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Electronic properties of a semi-infinite deformed linear mixed crystal
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Electronic properties of a deformed semi-infinite mixed crystal chain are studied by using the Green's-function
method. The conditions for the existence of the surface states and their decay rate into the bulk are calculated in the
presence of surface deformation. Calculation of the bulk properties of the semi-infinite crystal shows severe
modifications due to the presence of the surface. The local densities of states in the bulk exhibit strong oscillations
attributed to Bragg diffraction at the surface.

I. INTRODUCTION

Investigations of the surface properties of solids
have been the subject of numerous recent investi-
gations. The surface properties have been studied
in different models using different computational
techniques. One model that has been investigated
quite frequently in recent years is the simple one-
dimensional semi-infinite crystal. Even though
most physical systems are three dimensional,
the study of one-dimensional models is interest-
ing, because the results can be obtained in closed
form and the methods can usually be generalized
to study three-dimensional s ystems. One-dimen-
sional model calculations can then be treated as
guides and testing grounds for methods before ap-
plications to more realistic systems are made.
Of the various techniques available for surface
studies, the Green's-function method introduced
by Kalkstein and Soven' (KS) has been found to be
quite powerful and it has been used by many
authors to calculate both the surface and the bulk
electronic properties of semi- infinite crystals.

In this paper, we study the electronic proper-
ties of a one-dimensional semi-infinite mixed
crystal. This model system has been studied
previously by Davison and others by using the
scattering matrix technique'' and the molecular
orbital-tight-binding approximation (MO- TBA)
method. ' ' Although these procedures provide in-
formation regarding the existence and locations
of the surface states, they are not suitable for the
study of the electronic band structure on the sur-
face layer or in the bulk. Here we reconsider
this model in the Green's-function formulation of
KS. This enables us to calculate not only t,he ex-
istence and locations of the surface states, but
also their strengths and decay rates, as well as
the local densities of states (LDS) of the allowed
bands in the surface layer and in the bulk.

The electronic properties of an ionic crystal
chain have been treated in the KS formulation by
Bose and Foo' in the absence of surface deforma-

tion of the resonance integral. They have shown
that, for this model, there can be at the most
two surface states and that the LDS show strong
oscillations even deep inside the bulk. In the
present paper, using the same formalism, we
consider the general case where both the Coulomb
integral and the resonance integral of the surface
layer are modified by surface deformation. In
particular, we study the effect of this surface de-
formation on the number of possible surface
states, their strengths and decay rates as well as
on the LDS of the various laye rs of a semi- inf in-
ite mixed AB-type crystal chain. This extension
is quite interesting, as it allows us to interpret
our results in two different ways. The modifica-
tions of the surface states and the LDS can be
treated as the effects of surface deformation. On
the other hand, our approach can also be regarded
as a method of studying chemisorption in a crystal.
In this approach, the atom at the surface layer is
treated as an adatom which has been chemisorbed
on the surface. From this point of view, the re-
sults ean be considered as changes in the electron-
ic properties of the system, the broadening and
shift. of the atomic level being due to chemisorp-
tion.

II. FORMALISM

We consider a semi-infinite mixed crystal chain
consisting of two kinds of atoms A and 8, as
shown schematically in Fig. 1. The Coulomb in-
tegrals of these atoms are represented by &, and
c„respectively. We assume that an electron can
exchange energy with its nearest neighbors only
and the resonance integral between the nearest
neighbors is P. As in KS, we consider that the
semi- inf inite crystal is formed by starting with
an infinite crystal and then passing an imaginary
cleavage plane between site number 0 and site
number -1. Thus, the resonance integral coupling
the two sides of the cleaved crystal is set equaI
to zero. We also consider that-the surface atom
undergoes deformation, so that its Coulomb and

1981 The American Physical Society



EI, ECTRONIC PROPEH, TIES OF A SEMI-IWFIWITE DEFORMED. . .

