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Band-gap narrowing in heavily doped many-valley semiconductors
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Band-gap shrinkage in impure n-Si and Ge as a function of impurity concentration is

studied theoretically at T = 0 K. Above the Mott critical density it is assumed that elec-

trons occupy the host conduction band in the form of an electron gas. Interactions among

the free carriers and with the ionized point impurities give rise to a downward shift of the

conduction band. Interband matrix elements are explicitly included for the valence bands.

As a consequence, the two valence bands at the center-of the zone are shifted upwards by

the same amount. Correlation and impurity scattering both give corrections to the band

gap, which are of the same order of magnitude. In particular, one finds that the band gap

depends rather sensitively on the arrangement of donor ions. The choice of dielectric

screening is investigated, and comparison with previous calculations is made. A compar-

ison between present theoretical results and experimental estimates of the band-gap narrow-

ing is also indicated. One notes an order-of-magnitude agreement, although there is consid-

erable scatter in the experimental data. Shortcomings of the present theory are briefly dis-

cussed.

I. INTRODUCTION

The value of the energy gap Eg of heavily doped
silicon is an important parameter in transistor

design, as well as an intriguing theoretical problem
in condensed-matter physics. Keyes's' summary of
the problems associated with this fundamental

parameter is very much to the point; for this reason
we wish to cite him at some length:

"The effect of doping with donors or acceptors on

the energy gap of semiconductors has both scientific

and engineering, theoretical and practical impor-
tance. To the physicist it is a manifestation of sub-

tle effects that are diAicult to detect and measure.
To the applied scientist, the energy gap is an essen-

tial parameter needed to design devices and to
predict their performance; it determines, for exam-

ple, the current-voltage characteristics of p-n junc-
tions and the energy of electroluminescent recom-
bination radiation. The value of the energy gap in

heavily doped silicon has recently received consider-

able attention in connection with transistor design.
Nevertheless, defmitive values for this essential

parameter of a well-studied material are still not
available.

"The doping levels used in semiconducting de-

vices have tended to increase with the progress of
miniaturization. A basic reason for this is to be

found in the limitation placed on transistor dimen-

sions by depletion layers. p and n regions of sem-

iconductors are separated by layers depleted of
mobile charge but containing the charge of the fixed
donors or acceptors. The electric fields produced
by this fixed charge must support the potential
difference between the n and p regions of a junction;
the greater the charge density or doping level, the

greater the electric fields, and the thinner the de-

pletion layer needed to accommodate the potential
difference. Thus, . the increase in doping levels that
accompanies miniaturization. "

Among other current topics one may also mention
solar cells. In this case band-gap narrowing
presumably has a strong influence on the highest
emitter efficiency that may be obtained for the

highly-doped emitter regions in the cell.
Thus the change of the band structure of a sem-

iconductor with doping has attracted considerable
interest. Experiments and theory have recently been
reviewed by Keyes' and Abram, lees, and %ilson
to whom we refer for details and more extensive
lists of references to previous work. Energy-gap
narrowing of a very similar kind also occurs in in-

trinsic semiconductors under intense laser irradia-
tion. The states filling in the conduction and
valence bands are then strongly controlled by the

energy-gap narrowing induced by the optically gen-
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E,(k,c)o= e, (k) + fiX, (k,co),

where e, (k) is the unperturbed band energy and
4fiX, (k,co) the self-energy associated with electron-

electron and electron-impurity scattering. In the
case of the valence band, however, the unperturbed

O
energy e„(k)already contains a Hartree-Fock ex-
change contribution. AX„&"because the band is com-
pletely occupied. %hen adding free carriers, either
electrons or holes, one is only interested in the shift
ed self-energy, i.e., the relevant quasiparticle energy
is

(1.2)

E„(k,co) = e„+fiX„'(k,ro),

where

fiX„*(k,~o) = iriX„(k,co) —iriX„O"(k) .

(1.3)

(1.4)

This point was first noted by Inkson. As discussed

by him and as will be shown below, the inclusion of
iiiX„*'"(k,co) gives rise to importarit corrections of
the band gap. Since the quasiparticle energies are
related to the energy required to remove or add par-
ticles, the shift of the band gap relative to the band
edges is now

EEs ——A'X„'(0)—fiX, (0) .

crated interacting electrons and holes.
The basic feature of most theoretical models is

that of an electron gas occupying the conduction
band in the case of n-type materials, or a hole gas in
the valence band of p-type materials. Such models
are thus relevant for concentrations higher than the
Mott critical density, n, &~ —0 2& (&& is the ef-

fective Bohr radius). The shift of the unperturbed
band gap Eg may be subdivided as

EEs ——Es —Es ——(b,Es)i + (AEs)2 .

With this definition AEg will be a positive quantity.

(EEs)i denotes the shift due to direct influences of
impurity centers such as local strain, etc. This term
is supposed to be independent of carrier densities n

(or at least slowly varying with n), but may change
with the chemical nature of the impurity. However,
(b,Eg) i seems not to be well understood in detail-
in particular it should be sensitive to annealing.
Previous theoretical work, as well as this work,
rather focuses on the term (AEs)z, which derives

from the Coulomb interactions among the electrons
themselves and their interaction with the ionized im-

purity centers. The particles can then approximate-

ly be described as noninteracting quasiparticles. Let
the quasiparticle dispersion for the conduction band
be

fiX, (kF) —A'X„*(0). (1.7)

With this definition the sign is opposite to that one
above. Considerable work has been devoted to
many-body calculations of the self-energies using
various approximations and for various materials
(see, e.g., Ref. 2). One common feature to such cal-
culations is that potential fluctuations due to local
fluctuations in the density of impurities are neglect-
ed. The calculated energy gap is therefore a local
energy gap. A subsequent averaging over the statist-
ical fluctuations may be performed at the end of the
calculations leading to band tailing.

A simple and frequently used approximation of
Eqs. (1.5) —(1.7) is to insert the Hartree-Fock self-

energies. For an n-type material one then obtains (a
is the dielectric constant of the host)

b,Eg ———X,""(0)= 2e kp/am, (1.8)

since in this case there is no shift in the Hartree-
Fock energy of the valence band as free carriers are
added to the conduction band. Equation (1.8) refers
to isotropic conduction-band minima and

kF ——(3nn /v)'i, (1.9)

if there are v minima; below we will discuss the in-

fluence of anisotropy. The exchange contribution
to the energy-gap shrinkage as measured at the Fer-
mi level is, from Eq. (1.7), equal to —e kzlair Be-.
cause experiments in some cases indicate an n '

dependence, this expression and Eq. (1.8) have been
used to interpret experimental data. At the same
time, though, other many-body effects give changes
of the same order of magnitude.

