscopic strain and a purely internal
strain as represented by u„~.

Kane ' and Richter have introduced a unified
notation for deformation potentials which we follow
in this paper. The optical one-phonon deformation
potential for a particular band and wave vector k is
denoted by
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subscript o is used to distinguish optical phonons
from stress-induced deformation potentials. The su-

perscript comes from the phonon representation and
will be omitted since we consider only q = 0 pho-
nons. The various specific optical deformation po-
tentials are defined in detail below.

C. Selection rules

A general group-theoretical analysis of deforma-
tion potentials has been given in Ref. 21. In the
present paper the syinmetry-allowed ODP's have
been obtained by imposing two symmetry require-
ments on the electron-phonon matrix element. We
consider an electronic band state at k which
transforms according to the spin representation

D,'('". Assume that this representation arises from
the single-valued representation D,'~'"s" By D.~h we
denote an irreducible representation of the~honon
deformation with respect to the group of k. Since
we are concerned with intraband scattering, the
symmetric Kronecker product of the representations
which characterize the state k enters the matrix ele-

ment. This gives the first condition,

1 /
urel IEEr —— d„.

2 0
(3.1)

Here a is the lattice constant. The splitting is in-

dependent of the direction of u„l and preserves the
center of gravity of the I'&+(I's) band, since u„~ is a
traceless deformation. It is more common, particu-
larly in transport studies, to define a deformation
potential d, which is related to Eq. (3.1) by

1
do = d5o~2 (3.2)

Based on Ref. 9, Lawaetz' has derived the expres-
sion for the optical-phonon —induced transition rate
for states in the vicinity of the I'&+(I s) valence band
extremum in terms of d, [see Eq. (2.31) of Ref. 10].
The definition Eq. (3.2) for d, also agrees with the
one used in Refs. 20, 23, and 24, while Bir and
Pikus introduced the constant d, (Bir- Pikus)
= d, /a.

B. L point, k = {2m/a){+ 2,+ 2,+ 2 )

of the light- and heavy-hole band induced by u„l, is

governed by the deformation potential d5, . It is de-
fined by

(I) (Dg" X D,'('"),„must contain D~h . (2.4)
At I. the phonon displacement decomposes into

I.'qq~Li+ + L3 (I i5 Li + Ls). The Li part of
the deformation causes a shift 6EL of each b@nd

edge,

The second condition results from a slight approxi-
mation, namely the neglect of any strain dependence
of the spin-orbit interaction. In other words, it is

assumed that H,„, in Eq. (2.1) does not act on the

spin variables. We have not used this approxima-
tion in our actual calculations which are presented
in Sec. IV, but it greatly facilitates the symmetry
analysis. This will be discussed further in Sec. IV.
As a consequence of this assumption the matrix ele-
ments must also be invariant with respect to the
spatial part alone, i.e.,

(II) (D,'~" ' X D,'i" '),„must contain D„h .

(2.5)

III. DEFINITION OF THE OPTICAL
DEFORMATION POTENTIALS

A. I point, k = {0,0,0)

To first order in u„l, the relative sublattice dis-

placement u„l ——u
&

—u2 ——2u
&
———2u2 splits the

fourfold-degenerate states of I s+(I s) symmetry but
leaves all other states unaffected. The splitting
EEr of the I s+ ( I s ) valence band, i.e., the splitting

valley u re]
L lo 2a

(3.3)

d i, (con)

2a
(3.4)

In the approximation that the strain dependence
of the spin-orbit interaction is neglected, d i, (val)
= d i, (split). If the spin-orbit interaction is neglect-
ed altogether, the 1.3 part of u„l splits the doubly
degenerate valence band edge L 3 (L i) by

where e„,ll,y
is a unit vector parallel to the vector

location of the valley minimum. Equation (3.3)
holds for each band, giving d i, (con), d «(val), and
d &, (split) for the conduction band, the upper
valence band, and the split-off valence band, respec-
tively. In addition, the difference d i, (diff)
= d i, (con) —d i, (val) is a useful quantity by itself
since it enters the Raman tensor. In transport stud-

ies of n-Ge it is common to introduce a deformation

potential D [see Eq. (3.6.7) of Ref. 1] which is relat-

ed to Eq. (3.3) by
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I
e valley x urel I

a
(3.5)

With spin-orbit interaction included, the deforma-
tion potential d3, causes an interband coupling of
the valence band and split-ofF band. It is significant
for the E& gap deformation potential Raman scatter-
ing.