A 8 A B A B
o ~' ~ ~O& ~ & 0& ~

FIG. 1. Semi-infinite one-dimensional chain of a
mixed crystal showing theA and 8 atoms.

resonance integrals assume values e,' and P', re-
spectively, which can be different from those of
the bulk atoms. Our aim here is to calculate the
changes in the surface states and the LDS of a
semi-infinite crystal due to this surface deforma-
tion.

We use tight-binding approximation to describe
the electronic properties of the crystal. Thus,
the Hamiltonian of the cleaved mixed crystal can
be written as

where m, rn', etc. , represent the various lattice
sites. Referring to Eqs. (1), (2), and (3), we note
that the only nonzero matrix elements of the scat-
tering potential V are

V(-1)= V(0, —1)= V(- 1, 0) = —H(0, —1)= —P,
V(0) —= V(0, 0) = H(0, 0) —H(0, 0) = a,' —e, , (8)

V(1)—= V(0, 1)= V(1, 0) = H(0, 1) —H(0, 1)= P' —P .

Using Eq. (8) in Eq. (7) we can solve for the
diagonal elements of the Green's function and ob-
tain

G(m, m) = G(m, m)+ Z/4,

where

Z = [G (m, —1)V(- 1)+ G (m, 0)V(0)

H= "lo&&ol+ p'lo&&1I + Z
ft= l,odd

+ g ..l~& &~l+g pin& &~+ ll.
„=g even flml

'The Hamiltonian of the infinite mixed crystal is
given by

II= e, n n + &, n n
aors Odd ff=-~,even

(2)

The difference between the Hamiltonians of the
cleaved crystal and the infinite perfect crystal
can be treated as the scattering potential in the
evaluation of the Green's function of the system.
Thus, the scattering potential is

V= H-H. (3)

The Green's function for the cleaved crystal, G,
can be expressed in terms of the Green's function
for the perfect infinite crystal, G, and the scat-
tering potential V, by using the Dyson equation

G= G+ GVG, (4)

where G and G satisfy the equations of the form

c= (E-H)-'

and

c= (E H) (8)

where H, H, and V are defined by Eqs. (1), (2),
and (3), respectively.

In the present localized representation, the op-
erator equation (4) can be expressed as a set of
algebraic difference equations,

G(m, m') = G(m, m')+ Qc(m, l)v(L, /')G(l', m')
l, l'

for m, m'~0, (7)

p (E)= ——Imc(m, m).1

Also, since the energies of the surface states are
determined by the poles of the Green's function,
one observes from Eq. (9) that the surface-state
energies are obtained by setting

6= 0. (12)

Thus, referring to Eqs. (10) and (11), we note
that the local densities of states p (E) and the sur-
face-state energies have been expressed in terms
of the various matrix elements of the Green's
function of the perfect infinite mixed crystal and
the scattering potential V. The matrix elements
of the Green's function can be easily calculated
and we now present some of those that become
useful in subsequent evaluations.

(1) Even lattice sites, i.e. , m and n are even.
(i) Diagonal elements:

G..(m, m)= C..(O, O)= +,

+ 2 G(m, 1)V(1)] G(m, 0)

+ [G(0, 0)G(m, 1)—G(0, 1)c(m, 0)]G(m, 1)V (1)

and

~ = 1-c..(o, o)v(o) —c..(o, 1)[v(-1}+2v(1)]

+ V'(1)[C,'.(0, 1) —G„(0,0)G „(1,1)]

+.V(1)v(- 1)[G,', (0, 1) —G„(1,—1)G„(0,0)] .
(10)

Here the subscripts ee, eo, etc. , are introduced
explicitly to refer to the matrix elements of G be-
tween two even sites, and between even and odd
sites, respectively.

