
PHYSICAL REVIEW 8 VOLUME 24, NUMBER 4 15 AUGUST 1981

Self-consistent theory for random alloys with short-range order
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In a previous paper, an analytic self-consistent cluster theory for random alloys was

described; the only restriction on this theory was that the site-occupation random variables

be independent {i.e., no short-range order). In this paper, we demonstrate that short-range

order can be naturally included in this framework, thus providing a completely general

theory for calculating the properties of random alloys. Using the augmented-space ap-

proach, we show that a short-range-order calculation requires little more than performing

an independent-variables computation.

I. INTRODUCTION

Methods for calculating the properties of disor-
dered solids have been investigated for many years. '

The coherent potential approximation (CPA) of
Soven and Taylor is recognized as the best single-

site, self-consistent approximation for "diagonally
disordered" Hamiltonians, and considerable effort
has been directed toward eliminating the restrictions
imposed by the CPA. ' Mills and Ratana-
vararaksa, ' still working with a diagonally disor-
dered Hamiltonian, extended the CPA by including
cluster scattering in an analytic self-consistent form.
Soon thereafter, Kaplan et al. ' (hereafter referred
to as I) developed a generalization of the work of
Mills and Ratanavararaksa which is applicable to
general Hamiltonians (i.e., off-diagonal and environ-

mental disorder). This theory is based on the
augmented-space formalism"' (ASF), and the only
restriction is that the random variables describing
the disordered system be independent. The purpose
of the present paper is to show that short-range or-
der (i.e., dependent random variables) can be natur-

ally and simply included in this theory, thus comp-
leting the development of a general method for
determining the properties of random alloys.

The approach used in this paper is based upon
some basic theorems in measure theory; these
theorems establish a relationship between the depen-
dent random variables which describe the short-

range order and the more tractable independent
variables treated in I. As a consequence, computing
the average Green's function for short-range
order requires little more than performing an
independent-variables calculation. This relationship
and the averaging formalism are described in Sec. II
with the detailed mathematical justification included
in Appendix A. The approximations and their
consequences are discussed in Sec. III. In Sec. IV
model calculations for the electronic properties of a
Markov chain are presented. While the'formal
presentation and model calculations are for electron-
ic properties, the theory is applicable to any elemen-

tary excitations (phonons, magnons, excitons, etc. )

Concluding remarks are presented in Sec. V.

II. FORMALISM

The theory presented in this paper is based on a
relationship between the short-range-order problem
and the independent-variables calculation (the prob-
lem solved in I). In this section we describe this re-
lationship @nd then use the augmented-space formal-
ism to solve for the configurationally averaged
Green's function.

A. Mathematical introduction

The random alloy is constructed by occupying
the lattice sites with atoms of type 3 or 8. (We
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P({s j)gds = 4({s j)+P,(s )dsj, (2.2)
J J

here P( {sj j ) is the short-range-order probability for

a particular configuration of the entire solid. The
proof of Eq. (2.2) is given in Appendix A [more
precisely, it is shown that measures of the form

given by the right-hand side of Eq. (2.2) converge
"weakly" to the left-hand side]. The beauty of Eq.
(2.2) is that it allows one to calculate configurational

averages for a system with short-range order in

terms of averages which are computed with respect
to independent random variables. The price that is

paid is the introduction of the unknown function 4,
but as will be shown, this presents no great diAicul-

ty.