C. 6 axis, Xpoint, k = (0,0,k)

These ODP's are relevant mainly for Si, so we
consider only the diamond structure. Along 5
there are no intraband ODP's. At X the
conduction- as well as the valence-band edge is four-
fold degenerate and will be split by u„~ by an
amount 4E~. The point group notation and Kane's
classification is not applicable at X. We therefore
introduce deformation potentials dx, (cond) and

dxe(val) by

I
e valley urel I

Q
(3.6)

The ODP D, introduced in Ref. 25 is related to Eq.
(3.6) by

1
D, = dxe(con) .

2 3
(3.7)

AE(12+5) = ( —, )
~ —dg, . (3.g)

D. The role of the spin-orbit interaction

The definition of d5, given in Sec. III A tacitly
assumes that the splitting AE~ induced by u„& is
small compared to the spin-orbit splitting ho. This
can be seen as follows. In the opposite case of
negligible 50 one deals with a triply degenerate
I 25(I ~5) state which behaves differently under the

phonon displacement than a I s+(1 s) state. Specifi-

cally, for u„,t ——(a/4)(5, 5,5) the I 25(I &5) state
splits into a doublet and a singlet state. The energy
di erence between these states is for spin-orbit «
st ain,

In the limit of large 60, on the other hand, the four-
fold I s+(I"&) band splits into two states while the
split-off band remains unchanged; we have for spin
orbit gg strain,

&E(l +
) = ( —, )' '—d, .

4 50' (3.9)

IV. PSEUDOPOTENTIAL THEORY

The ODP's represent the first-order change in the
band structure when the sublattices of the crystals
are displaced against each other. They depend on
the perfect-crystal potential and its change with the
sublattice separation. First-order electron-phonon
matrix elements can be generally expressed in terms
of the pseudo-wave-functions and pseudopotentials,
as was proved by Sham. Thus pseudopotential
theory provides a quantitative as well as a con-
venient scheme to calculate deformation potentials.

Although the same ODP constant d 5, enters in
both cases (ho is considered to be independent of
strain), the energy splittings differ by a factor —, in

the two limits. We remark that this difference is
strongly enhanced for the second-order deformation
potentials at I, i.e., for the energy splittings which
are of second order in u„&. In the limit of Eq. (3.9)
they are —d5, /Ao —60000 eV for Si. For negligi-
ble Ao, however, they are only =50 eV. '

In transport as well as in optics the limit of large
spin-orbit splitting is appropriate, even for the light-
est semiconductors. In the case of hole scattering,
for example, the mean atomic displacement associat-
ed with all optical phonons is roughly
[A/(M~o)]'~ = 0.05 A. The phonons which contri-
bute to the hole scattering rate have

I q I

( —„BZ
(Brillouin zone), i.e., only 10 of all phonons con-
tribute. The displacements associated with them are
therefore (u,~, ) '~ = 5 X 10 A. Even for dia-
mond Ao ——0.002 eV so that the condition
EEL « ho is well fulfilled. A similar result fol-
lows from an estimation of (u,~, ) ' in Raman ex-
periments.