A first step to improve the Hartree-Fock result is
obviously to extend it to a correlated homogeneous
electron gas in a smeared background of ionized im-

purities. This is the essence of Inkson's model as
well as some previous ones. ' ' The calculations in
Refs. 8 and 9 suffer, however, from the same defect.
The correlation and exchange energy changes of the
appropriate band are considered by treating the car-
riers as a quasi-free-electron (hole) gas and then ap-

(Index 2 is omitted here and in the following. ) For
heavily doped semiconductors the band gap is also
frequently measured relative to the Fermi level eF,
giving the "Burstein shift"; in optical absorption and
n-type materials excitations must end up in unoccu-
pied states above the Fermi level. This shift is then

FF + iriX, (kp) —RX„*(0).

The effective reduction of the energy gap as mea-
sured at the Fermi level is consequently
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plying the appropriate approximations to obtain the
energy shift of that gas, the changes in the other
bands being neglected. This is, as Inkson stresses,
incorrect since the presence of free carriers can
change the energies of all of the bands. It is only
the difference between valence- and conduction-band
shifts which will be measured.

A second step to improve on the Hartree-Pock
result is to include the scattering of free carriers
from the ionized impurities together with correlation
effects. Thus %'olf, ' Bonch-Bruevich, "Rogachev
and Sablina, ' Rimbey and Mahan, ' and Bergersen
et al. ' have performed such calculations. As it
seems, these calculations suffer from the same defect
as above.

In the present work we will investigate the case of
heavily doped n-type germanium and silicon' with

the purpose of theoretically evaluating AEg as close-

ly as possible by means of presently-available
many-body techniques. The reason for this is that
such detailed calculations for materials of this kind
have been lacking in the literature. The purpose is

also to investigate the effects of anisotropies of the
conduction band and the structure of the valence
band as well as the effects of impurity scattering. .

Inkson's calculations, which ignore these eA'ects,

refer to a simple plasmon-pole approximation for
the dielectric screening. Since this model grossly ex-

aggerates AE, we will instead extend the calcula-
tions to include the appropriate random-phase
(RPA) approximation dielectric screening. For the

conduction band we will also investigate the full

density of states for the quasiparticles. All calcula-
tions are performed for T = 0 K. It should be
stressed that all the calculations reported below

refer to a homogeneous system. For example, band

tailing associated with statistical fluctuations has to
be considered separately as mentioned above.

In Sec. II we will summarize some basic nota-
tions and discuss relevant matrix elements. In Sec.
III we will give a rather detailed recapitulation of
Inkson's model. Because of the simple form of the
dielectric function used, the calculations can be car-
ried out with ease in this case and are therefore

quite revealing. The inclusion of band-structure ef-

fects and impurity scattering in the Inkson model
are also discussed. Section IV gives corresponding
results for RPA screening as well as for the quasi-

particle density of states. Since no definitive experi-
mental values of AEg are available, the main em-

phasis of the present work is on theory, although
some comparison with experimental values is indi-

cated. Section V, finally, contains a short summary

and discussion.
After a first version of this manuscript was comp-

leted and circulated for comments we become aware
of some very recent theoretical work. Thus
Mahan' has calculated the impurity dependence of
the energy gap in Si and Ge with the same purpose
as here, i.e., primarily a systematic theoretical exam-
ination of all the terms contributing to EEg rather
than a confrontation with experimental data. As
emphasized by Mahan, previous workers have tend-

ed to single out only one particular term, and then
claimed agreement with experiments. A more sys-
tematic theoretical approach is consequently needed.
Although similar in spirit, Mahan's work and the
present one differ considerably in detail. The two
theories are therefore compared at some length in

Sec. IV. In particular, we find that band-gap nar-

rowing depends sensitively on the arrangement of
donors. We also wish to mention the recent work
on GaAs by Serre, Ghazali, and Leroux Hugon, '

who focused attention on the relative importance of
multiple-impurity scattering and impurity-
concentration fluctuations. Their work is briefly
commented on in Sec. V. Finally, we mention re-
cent absorption measurements on doped silicon by
Schmid. ' This author also theoretically estimated
the band-gap narrowing using arguments rather
similar to ours and Mahan's. ' His results did not
include, however, the shift in the valence band.

(2.1)

The transform is

G (j,to) = I/(co —e /A'+ i5), (2.2)

where 6 & 0 for occupied states and 6 g 0 for emp-
ty states; e~ is the unperturbed one-particle energy.

We shall consider modifications in the one-

II. GENERAL NOTATIONS FOR THE GREEN'S
FUNCTION AND SELF-ENERGIES

This section is given for convenience. It summa-
rizes notations and states the approximations used
for the matrix elements.

If ( g&( x, t) j is the set of one-electron functions of
the system, we write the unperturbed Green's func-
tion as the diagonal expansion
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electron energies (self-en'ergies) due to electron-
electron and electron-donor ion interactions, V„
and V„., respectively, by means of perturbation
theory. Depending on the particular numerical
values of the matrix elements various channels are
available. For V« there is generally the exchange-

type integral

(jk
~
V„~kj)= f dx f dx'1(*(x)QI*,(x ')

)& V„(x,x ')QI, (x)PJ(x ') .

constant, i.e., e —+ e /x. Transitions between the
light- and heavy-hole bands are somewhat more
complicated. Following Combescot and
Nozieres' ' one may approximately include the
structure of the valence bands by introducing aver-

aged matrix elements

(k„,k„
i V„i k„,k„) U(k —k')A„„(k,k'),

(2.4')

where

(2.3) U(q) = 4m.e /I~q (2.5)

4me(k„k,'i V„~k,'k„)= ~[k„—k,
/

(2.4)

i.e., transitions between different minima and the
variations in Up ( r ) are ignored. For the valence

band we assume the following simplified band struc-
ture. ' ' At the center of the zone there are two
degenerate spherical bands with effective masses m~
and m~ (heavy and light holes). Below these bands
there is a third band split off by spin-orbit interac-
tions. This band is suAiciently lower in energy and
therefore ignored. Furthermore, matrix elements
between valence- and conduction-band states may
effectively be included as a background dielectric

Dealing with particles in the conduction and
valence bands of, for example, Si the one-electron
functions are subdivided into sets I ~(x ) I where n

is the band index and k the crystal momentum.
0The Green's function is then denoted G„(k,co). The

conduction-band electrons occupy v minima and the
associated wave functions are Uz (7)exp(ik„
where Uz (r) is the periodic part which is assumed

to vary slowly. We therefore write approximately
for the conduction-band matrix elements

The "vertex functions" A„„aredefined as

Aps(k, k ') = AIi(k, k ') = —,(1+ 3cos 9), (2.6a)

Ais(k, k ') = —sin 9, (2.6b)

AX,"(k,co) = '
~ f d q f dco'v (q,co')

(2n. )

)& G, (k+ q,co+ co'),

(2.7)

where

4me
U„(qco') =

2
~q E(q,co')

(2.8)

is the dielectrically screened interaction U (q) and

where 0 is the angle between k and k '. Ay and

A~~ regulate transitions between light-hole states
and heavy-hole states, respectively; AI~ refer to tran-
sitions between light- and heavy-hole states.