The local densities of states at each site of the
mixed crystal can then be obtained by using the
well-known relation
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where

A. = (E —c,)(E —c,) —2P' and E =2P'.

(ii) Off-diagonal elements between even sites:

6..(m, ~)= C., (O, O)z. ""
with

z = -'[o. —(a'-4)'i'] and a = 2A/a.

to calculate the LDS and the energies of the sur-
face states.

Surface states. Substituting Eq. (13) in Eq. (10)
and using Eq. (12), we obtain the following third-
order polynomial equation for the energy of the
surface states of the semi-infinite mixed crystal:

(I r'—)E'+ [(1—r')~+ (2 —r')~']E,'

+ [(2 —y')«+ ~"+ y'P"]E.+ ~ '~= O, (14a)

(2) Odd lattice sites, i.e. , m and n odd.
(i) Diagonal elements:

G„(m, m)= ' G„(0,0)= G„(1,1).
0

(ii) Off-diagonal elements between odd sites:
l

6..(n, m) = G..(m, n) = ' G..(0, 0)z i --"i '2

(13)

where E = E —6 4= & —4 Ai=p -zi and y
= P' jP. If we measure all energies with respect to
p, i.e. , if we set p= 1, Eq. (14a) takes the follow-
ing dimensionless form.'

(1 —e")E:+[(1—J3")(~+ &')+ &']E'

+ [(1—P")4&'+ &'(&+ 4')+ P'4]E, + ~&" = 0.
(14b)

' G„(m+ l, n+ 1).E —60

(3) Elements between even and odd sites:

6..(m, O) = 6..(O, m)

—[6..(m —1, O)+ 6..(mal, O)],
0

6..(~, m) = 6,.(m, n)

- [C..(m-~-l, O)
0

+ G„(m -n+ 1, 0)]

if m-n+ l&0,

6..(,m) = C..(n, m)

[G (n —m+1, 0)
0

+ G..(n - m+ 3, O)]

lf teal —fg 1 (0 .
These expressions for the matrix elements of the
Green's function 6 are used in Eqs. (11) and (12)

It can be easily checked that, in the absence of
the surface deformation of the resonance integral,
i.e. , for P' = P, Eq. (14a) reduces to Eq. (13) of
Ref. V. This confirms the fact that the surface
states of the ionic crystals and the mixed crystals
have the identical energies, even though the wave
functions have a phase shift. ' Equations (14a) and
(14b) indicate that, in the presence of surface de-
formation, three different surface states may
exist in a mixed crystal, whereas in the absence
of surface deformation there may be at the most
two surface states. ' However, all three surface
states may not exist simultaneously as the exis-
tence of the surface states is determined by the
relative values of c„a„p', and e,'. Information
regarding the existence of the surface states may
be obtained by using the physical requirement
that the wave function of a true surface state must
decay exponentially into the bulk. ' ' The decay
constant I of a surface state is given by

~m

where E, is a solution of Eq. (14a). Using Eqs.
(9) and (11) in Eq. (15), we obtain

[6(2, —1)V(- 1)+ G (2, 0)V(0) + 26 (2, 1)V(1)]6 (2, 0) + [6(0, 0)G (2 „1)—Q (0, 1)6(2, 0)]Q (2, I ) V2(l)
[c(0,1)v(-1)+ 6(0, o)v(o)+ 2c(o, 1)v(i)]6(0, o)

Again, using Eq. (13) in Eq. (16), we find

p V(1)(1—z')[2z+ 6(2, 1)V(1}]
(E- e.)V(0)+ P(1+ e)[V(-1)+ 2V(1)] z=e,

(17)
where z has been defined in Eq. (13). The con-
dition for the existence of a surface state is that

0&12&1.