B. Averaged Green's function

We begin by briefly reviewing the basic
mathematical framework used in I; we refer the
reader to that paper and the references cited therein
for a more detailed treatment. The problem con-
sidered in I was to calculate the averaged Green's
function 6',

(E) = f f fG ( {&jj E)+~1(&/)d&i
I (2.3)

where G„({sjj,E) is the n, m matrix element of the
Green's function for the configuration {sjj and the

confine our discussion to binary alloys inasmuch as
the extension to multicomponent systems is straight-
forward. ) A random variable s~ is defined as equal

to sz or s~ if there is an A or B atom at site j,
respectively. The short-range order is completely
specified by the joint probability distributions

Pk(s~, s~, sz&. . . , s~„) which determine the proba-

bility of finding any (finite) k sites of the alloy in a
particular configuration. The simplest case that
represents a realistic disordered alloy is one in

which the random variables are independent,

I
Pk(sj p sj p p sj ):Pk(sj & sj p &sj )

1 2 k 1 2

=Pi(si, )Pi(si, ) Pi(si ), (2.1)

where Pi(sz ) is the probability of occupying site j.
It is this distribution for which a complete self-

consistent approximation'" for the averaged Green's

function has been developed. In this paper we treat
the general form of P where the random variables

are dependent.
The key result that will be used is that there ex-

ists a function 4( {sjj ) such that

random variables are independent as is indicated by
the special choice of joint probability distribution,

[Eq. (2.1)]. The calculation of G is accomplished by
constructing the augmented space, 0 = 'p ta) 8; ip

is the Hilbert space of the original disordered Ham-
iltonian H, and 8 is the "disorder space" which al-

lows for all possible configurations of the solid. The
basis vectors for ip are denoted by

~

n ) and there
exists a vector

~
f ) in 8 which is called the

"ground state. " The augmented-space Hamiltonian
operator H acts on ~n )

~
f) =— ~nf'j such that

G„~(E)= (nf i(EI —H) ' imf) . (2.4)

The procedure for calculating G using Eq. (2.4) is
discussed at length in I and it is not necessary to
discuss it here. What is necessary for the present
discussion is that calculations in I are carried out in

terms of an orthonormal basis for 8 consisting of
the vectors

~ f~)j, where o is any finite set of lattice
sites (by convention, f =f, where 0 is the null set).
The definition of

~ f ) can be found in Ref. 16.
We now consider the short-range-order problem

of calculating the configurationally averaged Green's
function,

[G, ] ~ = f f ' ' ' fG, ({&jj E)P({&jj )gdsj .
I

(2.5)

([G],„ is used to distinguish averages over short-

range order from the average over independent ran-

dom variables G.) Working directly with the

augmented-space representation of the joint proba-
bility distribution P, as we did for independent ran-

dom variables in I, is not possible, since the only
formulation which is known for short-range order'
is not translationally invariant. Translational invari-

ance is essential in reducing the self-consistent equa-
tions in I to soluble form. There is the additional

problem that for any physical system only a few of
the joint probability distributions will be known.
Therefore, one must approximate [G],„ in such a
way that incorporates the known information and
also "reasonably" approximates the unspecified dis-

tributions.
Appealing to Eq. (2.2), we have

f«{ j)P({ j)IId

= f f fG({.jj)C({hajj)gP (si)»j,
I

(2.6)

where Pi(s~ = sq ) = c is the short-range-order con-
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centration of A atoms. Using the standard tech-
niques for independent random variables, we
transform Eq. (2.6) to augmented space, with the
result

[G„(E)],„=(nf ~(EI —H} '0& ~mf ) .

1G = (EI —H ) is the augmented-space Green's
function constructed for independent random vari-

ables (with concentration c) and 4 = I 4,
where 4 is the operator on 0 which corresponds to
4 and I is the identity on 'k.

In order to use Eq. (2.7) we need to know 4
~ f ).