With these preliminaries we may now state the
self-energies A'X" due to electron-electron interac-
tions. For the conduction-band states one has

n,(k)[1 —n,(k + q)]4[a„(k+ q) —e,(k)]
e(q, ro) = 1 —U(q)

(2~) (co+ i5) —[e,(k -+ q) —&„(k)]
(2 9)

(2.10)

Here e (k) are the unperturbed one-particle energies associated with the vth conduction-band minimum. For
the valence bands one obtains the somewhat more complicated expression

&&.',."(k,~)=,-y f &q f d~'[u (q,co') —U(q)]A„„(k,k + q)G„(k+ q,co+ co') .
IP

The self-energy associated with scattering off the impurity centers AX" involves the matrix elements~ i
( k„~V„

i
k„).As above we may neglect intervalley scattering in the conduction band as well as scattering

between the conduction and valence bands. If we assume that

V„(r)= ga)(r —Rs) (2.11)
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where m is the potential from an impurity ion at Rz, one obtains from second-order perturbation theory in the
screened potential

2

iriX,"(k ) = n f (2~)' e(q,0)
e„(k)—e„(k+ q)], (2.12)

where n is the impurity concentration. To arrive at this expression it is assumed that the impurities are distri-
buted at random. For the valence bands the corresponding expression is

2

A'X„"„(k)= ng I A„„(k,k+ q)/[e„(k)—e„(k+q)]. (2.13)

](I[~„io) ]'
E (2)

where W(ri, r2, . . . , rN, R„.. . , RN) denotes the
total electrostatic interaction between all valence
electrons I r; ] and donor ions I R; ]; because of
the presence of the mobile conduction dectrons P „.
is dielectrically screened. As above we assume the
donors to be randomly distributed. The Madelung
term in the total energy then equals zero. Conse-
quently we only have to bother about the contribu-
tion E„'' above.

The unperturbed state
~

0) and the intermediate

states
~
I) in Eq. (2.14) are many electron states in

the form of Slater determinants. The corresponding
configurations are I k ]0 and t k ]I. Hence, the to-

tal energies of the unperturbed and intermediate

states are

(2.14)

Eo ——g n-„e„(k)
I k IO

(2.15)

0Here e„(k ) are unperturbed one-particle energies as-

sociated with the nth valence band.
The proper sign of AX,

"may perhaps be confus-

ing. It is therefore instructive to discuss the role of
the self-energy in the following elementary way.
Let us consider the valence band and for simplicity

ignore the band structure by letting A = 1. For the

moment we also ignore electron interactions. The
total energy associated with the scattering of the

valence-band electrons ofF the impurities is, accord-

ing to ordinary second-order-perturbation theory,

El = g ii-„e„'(k),
r

(2.16)

0 +
where e„(k) represent the unperturbed one-electron
energies associated with the valence band. The
terms in Eq. (2.14) describe the scattering of an elec-
tron initially in the one-particle state k ) into
another one-particle state

~

k + q ) and back to
i

~k) again. Thus

Eo —Ei ——e, (k) —e„(k+ q) . (2.17)

This process is only allowed if state
~

k + q ) is

empty. W'e thus obtain for the second-order correc-
tion

e„(k)—e„'(k+ q)

(2.18)

where p'„,(q) is the Fourier transform of Eq. (2.11)
divided by the screening function. For a completely
filled valence band, E„'' obviously equals zero be-
cause there are no empty states to which the elec-
tron can be scattered. If we now, however, make a
small change of the occupation numbers by, e.g. ,
the removal of a few electrons from the valence
band such that the new occupation numbers become

I n k ], the corresponding second-order correction
to the total energy is

(2)
(2) ' (2) 5E, ' I ii-„]E„ I n k ] =E„ I n

k ] + g (n-„' —n-„)
k

= E' 'I & k ]+P P I ~et(q)
l

/lou(k) —e, (k + q)] (n k
—n k) .

k q
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The expression within the large parentheses is just
the self-energy A'X„"as defined in Eq. (2.13) in more
detail. Thus, if the total energy of the state with a
completely filled valence band is E„I n-„I then the

corresponding energy of the state with a single hole
in

~

k ) is consequently given by

E„In-'„
I
= E, I n-„I—e„'(k)—eX„"(k). (2.20)

We may now argue about the system of
conduction-band electrons in a similar way. Let
E,' 'I n-„Ibe the corresponding second-order

correction to the ground state of this system.
Furthermore, let the electron removed from the
valence band end up at the Fermi level in the con-
duction band, i.e.,

E,' 'I n q I
= E,' 'I n q I + A'X,"(kF) . (2.21)

If E, I n-„ I is the ground state of the entire system,
valence- as well as conduction-band electrons, the
energy of the excited state is thus

E, I n k I = E, I nk I
—e„(k)—ttlX„"(k)

+ e, (kF) + fiX (kp) . (2.22)

The difference between the excited and initial states,

E, I n-„ I and E, I n-„I, respectively, therefore con-

tains the shift AX,
"

(kp) —trtX„"(k),which should be
compared with expression (1.7). In order to estab-

lish the expression for AE we may now go one
step further by letting an electron at the bottom of
the conduction band (k = 0) recombine with the
hole. The total energy of this second excited state is
obviously

E, I n-k ~ I = E, I n-„I+ e, (kF) + AX,"(kF)

—e, (0) —fiX,"(0) . (2.23)

The difference between Eqs. (2.22) and (2.23) thus
defines an eA'ective emission energy as

e, (0) —e„(k)+ triX,"(0)—ttlX„"(k). (2.24)

Choosing k = 0 we recover the shift in the band

gap, Eq. (1.5), according to its definition in Eq.
(1.1).

III. INKSON'S MODEL FOR EEg, EFFECTS
OF ANISQTRQPY AND

IMPURITY SCATTERING

Because of its simplicity it is illuminating to re-

capitulate Inkson's model for the band-gap narrow-

ing. In this model it is assumed that the impurity
ions may be smeared into a uniform neutralizing

background and that free electrons occupy the con-
duction band in the case of n-type materials. The
anisotropy of the conduction-band minima and the
structure at the top of the valence band are ignored.
Below we will therefore consider these effects. We
will also show that electron-donor ion interactions

may also give rise to a substantial shift of the band

gap. All calculations refer to the bottom of the
conduction band and the top of the valence band.
In the following we have n-Si and n-Ge in mind.