III. RESULTS AND DISCUSSIONS

In Fig. 2, we have plotted the local densities
of states (I DS) in the allowed energy bands for
the first four layers (m = 0 to 3) for a, = —c, = 1,
P' = 1, and a,' = e,. Note that this corresponds to
the case of undeformed surface. The dashed cur-
ves in this diagram depict the densities of states
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of the perfect infinite mixed crystal, which are
presented here to facilitate comparison. We find
that, in this case, the existence condition [Etl.
(18)] for the surface state is not satisfied by any
of the solutions of Eg. (14), which implies that the
undeformed surface does not introduce any sur-
face states outside the allowed energy bands. The
presence of the surface, however, drastically
modifies the LDS at various layers as these LDS

I 2 3
E

FIG. 2. Local density of states for the surface (m =0)
and first three interior (m =1 to 3) layers for the unde-
formed surface (c, =-co=1, P'=P=l, and c,'=e, ). For
this case no surface states appear.

do not have much resemblance with those of the
perfect crystal. The band-edge singularities of
the perfect crystal are smoothed out and at the
interior layers the LDS show strong oscillations.
In fact, this oscillatory behavior persists in the
deep bulk layers, even though the envelopes of
these oscillations resemble the LDS of the perfect
crystal. Such oscillations in one-dimensional sys-
tems have been reported by other authors' "and
have been discussed in detail by Bose and Foo.'
These oscillations have been attributed to an inter-
ference effect due to surface scattering. It has
been shown that certain local pseudoenergy gaps
would appear at those values of & at which Bragg-
like diffraction conditions are satisified. An aver-
age of these oscillatory LDS over a certain number
of bulk layers, however, reproduces the densities
of states of the perfect infinite crystal.

The energies of the allowed surface states for
other values of c,' and P' can be calculated by
using Eqs. (14) and (18). In order to visualize the
evolution of the surface states and the corres-
ponding changes in the LDS as function of &', and
P', we have plotted in Fig. 8, the surface states
(as depicted by the arrows) and the LDS of the
surface layer (m = 0) for three values of c,' (- 0.5,
0, 0.5) and six values of p' (0.4, 0.6, 1.0, 1.4, 1.8,
2.0). It is interesting to note that for smail values
of p' (&1) only one surface state appears inside

/
g, = -o.5, o, o.5

0
C~ "- - 0.5
~ - 0.0
C' = 0.5
6=1

2 0-.

1.0-
r

I
I

I I]r

-2
4 I
I

1 2

p' 0.6
1 0 1 2

P-Q 4

2

FIG. 3. Local density of states for the surface (m =0) layer for three values of ~,' and six values of P' as shown. The
dashed, dotted, and solid curves for each value of p' correspond to the cases for e,' =-0.5, 0, and 0.5, respectively.
Surface states appear in the gap or below the lower band, the positions of which are shown by the corresponding (solid,
dotted, or dashed) arrow.
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the band gap for each value of c,'. However, for
P'&1, surface states may appear not only inside
the band gap but also below the lower band (as
shown) and above the upper band. We have also
found that for c,'& 1 as P' increases, the surface
states inside the band gap disappear while two
surface states appear, one below the lower band
and another above the upper band. Note that in
each case in this figure, the local densities of
states are also affected by e,' and P'. Since P'
corresponds to the strength of interaction of the
surface atom with the rest of the crystal, for
small values of P'(&1), the surface atom behaves
like an individual unattached atom weakly bound to
the crystal. Consequently, for these values of P',
the surface state appears near the atomic level
t", (only slightly modified by P') for each value of

This is also the reason that the surface state
has higher strength and the electronic densities of
states in the energy bands are weaker. However,
as P' increases, there is stronger interaction of
the surface atom with the rest of the crystal and
the surface atom loses its individual character.
Thus, for larger values of P', the surface states
move away from e,', their strength is reduced, and
the band densities of states increase in strength.

The decay of the allowed surface states into the
bulk is governed by Eq. (18). To demonstrate how

a surface state decays, we have plotted in Fig. 4

p = 1 — p(E)dE,
surface

ban
(19)

where the integral is carried out over the LDS of
the allowed energy bands. The decay rate of this
surface state is calculated by using Eq. (18) and,
as expected, the surface state decays exponential-
ly into the bulk layers. The LDS in the bulk layers
gain in strength and show oscillations. However,
the number of these oscillations are not affected
by the values of P' and c', (cf. Fig. 2).