Using the basis
~ f ) for 8 we set

(2.7)

(2.8)

[G, (E)],„=ga (nf ~G(E) ~mf ) = ga G„'

(2.9)

The a can be easily determined from the joint dis-
tribution functions. Since

P si 4&i

J P (j /s])e([ /sj)g d/s, (2.10a)

it follows that

where the coefBcients a are to be determined. Sub-
stituting the expansion for 4

~ f ) in Eq. (2.7) we
have

(2.10b)

(a2 denotes a where o. = tl ).) Thus, a = 0 for all
single-site subsets o = [1j. This is not unexpected
since a "single-site" calculation cannot use any in-
formation about correlations (which necessarily
must involve two or more sites) and thus a "single-
site short-range-order" calculation must reduce to
an independent-variable approximation. %e can
systematically calculate the a~ by using the relations

(f ~

51st = SA )5(s~ = sA )4
~ f)

= P2(sl = SA~ Sl' SA ),
(f15(si =sA}5(S2 =SA)5(S2 =SA)@If&

=P3(sl SA, Sl' SA, Sl" = SA ) ~

(2.12)

etc. The details of these calculations are included in
Appendix 8; we list here a few of the results:

and hence, a, = 1. The first term in Eq. (2.9) is
therefore the average Green's function G for in-

dependent variables. It is worth noting that the nor-
malization of [G],„will always be correct since

f 00

Goo (E}dE = 0 except when o = 0. There-

fore Goo E dE = Goo E dE.
%e evaluate the other coefHcients by using

5(st = sA ), the projection operator on 8 which pro-
jects onto all configurations having an 3 atom at site
l. (See Ref. 16 for a detailed definition of 5.) To
calculate a~ we use (f ~

5(s~ = sA )@
~ f)

= P ~(s~ = sA ) = c to obtain

c = ca, + [c (1 —c)]' a( . (2.11)

a, = 1,
a) ——0,
a„=[P„„(l,l') —c ]Ic(1 —c),

aa. (
~ ——[PAAA (l,l', 1")+ 2c —c [PAA(l, l') + PAA(l', 1")+ PAA(l, l ")])l[c (1 —c)]

a, , &"
&

" ——[ PAA„„(l,l',1",1"')—3c + c [P„„(l,l') + P„„(l,l") + P„A(l,l'") + P„„(l',1")

+PAA(l', 1"') + PA„(l",1'")]

—c[P„AA(l,l',1")+ P„„„(l,l', 1'")+ P„„„(l,l",1"') +P A(lA'A, 1",1"')]]I (1c2c)2 .

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

In Eq. (2.13) we have used, for simplicity,
P„A(l,l') = P2(s~ = sA, s~ = s„) and similar nota-
tion for the other distributions.

III. APPROXIMATIONS

In Sec. II, an exact expression [Eq. (2.9)] for the
configurationally averaged Green's function was

derived. To reduce the problem to a computational-
ly tractable form, approximations are required; in
this section, a method which meshes nicely with the
theory of I is described.

The calculation of [G],„necessitates computing
matrix elements of the (independent-variable)
augmented-space Green's function G. A self-
consistent approximation for calculating the matrix
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[G],„—g a~G' (3.1)

The first term, o. = e, can be computed using the
self-consistent approximation for the set T in I.
Furthermore, once the self-consistent equations of I
have been solved, it is a simple matter to compute
the other needed matrix elements G', o E T. The
details of this computation can be found in Appen-
dix C. Thus the level of approximation to which

the self-consistent theory is carried out is consistent
with the choice of 0's included in the summation

for [G],„. Note that Eq. (3.1) is still an infinite

sum, since there are an infinite number of cr's in

each class, and a = a if o and cr' are in the same

class. However, the matrix elements G„' die off as

the sites denoted by o. get further away from

n and m, and thus it is expected that only a finite

number of terms need be calculated; we will illus-

trate this point in the next section.
In effect, we have set a = 0 for cr 8 T; there are

two consequences of this approximation. First, only
a finite number of joint probability distributions can
be included. This restriction is physically desirable

since, for a real system, only a few distributions will

be known. Indeed, the choice of T will generally be
dictated by the known information. The second
consequence of this approximation is that all distri-

butions which are not specifically included are
determined by the constraint a = 0, o. H T. The
effect of this constraint can best be demonstrated by
example. Let us assume that the only known distri-