A. Formalism

Here we shall adopt the nonlocal empirical pseudopotential method with inclusion of the spin-orbit interac-
tion. For thy perfect crystal, the Hamiltonian consists of a spatial part H plus the spin-orbit Hamiltonian8 . The former is given

2

& 5K K, + [V (
I
K —K'

I
) + VgL(K, K')]cos[(K —K') 7]

2m

+i [V"(
I
K —K'

I
) + VNI (K,K')] sin[(K —K') ~], (4.1)
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V(((q~ ——(V(vL + V(((L )/2, r = —(1,1,1),
8

(4.2)

V~I, (K,K') = g At(21 + 1)Pi(cos8g g, )FI(X,E'),
&. I=O2

2

Ao ——ac+ g) (KK' —kF), A2 ——a2,
2m

p&(lt, l(. ') = f dr r jI(Kr)fi(rj)~(Z'r),

fi(r) = 8(R( —r) or exp( r /R~—) .

(4.3)

(4.4)

(4.5)

(4.6)

In these equations, K = k + G and K' = k + G',
where k is the wave vector in the first Bz and G
and G' are reciprocal-lattice vectors. V and V
are the local symmetric and antisymmetzc form
factors, a is the lattice constant, 0, the atomic
volume, and kF ——(96m )'r3/a the Fermi momen-
tum. PI(x) denote the Legendre polynomials, HK K,
is the angle between K and K', and the j((x) are the
spherical Bessel functions. Following Ref. 27, for
the 1th angular momentum component of the nonlo-

cal potential form factors fi(r) we generally use a
square well; for Ge, GaAs, and ZnSe a Gaussian
with radius Rl' is used. The superscript i denotes
.the atomic species i =: 1,2. Only I= 0 andi= 2
are included in the sum on the right-hand side of
Eq. (4.3). The integral in Eq. (4.5) can be evaluated
explicitly. The material parameters entering this
Hamiltonian are summarized in Table I.

The spin-orbit Hamiltonian is

TABLE I. Pseudopotential parameters for the tetrahedral semiconductors.

Compound V (3) V'(4) V (8)

Form factors (gy)
V (11) V"(3) V"(4)

Lattice
V"(8) V (11) constant (A)

Si
Ge
a-Sn
GaP
GaAs
GaSb
InP
InAs
InSb
ZnSe
CdTe

—0.257
—0.221
—0.190
—0.230
—0.214
—0.220
—0.235
—0.230
—0.200
—0.218
—0.220

—0.203
—0.160
—0, 144
—0.166
—0.157
—0.163
—0.176
—0.172
—0.153
—0.155
—0.165

—0.040
0.019

—0.008
0.020
0.014
0.005
0.000
0.000

—0.010
0.029
0.00

Nonlocal

0.033
0.056
0.040
0.057
0.067
0.045
0.053

' 0.045
0.044
0.064
0.062

parameters

0
0
0
0.100
0.055
0.040
0.080
0.055
0.044
0.139
0.060

0
0
0
0.070
0.038
0.030
0.060
0.045
0.030
0.062
0.050

0
0
0
0;035
0.008
0.007
0.033
0.020
0.017
0.023
0.029

0 5.43
0 5.65
0 6.49
0.025 5.45
0.001 5.65
0.000 6.10
0.030 5.86
0.010 6.05
0.015 6.47
0.016 5.65
0.025 6.48