The self-energy correction for the conduction-
band electrons due to electron-electron interactions
is given by F~. (2.7). If the plasmon-pole approxi-
mation ' for e(q, co) is used the calculations become
elementary. Then

2

E(q,a)) ' = 1+
2coi(q) co —cot(q) + i$

1

co+ cot(q) —i5 +
' (3.1)

where the plasmon frequency for a many-valley sit-
uation is

cop ——4ne nl(sm, q), (3.2)

1 2 1
lllgp = +

3 pl) NlI
(3.3)

The transverse and longitudinal masses are m, and

mI, respectively. The plasmon dispersion is approx-
imately

cot(q) ~ co& +—
3 fPl

(3 4)

G, (k,a)) = I/[co —e„(k ) ~ i5] (3.5)

in the general expression for triX,"(k,co), Eq. (2.7),
and letting co e„(k)/fi one gets

where the coefficient in the q term is adjusted such
that the correct Thomas-Fermi expression obtains at
co = 0 and q ~0. Inserting Eq. (3.1) and the
Green's function
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iriX,"(0,0) =-ee 2e kF e21 4 , kF
1 ——tan

2K 7T

where A, is the inverse Thomas-Fermi screening
length defined through

1/3
4v 3n

aH m'

The eAective Bohr radius is

aH ——idi /mde

and the density-of-states effective mass is

(3.6)

(3.7)

(3.8)

This is exactly Inkson's result, which Abram et aI.
have investigated extensively in relation to experi-
ments. One notes that in the derivation of Eq.
(3.12) the contributions from the poles in e(q, co)
cancel exactly. Numerical results for n-type silicon
are given in Fig. 1. These results show that the shift
due to electron correlation is substantial.

The considerations above refer to isotropic band
structures. It is now easy to extend Inkson's result
in Eq. (3.6) by integrating over an ellipsoidal Fermi
surface in Eq. (3.10). If y = m, /mI & 1, one then

obtains

md = (m, mI)
2 1/3 (3.9)

)ee
2e kF 1+

2kF

kF

(3.12)

In Eq. (3.6) the first term on the right-hand side is

simply the Hartree-Fock (HF) self-energy; the
second term derives from the poles in e( q,co) ' and

the third from the poles in the Green's function. In
deriving the expression in Eq. (3.6) it is furthermore

p +
assumed that differences between energies e,( k ) can
be ignored in comparison with iruoi(k). This is

equivalent to writing the self-energy in the some-

what more general form

2

~~ee(00) f dq u(q) (~) e A,

(2ir)i e(q,O)
" 2a.

(3.10)
%e will return to this expression below.

Let us now consider the valence band which we,
like Inkson, first assume to be nondegenerate, isotro-
pic, and completely filled. Thus ignoring the "ver-
tex functions" in Eq. (2.10) we have

iiiX„""(0,0) = e A,/(2a) . . (3.11)

The actual contribution from the poles in e(q,co)

is here the same as in Eq. (3.10), as pointed out also

by Inkson. This expression follows from Eq. (3.6)
by omitting the Hartree-Fock teim and formally let-

ting kF ~ oo (A, is small in comparison with the
dimensions of the Brillouin zone). In contrast to
the conduction band the valence band is thus shifted

upwards when electrons are added to the conduc-
tion band. The self-energy AX„*'"is positive because
it merely describes the fact that free carriers in the
conduction band will weaken the exchange interac-
tion among the electrons in the valence band. The
shift in the band gap due to electron-electron in-

teractions as defined in Eq. (1.5) is now

200-

~ 150-

L5
100-

50-

0 I I I I

10% 1017 10% 1019 1020 102'

Electron concentration (crn'}

FIG. 1. Band-gap shrinkage in n-type silicon as a
function of impurity concentration. b E~ is here defined
as the difference between the unperturbed and the per-
turbed band gap; hence AEg & 0. Curves (a) and (b) give
the band-gap narrowing for a homogeneous electron gas
in the conduction band as computed in the Hartree-Fock
approximation; (a) refers to isotropic and (b) to anisotro-
pic conduction-band minima. Curves (c) and (d) refer to a
correlated electron gas within the plasmon-pole
(Thomas-Fermi) approximation; (c) is for isotropic and
(d) for anisotropic minima. Curve (e) is the same elec-
tron gas in the RPA approximation as calculated by
Abram et al. (Ref. 2) for isotropic bands. Curve (f) gives
the shift due to electron-impurity ion scattering. The
model is only strictly valid for n & 10"cm '. The nu-
merical results are based on the input parameters v = 6,
a = 11.40, mq ——0.9163mp, m, = 0.190Smp,
mph' = 0.523mp, and mls = 0 154m p
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1/2 1/2 '

1 —y
(X/k, )'y"' + y

e A, 4 1
kF

1 ——tan
—'—

21~

(3.13)

2 —1 1/2
fix""(00)= — '

kc = — Fy

an expression considered by Bonch-Bruevich and Rozman. In contrast to the conduction-band edge the
valence band at k = 0 remains unchanged when the proper expression is considered. At k = 0 the vertices

simply add to one. The band-gap narrowing due to electron correlation is therefore

(3.14)

which for y~ 1 reduces to Eq. (3.6). If we on the other hand let A, -+0 the Hartree-Fock expression for an el-

lipsoidal band is obtained,

2e kF (A/kF) y/ + y)ee, y
—1/3

K77 1 —y
tan-'

1/2
1 —y

(iVkp) y/ + y

kF (3.15)

The effects of anisotropy are given numerically in

Fig. 1. One notes that such effects are rather small
in the case of n-Si. In the next section, which will

deal with a more accurate description of the screen-

ing, we may then ignore anisotropy.
So far we have only studied the homogeneous in-

teracting electron gas. In the Thomas-Fermi ap-
proximation for e(q,o) one obtains for electron-

impurity scattering the conduction-band shift [Eq.
(2.12)]

4 2

AX,"(0)=-
aHKA,

(3.16)

RX„"„(0)= — fiX,"(0) .
2fPld

(3.17)

This contribution to the self-energy for the valence
states is thus positive. This can be understood in

the following way. An electron filling up the last

empty state in the valence band will in doing so
prevent the other valence electrons from reducing
their energy through polarization and relaxation
around the impurity centers. This implies that this

To arrive at this expression we have assumed
Coulombic scatterers, i.e., co(q) = —4~e /lrq . For
the top of, the valence bands one finds in the same

way, but with the vertices included as in Eq. (2.13),
that the heavy- and light-hole bands (with masses

mal, and mII, ) are shifted by the same amount

electron gets a positive self-energy contribution from
the electron-ion interaction and hence the corre-
sponding hole gets a negative one. The total contri-
bution to AEg from electron-impurity scattering is

therefore

)ei 47Tne
1

mhh + mlh

aHgg 2md

(3.18)