bution other than Pi(si = sq ) = c is for nearest-

neighbor pairs l,l', i.e., P2(si = sz, si ——sz ) = P„„
for Il,l'} E cri. We thus have a, = 1, a = 0,

a, = (Pqz —c )/c (1 —c) (vari and 02 defined as

above), and all other a = 0. Let l, I', I", I i, and

elements (nf
~

G
~
mf ) (for any Hamiltonian) was

described in I.' In I, the level of approximation is
determined by the set T which consists of a finite

number of classes of 0's (recall that o denotes a fin-

ite subset of lattice sites; 0. and o' are in the same
class if they are related by translational symmetry).
For example, if T =

I oi },where oi is the class of
all single site a; oi ——

I o = [i } },we obtain the
single-site approximation; if T = I oi,oi}, where

oz ——
I o =

I ij },ij nearest neighbors },we obtain

the nearest-neighbor pair approximation.
Consider now [G],„=g a~G', where the a are

determined by the joint probability distributions.

The simplest (and we believe the most physical) ap-

proximation, is to restrict tire summation to a finite

number of classes of cr, i.e.,

I2 be such that of all possible pairs, only I I,l'} and
Il',l"} are nearest neighbors. Using Eq. (2.13) and

a = 0 for o g T = Ioi,cr2}, we find

Pgg(l, li) = c

Pzzz(l, l„li) = c

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.3)

and

[G],„=ga G' —G~ + G~

=Gz + g (a —a~~ )G' ~ . (3.4)

Equations (3.2a) and (3.2b) show that, in the ap-

proximation, non-nearest-neighbor sites are treated
as independent, while Eq. (3.2c) shows that when a
nearest-neighbor pair is taken together with a non-

neighboring site, then the pair and the site are treat-

ed as independent. These are the results that would

be anticipated from physical considerations. Equa-
tion (3.2d) points out the limitations of this approxi-
mation: When Pzz & c /2, the triplet probability is

negative. If one considers Eq. (2.9) a perturbation
series for [G]„,with the independent variables G as
the zeroth-order term, then it is reasonable to expect
that the "stronger" the short-range order, the less

reliable the truncated series (3.1). In this case the
"strong" dependence of the random variables is in-

dicated by Pzz & c /2. [Note that, for this exam-

ple, Pqzz was studied; one must also check the oth-

er triplet's (Pziiz, etc.) as well. ] One consequence of
allowing negative probabilities is that negative densi-

ties of states may occur (see Sec. IV).
There are two possible remedies for this situation.

If the statistical information needed to evaluate

more of the coefHcients a is available, one can en-

large the set T (thus doing a higher-order-cluster ap-
proximation for G) and include more terms in the
series (3.1). Alternatively, one can decide that

[G],„and G are just too far apart for the "perturba-
tion expansion" (3.1) to be useful, and that one
must expand about a different "limit. " Let G& be
the Green's function (assumed to be calculable) for
this limit; for example, if the disorder is such that
like atoms tend very strongly to group together,
then G~ might be chosen as a linear combination of
the A perfect-crystal and B perfect-crystal Green's
functions. Using Eq. (2.9) we have
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The approximation would now insist that a —a~
= 0 for 0 6 T. Note that Eq. (2.13a) implies that

a, = a~ = 1, and thus the G term drops out of Eq.
(3.4) as desired. It is possible that this approxima-
tion will also lead to negative probabilities, but it
should give more reliable answers for the "strong"
dependence limits. We will illustrate these ideas in
the next section.