Radii (A)
Cation Anion Cation Anion

Compound ap (Rp) Po A2 (Ry) ao Ry) Po ~2 (&y) ~o R2 Rp

Si
Ge'
a-Sn
GaP
GaAs'
GaSb
InP
InAs
InSb
ZnSe'
CdTe

0.55
0
0
0
0
0
0
0
0
0
0

0.32
0
0.40
0.30
0
0.20
0.25
0.35
0.45
0
0.4

0
0.275
0.70
0.40
0.125
0.20
0.55
0.50
0.55

—0.125
0.00

0.55
0
0
0.32
0
0
0.30
0
0
0
1.37

0.32
0
0.40
0.05
0
0.30
0.05
0.25
0.48
0
0.4

0
0.275
0.70
0.045
0.625
0.60
0.35
1.00
0.70
0.925
2.00

1.06
0
1.06
1.27
1.27
127
1.27
1.27
1.27
0
1.37

0
1.22
1.41
1.180
1.223
1.321
1.269
1.310
1.40
1.223
1.40

1.06
0
1.06
1.06
1.06
1.06
1.06
1.06
1.06
0
1.06

0
1.22
1.41
1.180
1.223
1.321
1.269
1.310
1.40
1.223
1.40

'Gaussian nonlocal well.
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H (K,K') = (K )& K') o [ —iiP(E,K') cos[(K —K') . ~] + A"(S,C,K') sin[(K —K') . ~]I,(2')

A,
'" = (A, i + A2)/2,

Ai(E,E') = pB„,(K)B„(E'),

A2(E,E') = apB„,(K)B„,(K'),

B2(E) = (1+a2), B3(E)= (5 —ir3)/[5(1+ a3) ],
B4(K) = (5 —3K4)/[5(1 + i') ] .

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

This model for the spin-orbit pseudo-Hamiltonian is
due to Bloom and Bergstresser. In Eq. (4.7), s and
s' are the spin states, 0 are the Pauli matrices, and

p and u are given in Table II. The B„arise from
l

integrals involving the outermost p-core states of the
atom of species i, where n; is their principal quan-
tum number. Hence n; = 2,3,4 for the Si-, Ge-,
and Sn-row atoms. The parameters a'„= E(as/a„)
contain the dimensionless radial extent parameter g„
of these core states, given in Table II, and az is the
Bohr radius.

The material parameters of the Hamiltonian equa-
tions (4.1) and (4.7) are fitted to reproduce the
known energy gaps of the various semiconductors.
They generally agree with the values given in Ref.
27; since the parameters g„and a were not given

there, however, we have obtained somewhat dif-

ferent spin-orbit parameters.
For the calculation of the band structure, the

Hamiltonian equation (4.1) is diagonalized in a basis

of 89 plane waves. Then H is diagonalized in the
basis of the resulting Bloch eigenstates; for our pur-

poses it is sufficient to include the 15 lowest states.
Next we calculate the crystal potential of the de-

formed crystal, with the two sublattices rigidly shift-

ed against each other. For this purpose we use the
rigid-ion approximation and assume that the ionic
pseudopotentials move rigidly with the ions. With
this approximation a relative sublattice shift

u„i ——(a/4)(5, 5,5) affects the Hamiltonian equa-
tions (4.1) and (4.7) in two ways. (i) The vectors r
in Eqs. (4.1) and (4.7) are replaced by

rdispiaced = r + (u /8)(5 5 5) . (4.13)

(ii) The local form factors V (4) and V"(8) contri-
bute to the Hamiltonian equation (4.1). For the
perfect lattice, these two form factors drop out due
to the symmetry. We have obtained these addition-
al form factors by a smooth (cubic spline) interpola-
tion through the given Fourier coefficients of V
and V.

The ODP's can now be obtained by diagonalizing
numerically the total Hamiltonian at k = I Q,L for
several displacements. We have chosen

TABLE II. Spin-orbit parameters for the tetrahedral semiconductors.

Compound cation

Spin-orbit parameters

anion p (Ry)

Si
Ge
a-Sn
GaP
GaAs
GaSb
Inp
InAs
InSb
ZnSe
CdTe

4.60
5.34
4.95
5.34
5.34
5.34
4.95
4.95
4.95
5.34
4.95

4.60
5.34
4.95
4.60
5.34
4.95
4.60
5.34
4.95
5.34
4.95

1.00
1.00
1.00
0.52
2.58
5.58
0.20
1.00
2.16
7.78
5.73

0.0
0.000 69
0.002 25
0.0
0.000 80
0.000462
0.00076
0.001 13
0.001 12
0.000 105
0.00046
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0 & 5 & 0.001. The resulting band-energy changes
are fitted to a polynomial in 5 and the first-order
coefficients give the ODP's.