Under proper conditions, the surface atom can
introduce a resonancelike behavior in the LDS of
the surface layer, as shown in Fig. 5, where we
have plotted the LDS for the first five layers (m
= 0 to 4) for e', = 1.5 and P

' = 0.4, 1.0, and 1.4.
In the case of P' = 0.4, there is a very large peak
in the LDS of the upper band of the surface layer
(m = 0) at E = 1.55, which is expected, because the

the surface state and the LDS for the surface layer
(m = 0) and the first four interior layers (m = 1 to
4) for the case of a,' = 0.5 and P' = 1.2. The dashed
curves again represent the densities of states of the
perfect infinite crystal. For this case, Eq. (14)
produces a single surface state at E=0.83 (shown
by the arrow). Its strength (represented by the
height of the arrow) at the surface layer is de-
termined by the well-known sum rule satisified by
the LOS for each layer, viz. ,

/
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FIG. 4. Local density of states for the surface and first four interior layers (m =0 to 4) for e,' =0.5 and p' =1.2. The
locations and strengths of the surface states are given by the positions and the heights of the arrows in the gap. The
scale of the surface state is 2 ti~es that of the bulk density of states.



ELECTRONIC PROPERTIES OF A SEMI-INFINITE DEFORMEP 1939

= 1.5

0 =0.4
0'= 1.0

4 i.

2"

I.
-2

-2

I
I

I I

-1 I

(I

II

I

I

I

u

I

I

I,
I g

I
I

I
( ~l

2-

2 F
FIG. 5. Local density of states for the surface and first four interior layers (m =0 to 4) for e', =1.5 and p' =0.4, 1.0,

and 1.4, respectively. A surface state appears for P' =1.4 above the upper band. The large peak in the LDS of the
upper band of the surface layer for P'= 0.4 corresponds to a resonance between the discrete level of the adatom and the
continuum states of the upper band.

value of the surface Coulomb integral e,' (= 1.5)
lies inside the upper band and the value of the sur-
face resonance integral P'(= 0.4) is relatively
small, so that the atomic character of the surface
atom is largely retained. In the language of the
chemisorption, it may be stated that this peak
appears due to a resonance between the discrete
level of the adatom and the continuum states of
the upper band. Because of the interaction via
P', the center of the peak is slightly shifted to a
higher value. For larger values of P', the sur-
face atom loses its atomic character and no such
resonance is observed. For P' = 1, the existence
of the surface states is precluded by Eq. (18), and
a relatively large peak is observed at the band
edge. For P' = 1.4, this peak is shifted even fur-
ther and a surface state appears at E = 2.36 (shown
by dotted arrow). As we penetrate deeper into the
bulk, the LDS show strong oscillations in all
three cases, as expected. The surface state for
P' = l.4 persists in the bulk layers (not shown),
even though its strength is reduced by a factor of
L calculated in Eq. (18).

IV. SUMMARY

The surface properties of a one-dimensional
semi-infinite mixed crystal have been studied by
the Green's-function method of KS, which enabled
us to investigate the behavior of the surface states
and the local densities of states in the presence of
surface deformation. We have shown that there
can be at the most three surface states for this
system. The locations and strengths of these sur-
face states are determined by the Coulomb inte-
gral e,' and the resonance integral P' of the sur
face atom. We have found that, depending on the
values of these parameters, there may be zero,
one, two, or three allowed surface states. As
expected, the allowed surface states are found to
deca, y exponentially into the bulk. The local den-
sities of states are drastically modified in the
presence of the deformed surface. The usual
Van Hove singularities at the edges are smoothed
out and the LDS develop oscillations in the bulk
layers.
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