Finally, let us note that the self-consistent approx-
imation of I produces Green's functions which are
analytic and have the correct translational sym-
metry. Thus, this approximation for [G]„will also
have these properties, as desired.

plest possible system for which the short-range or-
der is easily defined and for which exact calcula-
tions are available for comparison, namely a Mar-
kov chain. We calculate the electron density of
states for an s-state tight-binding, binary 3-8 alloy
with nearest-neighbor interactions,

H~ —e(s;)5; + Wll,

e (s;) = eA 5(s;, sA ) + eli5(s;, ss ),
(4.1)

W, fi —j/ =1
0 otherwise

IV. MARKOV CHAIN

The approximation described in Secs. II and III is

quite general and can be applied to one-, two-, or
three-dimensional alloys with any Hamiltonian and
short-range order. In order to gain a better under-
standing of this approximation, we examine the sim-

J

where s; = sz or sz with probabilities cz ——c and

cz ——1 —c. For simplicity we have chosen to ex-
amine the case where only the diagonal element of
the Hamiltonian is disordered.

In the case of a Markov chain, all many-particle
joint probability distributions can be written as an
ordered product of pair distributions,

P2(sl, sl, ) P2(sl, , sl, )
PN(sl ~ sl ~ sl ~ . ~ Sl ) = P2(sl ~ sl )

I 2 3 n i 2 p(s ) p(s )'2 ' '3

P2(sl, sl )

Pi(sl, )
(4.2)

a;;+, = (P„„— )cI (c1 —c) . (4.3)

All other a are set equal to zero. Using (2.13) we
find

PAA(l &J) = c, J Q l + 1

PAAA (i,i + l,k) = cPAA, k Q i —1, i + 2

PAA„(i, i + l, i -+ 2) = 2cPAA —c'

(4.4a)

(4.4b)

(4.4c)

Psst'(i, i + l,i + 2) = (1 —c)(2P„A+ 1 —2c —c )

(4.4d)

Using Eq. (3.1) and the nearest-neighbor (NN)
pair approximation, the site-diagonal Green s func-
tion can be written as

where l& & l2 & l3 « l„. In fact all joint
probability distributions are determined by the con-
centration c and the nearest-neighbor pair distribu-
tion P2(s; = sA, s;+i ——ss) = PAs ——c —PAA, where

PAA ——P2(si SA~ Si~l SA)

We approximate the averaged Green's function

[G],„of the Markov chain by including the
independent-variables-averaged Green's function G,

'

and the "first" correction, the nearest-neighbor pair
terms. By symmetry all a~ with ir = [i, i + 1) are
equal and from Eq. (2.13c)

[Goo(E)],„=Goo(E) + aoi Q Goo «) . (4»
NN pairs

Note that the summation in Eq. (4.5) involves an in-

finite number of terms. Since Goo drops off rapidly
as o = ti,i + 1I moves away from site 0, we antici-

pate that only a small number of terms is ever need-
ed. This assumption proved true in all calculations
for the Markov chain, where, as expected, the calcu-
lated Green's functions died off' exponentially.
Specifically only the first eight terms in Eq. (4.5) are
needed to get three-significant-figure accuracy (the
first 17 terms were actually calculated).

Equation (4.5), in conjunction with the self-
consistent nearest-neighbor pair approximation
described in I, was used to evaluate the density of
states of the Markov chain. The details of evaluat-

ing Goo are given in Appendix C. In Fig. 1, we
compare the densities of states evaluated with the
self-consistent pair approximation with essentially
exact results obtained by node counting for linear
chains of 100000 atoms with e(A) = —e(B)
= —2.5, 8' =1.0, c =0.5, and Pzz ——0.45 —0.05.
Pz~ ——0.25 corresponds to the independent-
random-variables limit where the self-consistent ap-
proximation of I is applicable, Pzz ——0.5 corre-
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sponds to a perfect crystal of alternating A and 8
atoms, and Pqz ——0 corresponds to a chain in
which all the A atoms have segregated out from
the 8 atoms producing two separate perfect chains.
Only the positive energies are plotted since, for

c =0.5 and the above choice of parameters, the
density of states is symmetric about E =0. The
small tails at the band edges are due to the small