B. Results

The resulting deformation potentials are presented
in Tables III—VI for 11 semiconductors. These
tables contain the central results of this work. It
should be noted that no parameters have been ad-
justed to fit the properties of the deformed crystal;
only the perfect-crystal band structure has been con-
sidered as input to this calculation.

1. Comparison with experiment

Our results show that all deformation potentials
exhibit rather weak chemical trends. This imposes
limits on the various ODP's and can provide a use-
ful criterion for the reliability of experimental
values. For example, the published values for d3,
vary from 19 to 41 eV in GaAs, while other data
give d3, ——37 eV for Si. Our'calculation strongly

supports d3, —40 eV for Si as well as for GaAs
and generally predicts a result close to 40 eV for all

semiconductors.
We have already remarked that the determination

of ODP's from experimental data is rather involved.

As a consequence it is often difficult to distinguish

strictly between "experimental" and "theoretical"
values. It is probably best to compare theory and

experiment for d 5, or d, where most of the data are
available. This is done in Table III. Comparing the

present pseudopotential results for d, with the
values deduced from the observed shifts and

broadening of Raman lines with carrier concentra-
tion (Refs. 13 and 14), we find the latter to be sys-

tematically higher than the calculated values by
20—30%. In part, this discrepancy can originate

in the approximations involved in our pseudopoten-
tial model. They are likely to aA'ect the results by

roughly 10% as will be discussed below. In addi-

tion, two effects were neglected in the determination

of d, in Refs. 13 and 14 which could account for
this discrepancy: d, is proportional to the electron-

phonon matrix element of zeroth order in the pho-
non wave vector [see Eq. (2.2)]. The first-order

term is usually neglected but has been shown' for
n-Si to increase the total scattering rate by
10—20%. This effect is generally present and

will —when not taken into account explicitly-
renormalize and increase the apparent d, values.

Two-phonon scattering is expected to show the same

trend. '

Next we consider the ODP's at L Our calculated
deformation potentials, given in Tables IV and V,
generally agree well with experiment. We note that
the Raman experiments are sensitive to the ratio
ds, /d i, (diffl given in Table V but less so to the
separate deformation potential constants given in
Table IV. GeneraHy we conclude that the ODP's
presented here agree with the majority of the experi-
mental values within the experimental uncertainties.
The ODP's at the X point are given in Table VI for
Si, Ge, and n-Sn.

2. Strain dependence of the
spin-orbit interaction

The strain dependence of H in Eq. (4.7) results
from the strain dependence of the sublattice separa-
tion v. This strain dependence implies additional
symmertry-allowed ODF's which we did not con-
sider in Sec. III, e.g. , there is a nonzero d 3, (con).
For acoustic phonons, the effect of this strain depen-
dence of H is quite noticeable. We find, how-

ever, that it plays a negligible role for the optical de-
formation potentials.

The difference of d i, (val) and d i, (split) comes
solely from the strain dependence of H and is
seen to be small from Table IV. In addition, we
have calculated d5, and d i, (con) by artificially ig-

noring the sublattice displacement u«] in H
thereby keeping H strain independent. For a-Sn,
where the effect should be largest, the resulting de-
formation potentials d 5, and d i, (con) differ by less
than 2% from those given in Tables III and IV.
Furthermore, we find for the above-mentioned ODP
d 3,(con) ( 1 eV which is about the limit of our nu-

merical resolution.