Numerical results are given in Fig. 1. At lower
concentrations impurity scattering has evidently a
negligible effect on the band-gap narrowing. %ith
increasing concentrations, however, impurity scatter-

ing becomes substantial.
All the calculations above make use of a simple

plasmon-pole approximation and Thomas-Fermi ex-

pression for the dielectric function. The simplified

form in Eq. (3.10) suggests, however, that this result

may be improved by using, e.g., the Lindhard
(RPA) expression for e(q,o). It may be improved
further by also including the frequency dependence
in the screening by the replacement e (q,o)~
e(q, [e„(q) —e„(0)]/A) in Eq. (3.10) and correspond-
ingly in the expression for the valence-band shift.
Calculations of this kind have been performed by
Abram et al. who assumed a single, isotropic
valence band. Their results are reproduced in Fig.
1. Clearly the simple form for the static dielectric
screening used in this section grossly exaggerates

AEg. At the same time a single isotropic band is an
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oversimplification. In reality, exchange coupling of
the light- and heavy-hole bands will change the
valence-band shift. In the next section we therefore
include this kind of coupling and the frequency
dependence in a proper way. Although the expres-
sions then become considerably more complicated
the structure is very much the same as in this sec-
tion.

IV. BAND-GAP NARROWING IN RPA

The calculations in the preceding section give or-

der of magnitudes. We will here investigate the ef-

fects of including the full frequency dependence in

co(k) = E„(k)/4eF ——k

where k = k/2kF and

co = duo/4eF .

(4.1)

(4.2)

The self-energy associated with electron correlation
is then

e(q, co). In doing so we will assume that the
conduction-band minima are isotropic, since it was
shown above that anisotropy only gives minor
corrections.

%e first consider the conduction band. It is con-
venient to define the variables

where

(2~) 2@i q e(q, co )

—1 G, (k + q,co + co'), (4.3)

G, (k,co) = I/[co —co(k ) + i5], (4.4)

and e is the dielectric function in the reduced variables k,co(k) and co. In Eq. (4.3) we have for reasons of con-

vergency subtracted the HF contribution. In order to compute the integral it is now convenient to deform the

path of integration as described by Rice and as illustrated in Fig. 2. As a result one obtains

4 e 3— + ao

(2~) q
" 2~ 7(q, i co ')

+ f —
t n, (k + q)2)(co(k + q) —co) —[1 —n, (k + q)]ri(cg —co(k + q)) j

d q 1

(2 )3 2

(4.5)X —1
1

e(q, —co+ co(k+ q))

where 2)(x) = 1 for x & 0 and zero otherwise. This expression is properly convergent. The last integral

derives from the proles within the closed loops in Fig. 2. In order to elaborate the expression further we put

m = co(k). Performing the integration over the angle and adding the HF contribution we get the final result

for the real part:

e„(k)
fiX," k,

e kp

2K1T

—4r~+ f dq f du
7(q, iuq )

—1 —ln
1 u +(q+2k)
k u +(q —2k)

2e k~ &~2 +& 1—n( ——k) d qq dz
2 f 2+ I2

1
X Re

c((k + q — k 2)q'~z, q —k )

2e k~ &
2

+i
+ 2)(k ——, ) d qq' dz

q + k —2kqz

)& Re 1

((k 2+ —2 2k
—z)1/2 k2 2)
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The expression for e(q,iud is

q2+ u2
e(q, iuq) = 1+ — 1+ ln

2 2kF 4q

(1+q) +u
(1 —q) +u

1 1——u tn-' +q + tan-'
0 u

(4.7)

X ln q+ 2k

q —2k
(4.8)

If we in Eq. (4.6) replace e with the static Thomas-
Fermi ('1'P') expression and set k = 0, Eqs. (3.6) and

(3.10) follow.
The self-energy associated with the electron-

impurity scattering is for the conduction band

2 00

)r)X,"(k) =—,f dq
6 aaH o kq V(q, O)

I

where the expression for e(q, O) follows from Eq.
(4.7). If the TF expression is used for e(q, O), Eq.
(4.7) reduces to Eq. (3.16) in the limit k ~0.

If we now consider the valence band, the calcula-
tions of the self-energy AX,*'"becomes considerably
more complicated because of the band structure.
For this reason we shall only consider a particle at
k = 0. Subtracting the HF contribution as in Eq.
(2.10) we have

RX„')"(k,~) =—Are
2k

d q dao' 1

K (21T) 2')n q E(q,co )

where

Gu, l(h) = 1/[~ ~l(h)(k) + ~~l

X [G„)(k+ q,co + co') A)) + G„h(k+ q, + ~')AIh ), (4.9)

(4.10)

with co~(h)(k) = e)(h)(k)/4m~. At k = 0, Eq. (4.9) can be evaluated as above. In this limit there will be no con-
tribution from the residues and the final result is for both light and heavy masses;

PP„'"(0,0) = — kF f dq f du
Ic1) o 0 e(q, iuq )

'VIq r~q

u + ylq u + yI, q
(4.11)

where y)
——ma/ma and 7'h mg/mhh. If we omit

the frequency dependence in e and replace it with
the Thomas-Fermi expression we recover Eq. (3.11).

Finally we consider the shift associated with im-

purity scattering for a hole in the valence band.
From Eq. (2.13) we obtain for both masses at k = 0

e v ~u +~ha " dq
a'aH 3m md 0 [e(q)q )2

(4.12)

XX~XXXX)CX X'X XX 'XX

+ xxx'xxxxx xxxxx'x

which reduces to Eq. (3.17) in the TF limit.
The interactions among the particles themselves

and with the impurity ions give rise to two effects.
Thus the conduction band is pulled down in energy
and at the same time the corresponding density of
states is distorted. The valence band, on the other
hand, appears shifted upwards in energy. Figure 3
illustrates the concentration dependence of the

FIG. 2. Contour used to evaluate the self-energy due
to electron correlation. Symbols ()& ) denote the poles in
e(q, co) ' and (+ ) denote the poles in Green's function.
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FIG. 3. Quasiparticle density of states for n-type sil-

icon, as a function of concentration. The shaded areas
indicate occupied regions for four different concentra-
tions. The position of the bottom of the unperturbed
conduction band is at zero energy while that of the per-
turbed band is given by the full curve at the bottom of
the figure. The position of the perturbed chemical poten-
tial is given by the dashed curve. The calculations are
based on the parameters listed in Fig. 1.
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FIG. 4. Various contributions (absolute magnitudes) to
AEg in n-Si at diA'erent impurity concentrations. In Fig.
(a) curve (a) is the total band-gap narrowing whereas
curve (b) gives the downward shift of the bottom of the
conduction band and curve (c) the upward shift of
valence band at the center of the zone. In Fig. (b) the
shifts of the two bands are separated into contributions
from electron interactions and impurity scattering. Thus
curve (a) is the shift in the conduction band due to elec-
tron interactions [—A'X,"{0,0), Eq. (4.6)], and curve (b)
the corresponding shift in the valence band [fiX„"{0,0),
Eq. (4.11)]. Impurity scattering shifts the valence band
according to (c) [ AX„"{0),Eq. (4.12)], and the conduc-
tion band edge according to {d) [ —fiX,"{0),Eq. {4.8)]. The
calculations are based on the input parameters listed in
Fig. 1.