3. Numerical tests of approximations

Several tests have been performed to estimate the
accuracy of the presented results. As customary in
the empirical pseudopotential theory, the local pseu-
dogotential form factors V and V" are truncated at

~

6
~

= 11. If V (12) is included, the ODP d»
slightly increases for all semiconductors by 2 —5%.
A variation of the interpolated form factors Vs(4)
and Vz (8) by 10% alters the ODP's by typically
4%. It is also gratifying that the nonlocal pseudo-
potential calculation gives results which are close to
those obtained with local pseudopotential
models. ' ' Using the local form factors of Ref. 50
or the self-consistent local pseudopotential of Ref.
51 for Si, we. find d5, ——53.8 and 56.6 eV, respec-
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TABLE III. The optical deformation potentials d, and 15, ——d, v 2 for the upper valence-
band edge at the I point. For the definitions, see Sec. IIIA.

Compound dso
(eV)

This work

d.
(eV)

Theory
Previous
results

d.
(ev)

Experiment

(eV)

Si

o,-Sn

GaP
GaAs
GaSb
InP
InAs
InSb
ZnSe
CdTe

53.6

52.3

42.9
37.5
41.1
41.4
44 9
40.3
40.2
30.6
43.1

37.9

37.0

30.3
26.5
29.1

29.3
31.7
28.5
28.4
21.6
30.5

39.5,'38, 1,'
40.0, 32.5'
40.0, 31.4,~

28.3,333.0,"
38 0m

24.0"
44.0,"26.3"
41 0 d31 Sq

390
42.0"
42.0"
39 0 "24.0"
27.0'

26.6,b27.0,'
(24.4—33.6)
41.6,"40.3,'

36.0,'39.0,'
(29.0—33.2)

47.0'
41.0 '48.0'
32.0'
35.0'

27 0'
22.0'

'Reference 1S.
'Reference 30.
'Reference 14.
Reference 12.

'Reference 31.
Reference 13.

~Reference 17.

"Reference 32.
'Reference 33.
'Reference 34.
"Reference 20.
'Reference 3S.
Reference 16.

"Reference 36.

~Reference 37.
qReference 38.
'Reference 39.
'Reference 40.

tively. This compares favorably with the present
result of d5, ——53.6 eV.

The main approximation used in this paper is the
rigid-ion approximation. A large number of lattice-
dynamical quantities has been successfully predicted
or reproduced by using this approximation, e.g.,
acoustic deformation potentials, ' ' the pressure
dependence of gaps, 5~ and the long-wavelength pho-
non spectrum. For lang-wavelength distortions it
is therefore very unlikely that this approximation
causes serious errors.

V. LCAO THEORY

We finally present a semiquantitative LCAO
method which predicts optical deformation poten-
tials (ODP's) in an exceedingly simple and general
way for all semiconductors. It relates the ODP's to
optical band gaps of the semiconductor and explains
the weak chemical trend which is observed for the
ODP's.

In this method, ' the perfect-crystal Hamiltoni-
an Ho is represented in an orthonormal set of local-

ized basis functions. Four basis states per atom,
namely one s and three p functions, will be used
and only nearest-neighbor interactions are included.
The diagonal elements of Ho are the orbital energies

there are four nearest-neighbor Hamiltonian ma-
trix elements V ~ Vpp~ Vpp, and V+ Instead of
constructing the basis functions and the Hamiltoni-
an explicitly, these matrix elements are considered
as parameters and are fitted to the band structure at
high symmetry points.

Only during the last five years or so this old
method, which has its roots in the 1950's, .has been
systematically applied to a broad spectrum of prop-
erties of solids and could be given a firm theoretical
basis. We refer to the recent books by Harrison 7

and Heine and co-workers for a review.
The keypoint of this empirical LCAO method lies

in the remarkably simple and pronounced chemical
trends of the Hamiltonian matrix elements. Har-
rison' found that for all semiconductors (i) the di-
agonal elements of Ho are, in a good approxima-
tion, equal to the outermost s- and p-orbital energies
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TABLE IV. The optical deformation potentials d ~, (split), d &,(val), and d ~, (cond) for the
split-oA' valence band, the upper valence-band edge, and the lower conduction-band edge at
the L point, respectively. Previously calculated values are cited in parentheses below the
theoretical results.