quasiparticle density of states associated with the
conduction band in n-Si. At the bottom of the band
one notes that the density of states is strongly re-

duced into a small tail. At the Fermi level, on the
other hand, the density of states is enhanced in rela-
tion to the unperturbed case. As a consequence, the
occupied region is somewhat modified by the in-

teractions. At n = 3.5 )& 10' cm the occupied
region (including the tail) is reduced by —10'.
At n = 10 crn the same region is, on the other
hand, increased by —5% relative to the case of
noninteracting particles in a smeared positive back-
ground. The enhancement at EF is a real effect; it
gives rise to an enhancement of the extrinsic specific
heat, as observed recently by Kobayashi et a/. in

the case of Si-P. The experimentally observed
enhancement is in good numerical agreement with
the type of theory discussed here. "

Figure 4(a) shows the computed band-gap nar-
rowing for n-Si as a function of concentration.
Over the region displayed one notes that the com-
puted data closely follow an n ' dependence. Fig-
ure 4(a) also shows that the downward shift of the
conduction band is almost equal to the upward shift

of the valence band. Because of the coupling
between the valence bands, the upward shift at
k = 0 is the same for both light and heavy masses.
In Fig. 4(b) the separate contributions to b,Es are
given. Curves (a) and (b) in Fig. 4(b) refer to in-
teraction efFects in the jellium system. Added to-
gether (a) and (b) coincide rather closely with the
results of Abram et al. in Fig. 1. Such an agree-
ment is, however, only fortuitous since the present
calculation explicitly includes also the valence band
couplings. Figure 4(b) also shows that impurity
scattering increases in importance when a more ac-
curate dielectric screening function is used. In fact,
Fig. 4(b) demonstrates that the impurity scattering is
of such a magnitude that it cannot be dismissed. As
a consequence the total band-gap narrowing in Fig.
4(a) is larger than the previous estimates of Abram
et aE. On the other hand, it is much smaller than
Inkson's results, also based on the jelliurn model
and the simple plasmon-pole approximation for the
dielectric function.

At this point it is appropriate to discuss Mahan's
work at some length, and to compare his results
with ours. As mentioned in the Introduction,
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Mahan's work and the present one are rather simi-
lar in spirit, but dier considerably in details. Actu-
ally Mahan has discussed two approaches. In the
first one Mahan thus considered an electron gas oc-
cupying the conduction band and proceeded to
compute its tota1 energy as the sum of the kinetic,
exchange, and electron-donor ion-interaction ener-
gies. To begin with, the correlation energy was,
however, omithxi since Mahan found it to be sma11.
The electron-donor ion-interaction potential was as-
sumed to be of Yukawa type with the screening
length given by the Thomas-Fermi expression [Eq.
(3.7)], and the corresponding interaction energy was
elaborated in diAerent ways. The final choice con-
sisted in locating all the electrons as screening
charge and evaluating the corresponding potential
energy. Thus having established the expression for
the total energy the chemical potential p was ob-
tained by di6'erentiating this expression with respect
to the density, keeping the volume fixed. The
chemical potential may be subdivided as

p = po+ 5p where po corresponds to the free gas
and 5p the corrections due to exchange and
electron-donor ion interactions. In our notations

5p = R X,"(kz) + A'X,"(kz). To obtain the position
of the conduction-band minimum Eo, Mahan now
argued that the k dependence of the self-energies
was weak. Hence he could approximately write

Eo 5p. As we have seen above this approxima-
tion is good to —5 —10% depending on the con-
centration. In summary, Mahan's and the present
work differ considerably in the treatment of the
electron-donor interaction. In addition we include
the correlation energy as well as the k dependence
of the self-energies.

In a second approach Mahan proceeded to im-
prove the electron-donor ion contribution to the to-
tal energy arguing that the major theoretical uncer-
tainty is associated with the inhomogeneity in the
electron screening charge around the impurities.
For this purpose a variational calculation was done,
in the Hartree-Pock approximation, for the ground-
state energy of the electron-donor system. The ion-
ized donor was taken as a point charge, and the as-
sembly of ionized donors was arranged in a regular
fcc lattice. Once more Mahan found that the con-
duction band minimum could be approximated by
Eo 5p where 5p is the correction to the free-
electron value po due to inhomogeneities and ex-
change. The results for p and Eo in silicon and ger-
manium, as obtained from the two approaches, are
shown in Figs. 5 and 6 together with present results.
The results from the three different calculations are

20
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Silicon Conduction Band
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FIG. 5. Concentration dependence in silicon of the
chemical potential p and the conduction-band minimum
Ep. The reference energy is the bottom of the unper-
turbed conduction band. Dotted curves are present
results. The solid and dashed curves refer to Mahan's
results (Ref. 16). The solid curve is the result of a varia-
tional calculation while the dashed curve refers to an ap-
proximate treatment of the electron-impurity interaction
as described in the text. Input parameters to the present
calculations are listed in Fig. I.
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FIG. 6. Concentration dependence in germanium of
the chemical potential p and the conduction-band
minimum Ep. The reference energy is the bottom of the
unperturbed conduction band. The notations are the
same as in Fig. 4. The input parameters for the present
calcuation are v = 4, sc = 15.36, m i

——1.58mp, and
m, = 0.082mp.

indeed quite similar. The difference between the
various curves are at most some millielectron volts.
This relatively small spread establishes the present
accuracy of the theoretical predictions for p and Eo.

Having found an overall agreement with Mahan's
results for the conduction band we now focus atten-
tion on the valence band. We shall then note some
important differences. The first one is that we in-
clude the valence band structure. Mahan, on the
other hand, chooses a single isotropic band with

mII, (~~~
——m~. The second difference consists in the

treatment of the impurity scattering. In this case
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Mahan resorts to the type variational calculation for
a fcc lattice described above. We, on the other
hand, use perturbation theory for a random system
of donors.