Compound d ~, (split)
(eV)

d &,(val)

(eV)

d &,(cond)
{eV)

Si —16.4
( —11')
—10.7

( —17,b —5')

—16.4
(—11')
—10.2

( —17, —5')

—10.4
( —5.2')
—27.7

{—5,b —8')

a-Sn
GaP
GaAs
GaSb
InP
InAs
InSb

ZnSe
CdTe

—8.8
—11.4
—11.8
—12.9
—14.5
—11.9
—11.5
(—12")
—14.6
—18.8

—7.3
—11.4
—11.1
—11.9
—14.1
—11.1
—10.2
(—12 )
—14.2
—17.4

—29.2
—17.7
—21.7
—30.6
—24.8
—33.0
—28.0
( —26")
—8.9
—27.5

'Reference 31.
Reference 17.

'Reference 43.
"Reference 36.

TABLE V. The interband optical deformation potential d3, and the ratio of 13, and
d &,(diff) = d &,(cond) —d ~, (val) at the L point. Only in GaAs is d3, known experimentally
(Ref. 39), d3, (GaAs) =37.0 eV.

Compound (This
work)

d 3g

(eV)
Theory

(Previous
results)

[d3,/3i, (draff)
i

Theory
(This (Previous
work) results)

Experiment

Si

a-Sn
GaP
GaAs

GaSb
InP
InAs
InSb
ZnSe
CdTe

44.8

48.3

37.6
38.5
40.3

38.7
43.3
40.3
38.2
28.9
42.5

37.0,'
15.4'
4o.o,b

33 0"

18.0'

41.0,
37;0,'
19 0'

41.O"

31.0'

7.5

2.8

1.7
6.1

3.8

2.1

4.0
1.8
2.1

5.5
4.2

6.4'

33'
4.5,~

714

o.6'

2.0'

1.5'

35'

3.0g

2.0'

70

'Reference 31.
Reference 17.

'Reference 44.
"Reference 4.
'Reference 36.

Reference 38.
Reference 45.

"Reference 46.
'Reference 4.
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Compound d~, (val)

(eV)
d&, (cond)

(eV)

Si

Ge
a-Sn

29.0
(17.5')
24.8
21.2

23.2
(28.0b)

35.3
28.4

TABLE VI. The optical deformation potentials

d~, (val) and dx, (cond) for the upper valence-band edge
and the lower conduction-band edge at the X point,
respectively. Previously determined values are cited in
parentheses below the present theoretical results.

V„—:(P ~H ~P, )

=cos(Op )cos(OJy )( Vpp~
—

Vpp~) . (5.3)

4

H „,(k) = +exp(ik ~ jr)((t ~H ~P~, )

Here t9j is the angle between 7j and the x axis and
we have put the anion (labeled by a) in the center,
while the cations (label c) are at rj. Similar matrix
elements can be defined for the s states but they do
not enter d, . Forming Bloch states, one gets the
8 X 8 Hamiltonian matrix H (k ), e.g.,

'Reference 31. Reference 25. (5.4)

of the free atoms and (ii) that the matrix elements

Vll are universal functions of the nearest-neighbor
distance r =

~

r ~,

—2
Vll'm Ill'm + (5.1)

with coefficients g independent of the atomic consti-
tuents of the tetrahedral semiconductor. The physi-
cal origin of this behavior is discussed at length in

Ref. 57.
We wish to apply this method to ODP's and par-

ticularly consider the deformation potential at I,
namely d, . Following Ref. 56, we first transform
the Vll to a x,y~ basis. If ~z are the vectors
pointing from the central site to the four nearest
neighbors.

At the high symmetry k points, the resulting band
structure can be calculated analytically. At the I
point the top of the valence band is purely p like.