Mahan's as well as our treatment include tw'o dis-

tinct contributions to the shift of valence band,
namely the shifts due to correlation and impurity
scattering. To begin with correlation, Mahan calcu-
lated the self-energy of the hole in very much the
same way as we have done, but for an isotropic
valence band as mentioned above. Furthermore the
dielectric function was evaluated in the plasmon-

pole approximation in which the q term was re-
tained [cf. Eq. (3.4)]. In this way he should closely
reproduce ordinary RPA. Indeed we obtain close
numerical agreement with his results. For silicon
with n 4)(10' cm Mahan finds that the self-

energy of a hole at the center of the zone is —33
meV. We have —35 meV. [The self-energy of the
hole is —ih'X„*'"(0)in Eq. (2.10).] At n = 10'
cm the corresponding numbers are —13 and
—14 meV. In spite of the different approximations
we thus achieve close numerical agreement for the
self-energy associated with correlation. The results
for impurity scattering, however, differ considerably
at a first sight. In fact we obtain almost the same
magnitude for the impurity-induced shift as Mahan
does, but the sign differs. Therefore in Mahan's cal-
culation the contributions from impurity scattering
of conduction and valence statgs effectively cancel in
the final expression for AEg. The argument would
be that a hole and the impurity ions repel, hence its
self-energy is positive. We, on the other hand, have
argued on the basis of second-order perturbation
theory. In the case of a completely filled band no
scattering can take place because all states are occu-
pied Hence. the contribution from impurity scatter-

ing to the total energy is zero. Now, if a hole is
created at, for example, the top of the valence band,
the remaining valence electrons will relax around
the impurity ions. This new flexibi1ity of the system
makes the system lower its total energy by an
amount —A'X„"(0). By definition the self-energy of
the hole then has to be negative. When computing
EEg we therefore find that the effects of impurity
scattering add rather than subtract. One should
note, however, that Mahan has assumed an fcc lat-
tice while we have considered a random array of
donors. This difference does, in fact, explain the ap-
parent controversy. Mahan writes the self-energy of
the hole as [his Eq. (26)]

X&(k =0) = Xi, , +0 481e n /s. +8Xs,
(4.13)

where XI, , is associated with electron correlation

[—A'X„""(0,0) in our notations]. The second term
on the right-hand side is an electrostatic Madelung-

type term which arises because of the fcc lattice.
This term is, like XI, „associated with a uniform
hole charge. [The electrostatic interaction of a hole
(electron) with a donor ion and uniform electron
charge in a Wigner-Seitz sphere is (+)
0.483e n ~ /a. ] The last term, finally, is a correc-
tion term which relates to the inhomogeneity in the
distribution of charge around the impurities. This
term, which thus takes into account the relaxation
of the valence electrons must therefore be negative
and is just our fiX„"—(0) Beca.use we have chosen
a random arrangement of donor ions the
Madelung-type term does not appear in our case.
Mahan finds that 5Xs is small (

~
5Xi,

~

( 3.5 meV
in silicon) and therefore neglects it. In fact, we
know from previous experience that 5X~ should be
small for a regular lattice, but large in magnitude
for a disordered system. To prove this point we
have recalculated —A'X„"(0)for an fcc lattice and
find a value of —2.1 meV at n = 10' cm and
—2.5 meV at n = 10' cm ' in the case of silicon.
For germanium the corresponding values are ——1

meV. Thus the electrostatic term 0.481e n ' /s.
which we now also should add to our expression for
the self-energy of the hole, dominates. Consequent-
ly, one may ignore —iriX„"(0)as Mahan did. To
make the comparison with Mahan's work complete
we may treat the conduction electrons in the same
way. For example, our expression for the chemical
potential should then be for an fcc lattice

p = E~ + RX,"(kF ) —0.481e n '~ /a + &@&

(4.14)
where fiX,"is the self-energy associated with a
homogeneous system and 5p, represent corrections
due to inhomogeneities [cf. Mahan's Eq. (21)]. Cal-
culating 5p, for an fcc lattice we generally find it to
be much smaller (- —2 meV in the case of silicon)
than for the disordered case. When creating an
electron-hole pair the electrostatic terms in Eqs.
(4.13) and (4.14) cancel. So they should do, of
course, because the system remains charge neutral.
As a result impurity scattering contributes very little
to EEg if the donors are ordered. In fact, this is the
way it should be! In general a disordered system
scatters more than an ordered one.

In Figs. 7 and 8 we compare our results for AEg
with Mahan's. Obviously the large discrepancy at
large concentrations derives mainly from the dif-
ferent treatments of the electron-ion interactions, as
discussed above. In Fig. 7 we also give our results
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FIG. 7. Comparison of experimental and theoretical
values for the band-gap narrowing in n-type Si at dif-
ferent impurity concentrations. The solid line refers to
the present calculation for the case of a random arrange-
ment of donor ions. The dotted line shows the same
results for the case of the donors arranged in an fcc lat-
tice. The dashed line gives, the results of Mahan's varia-

tional calculation (Ref. 16), also for the fcc lattice. Cir-
cles show the results for the band-gap shrinkage as de-
duced by Balkanskii et al. (Ref. .25) from optical mea-
surements (open circles refer to 35 K and filled to 300
K). Filled triangles refer to optical measurements by
Schmid (Ref. 18) at 4 K. Crosses show the data com-
piled by Lanyon and Tuft (Ref. 9) for different devices.
(The compilation excludes all data which assume in their
interpretation that the band-gap narrowing is independent
of temperature. ) The Mott critical density for Si:P is

denoted n, . Input parameters for the present calcula-
tions are listed in Fig. 1.
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FIG. 8. Effective band-gap shrinkage in n-type Ge as
a function of impurity concentration; {a) shows the total
narrowing AEg and (b) the magnitude of downward
shift of the bottom of the conduction band [—A'X (0,0)
—A'X,"(0i] according to the present model. Donors are
assumed to form a random system. The dotted line {c)
gives Mahan's (Ref. 16) variational results for an fcc lat-
tice of donors. Experimental estimates of Rogachev and
Sablina (Ref. 12) and Shotov and Murashov (Ref. 27) are
given as the straight lines (d) and (e), respectively. The
present theoretical values are based on the input parame-
ters v = 4, ~ = 15.36, mI ——1.58m p mg = 0.082m 0,
mII,

——0.042mo, and mph' ——0.347mo.

for the case that the donors form an fcc lattice. In
accordance with our previous arguments we then
obtain smaller values for AEg and find quite a good
agreement with Mahan's results. %e thus conclude
that the actual distribution of donors has significant
eAects on the actual value of AEg. Of course, the
choice of a random arrangement should correspond
more to real cases.