In order to calculate the optical deformation po-
tentials, the two sublattices are shifted relative to
each other by u„,i ——(a /4)(5, 5,5) so that one should
replace ~z by 7j + u

&
This aA'ects the Hamiltoni-

an matrix elements via the angular factors in Eqs.
(5.2) and (5.3) and via the r dependence of the

Vip shown in Eq. (5.1). To first order in the dis-
placement 6, only the matrix elements

H y, (k = 0) = Hy, ~(k = 0)

=K „,(k = 0) = —, V„y5,
(5.5)

are affected by 5 at k = (0,0,0). By diagonalizing
the Hamiltonian one finally gets [see Eq. (3.2)]

=cos (OJ„)Vpp +. [1 —cos (OJ„)]V~~

(5 2)
0— 32 VyV

g3 3 [ (eo p~)2 + V2 ]i/2
(5.6)

TABLE VII. The LCAO parameters e~ taken from Ref. 57. They have been chosen equal
to the free atomic term values as calculated by Herman and Skillman (Ref. 61).

Element
(eV)

Element
{eV)

Element
(eV)

Element
(eV)

CU

Ag
1.83
2.05

Be
Mg
Zn
Cd

4.14
2.99
3.38
3.38

B
Al
Ga
In

6.64
4.86
4.90
4.69

C
Si
Ge
Sn

8.97
6.52
6.36
5.94

N
P
As
Sb

11.47
8.33
7.91
7.24

0
S
Se
Te

14.13
10.27
9.53
8.59

F
Cl
Br
I

16.99
12.31
11.20
9.97
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TABLE VIII. The optical deformation potential d, at the I point as predicted by the
present LCAO model.

Compound dp

(eV)
Compound d.

(eV)
Compound d.

(eV)

C
SiC
Si
Ge
a-Sn

BN
BP
BAs
A1N
Alp
A1As
Alsb

106.9
69.3
45.9
42.6
32.3

96.7
64.0
58.4
57.7
39.2
37.7
31.9

GaN
GaP
GaAs
GaSb
InN
InP
InAs
InSb

BeO
BeS
BeSe
BeTe

53.8
39.4
37.0
32.3
39.7
32.0
31.0
27.4

71.8
44.4
41.0
34.7

MgTe

ZnO
ZnS
ZnSe
ZnTe
Cds
CdSe
CdTe

Cup
CuC1
CuBr
CUI

20.3

39.8
30.4
28.1

24.4
23.7
22.4
20. 1

40.4
23.0
20.2
18.7

(5.g)

do = —l —,&(I'is) ——,«Xs)l . (5.9)

In Eqs. (5.7) —(5.9) the energies of the conduction
(c) and valence (u) bands are measured with respect
to the top of the valence band. Harrison deter-
mined the universal parameters il in Eq. (5.1) from
the empirical band gaps of the perfect semiconduc-
tors and found

V~ = 2.16, V~@ ——5.40
m m

(5.10)

With these universal parameters and the atomic p
energies which we list for convenience in Table VII,
one can calculate d, from Eq. (5.6) for any
tetrahedral semiconductor. The results are shown
in Table VIII. Experimentally E(X5 ) varies very
little from one material to the other. Therefore Eq.

The parameters V and V„~ are expressible in

terms of the energy gaps of the undistorted crystal.
I'or diamond-type crystals, the relations are particu-
larly simple:

(5.7)

(5.9) exhibits that d, is proportional to the Eo gap
in diamond-type crystals. Diamond has the largest

Eo gap and indeed one finds d, (diamond) = 90.1

eV from Raman experiments and 61.2 eV from
transport measurements as compared to 32.5 eV
for Si. Ionic semiconductors also have a large Eo
gap but in these materials the polarity factor

e~ —e~ in the denominator of Eq. (5.6) becomes
large as well. These two effects largely compensate.
This explains the weak chemical trend of d, for the
standard semiconductors. For compounds contain-

ing C-row. atoms or for very ionic materials like
CuI this cancellation is not very effective. There-
fore, the present LCAO model predicts significant
variations of d, over the Periodic Table.
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