Finally, we may attempt a comparison between
theory and experiments. Figure 7 gives the case of
n-type silicon. In this comparison we have only in-

cluded theoretical values approximately below the
solubility limit. The experimental data refer to opti-
cal measurement and devices. Let us first consider
the optical data. Thus the data of Balkanskii
et al. were obtained from absorption measure-
ments at two different temperatures (35 and 300 K).
Schmid's' absorption data were taken at 4 K.
Although there is an order-of-magnitude agreement
between theory and experiments, there is a consider-

able numerical disagreement, particularly at low
concentrations. One should, perhaps, act with due
caution when comparing with optical data. The
reduction of EEg from such data seems to involve
some rather drastic simplifications, and it is there-
fore hard to estimate the accuracy of the final
results. The same caution should, of course, be ex-
ercised in connection with our theoretical results.
In our model we rely on a perturbation expansion,
which in principle should be accurate only at high
densities. Figure 7 indicates that theory and experi-
ments come close together in such a limit. This
trend may perhaps be taken seriously. The second
set of data in Fig. 7 is a compilation due to Lanyon
and Tuft of AEg in diA'erent transistor devices. At
first sight one may be pleased that this set of data is
quite close to our own results. The interpretation of
device data seems, however, even more inaccurate
than in the case of optical properties. ' The nice
agreement in Fig. 7 is therefore not be taken too
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seriously.
Theoretical results for n-type germanium are

given in Fig. 8. As in the case of silicon one notes
an approximate n' dependence of AEg. The total,
computed band-gap narrowing is given by (a).
Curve (b) is the downward shift of the conduction-
band edge. As in the case of n-Si the upward shift
of the valence band is about the same. Rogachev
and Sablina' have determined the effective band-

gap narrowing from electroluminescence experi-
ments at 80 K to be (in units of eV)

dEg =1.5X 10-sni/3 (4.15)

V. SUMMARY AND DISCUSSION

We have considered the energy gap Eg of heavily

doped n-type germanium and silicon as a function
of impurity concentration. The purpose of the cal-
culation is to study the inclusion of full RPA
screening, impurity scattering, and interband matrix
elements. It is assumed that we deal with shallow

impurities and that the effective-mass approximation
is valid. The model used consists in carriers in the

host conduction band and randomly distributed ion-

ized point impurities. Such a model is relevant for
impurity concentrations above the Mott critical con-
centration n, . The model is unorthodox in the
sense that no separate impurity band is assumed to
exist above the critical density.

The addition of free carriers causes, because of
their mutual exchange and Coulomb interactions, a
downward shift of the conduction band. This
downward shift is further accentuated by the attrac-

which is shown as (d) in Fig. 8. As in the case of
silicon there is an order-of-magntiude agreement
between theory and experiments. There is, however,
considerable scatter among experimental results.
Thus Pankove and Aigrain found AE —40 meV
at 4 g 10' cm from interband absorption. This
value is considerably higher than what Eq. (4.15)
predicts, and, in fact, rather close to present theory.
Shotov and Murashov have also found an empiri-
cal relation like Eq. (4.13), but with a coefficient of
1.85 instead of 1.5 [shown- as (e) in Fig. 8]. These
authors also point out that AEg is the same at 10
and 77 K and independent of the nature of the im-

purity. Figure 8 also shows Mahan's variational
results as the dashed line (c). As in the case of sil-

icon his values for AEg are smaller than ours,
presumably depending on his choice of a regular
lattice of donor ions.

tive impurity scattering. The valence-band states are
affected in the opposite way. Owing to the added
free carriers the interactions among particles in the
valence bands are weakened; the initial Hartree-
Fock exchange is replaced by dynamically screened
interactions. As a result the valence band is shifted
upwards in energy. Alternatively, we say that the
holes acquire a negative self-energy'because of elec-
tron interactions. The creation of a hole in the
valence band allows the other valence electrons to
relax around the impurity centers and thus gain in
energy. Consequently impurity scattering also leads
to a negative self-energy for the holes. Because in-
terband couplings are explicitly introduced for the
valence bands, heavy- and light-hole states are shift-
ed by the same amount. The contributions to AEg
from the different processes considered here are all
of the same order of magnitude. It is also found
that the introduction of the RPA dielectric screen-
ing function leads to substantial corrections corn-
pared to our simple plasmon-pole and the Thomas-
Fermi approximation. Finally, the size of EEg was
found to depend in a sensitive way on the actual ar-
rangement of donor ions.

As it seems the present calculation is, together
with Mahan's, ' the most ambitious theoretical
treatment so far of the band-gap shrinkage in im-

pure n-Si and Ge. Some shortcomings and simplifi-
cations should, however, be recapitulated. All cal-
culations have been performed at zero temperature,
although an extension to finite temperatures is possi-
ble in principle. The effects of the simplified ma-
trix elements are not known. Although the present
matrix elements are expected to represent a first
good estimate, it would be desirable to obtain more
accurate values from realistic wave functions which
include also the periodic component of the Bloch
functions. Furthermore, the preserit calculation is

based on perturbation theory and the elementary
Born approximation for the impurity scattering.
The model is therefore basically a high-density

model, i.e., it is expected to be accurate, within the
limitations mentioned above, in the regime —10'—
10 cm in the case of n-Si. Below this regime
corrections to Born scattering may be anticipated as
well as effects of multiple scattering. The model as-

sumes a perfectly uniform distribution of impurity
centers. It therefore remains to statistically average

the band gap over possible fluctuations in the densi-

ty. A possible way to improve the present calcula-
tions would therefore be to extend them in a way

suggested by the recent work of Serre et al. ' To in-

clude multiple scattering the Dyson equation was
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solved numerically by these authors, followed by a
statistical averaging. The calculations were per-
formed for a Thomas-Fermi screening of the
electron-donor ion interactions, neglecting correla-
tion effects in the free gas. The inclusion of multi-

ple scattering and statistical effects in the present
case would obviously make our calculations numeri-

cally more cumbersome. Another approach would
be to extend Mahan's' variational type of calcula-
tions to a random arrangement of donors. Such a
procedure would, however, be rather demanding
from a numerical point of view.

In spite of the simplifications listed above a com-

parison between theory and experiments indicates an

order-of-magnitude agreement. One notes, however,

considerable scatter among experimental values, par-

ticularly in the case of germanium. Any compar-
ison of this kind should therefore be viewed with

caution. As pointed out the experimental deduction
of AEg involves several simplifying assumptions.
For example, Schmid' points out that the value of
the gap shrinkage deduced from optical-absorption
measurements depends strongly on the assumed

value of the Fermi energy. A more satisfactory pro-

cedure would therefore be to consider measured
quantities theoretically, rather than to use experi-
mental estimates of bE~ itself. In the present work
we have, however, focused attention on a compar-
ison with other theories. Therefore such considera-
tions are outside our present scope. As it seems,
theory and experiments both have some way to go
before they can be reconciled in a detailed manner.
Isn't that a challenge?

Note added in proof. Further comments on
Mahan's work (Ref. 16) are made by P. Sterne and
J. C. Inkson [J. Appl. Phys. (in press)].
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