imaginary part which was added to E for computa-
tional purposes.
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FIG. 1. Density of states for electrons in a Markov chain with e(A) = —e (S) = —2.5, 8' = 1.0, c = 0.5, and
P» ——0.05—0.45. Comparison of the exact results (histogram) with the nearest-neighbor-pair approximation expanded
relative to the independent-random-variables average Green's function (P&~ ——0.25).
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In Figs. 1(a)—l(e), we have plotted the densities
of states of the Markov chain as it changes from the
independent case Pzz ——0.25 at the top, towards the
almost segregated crystal P» ——0.05 at the bottom.
In Figs. 1(f)—1(j), the changes from independent
variables towards the almost perfect alternating
crystal Pzz ——0.45 are plotted. The first column
shows an increase near the band edges and a corre-
sponding decrease at the center as Pzz decreases.
The second column shows the opposite behavior for

Pzz increasing. The approximation gives good
agreement with the exact results in the range from

P&8 ——0.15—0.35. The approximation does not
pick up the extremely peaked behavior, but it does
show good overall agreement with major structure
in the density of states. Such agreement in one
dimension indicates far superior results in three

dimensions, A comparison of the one-'" and
three' -dimensional self-consistent results for diago-
nal disorder demonstrates this eAect.

In the regime of stronger short-range order,
where Pzz is very large or very small, the match
with exact results is not as good. At Pzz ——0.1 and
0.05 the band edges show an excessively peaked
structure which falls short of the band edge. The

Pzz ——0.4 and 0.45 plots show regions of negative

density just beyond the band edges. Pzz ——0.1 and

0.05 correspond to P~~z & 0 [Eq. (4.4d)] and

P„~ = 0.4 and 0.45 correspond to P„z„&0 [Eq.
(4.4c)]. Solving Eqs. (4.4c) and (4.4d) for the transi-

tions to negative distributions yields Pzzz & 0 for

Pgg & 0.125 and Pygmy & 0 for Pg g & 0.375. As
mentioned in Sec. III these negative distributions in-

dicate where the pair approximation is less reliable.
One can improve the approximation by either in-

cluding more distributions exactly or by using the
expansion for the averaged Green's function which
starts at a perfect-crystal limit of the short-range

order. Since in the preceding model calculations we
have experienced some diAiculty near the perfect-
crystal limits and since it is simplest to change the
expansion, we have recalculated the examples in

Figs. 1(c), 1(d), 1(i), and 1(j) using the latter of the
two methods mentioned above. Using Eq. (3.4) and
the nearest-neighbor-pair approximation, the site-

diagonal averaged Green's function can be written

[Goo«)l., = Goo«) + «oi —&oi ) g Goo «) .

NN pairs

For Pzz ——0, where 3 and B atoms segregate into

two separate chains we find, using Eq. (4.3),

Goo(E) = cGoo(E) + (1 —c)Goo(E),
P

ap] ——1,
(4.7a)

(4.7b)

where Goo(E) is the Green's function for a linear
chain composed of only 3 atoms. For
P„~ = 0.5, Goo (E) is the Green's function for a per-
fect linear chain of alternating 2 and B atoms, and

P
op] — 1 e (4.8)

In Fig. 2, we have recalculated the densities of
states for the model system of Fig. 1 with

Pzz ——0.05 and 0.1 using the pair approximation
expansion from the segregated crystal, Pzz ——0
[Eqs. (4.6) and (4.7)]. For P„~ = 0.05 [Fig 2(b.)],
we notice a significant improvement over the expan-
sion from independent random variables given in

Fig. 1(e), particularly at the band edges. At
Pzz ——0.1 the expansion with respect to Pzz ——0 is

0.4

0.3 (o) P~B
= 0.1

0.2

uj Q. l

0
0 Q.4
I—

5 0.3
Cl

«s««&l««i««l«& ~ ««l««is«&l«« ~ ~ s&

(e) p„=o.o5

Q. l

0 ss l«s&l«s&l&s«ls«&t««ls I & ~ « I « « Is s & ~

0 l 2 3 4 5
ENERGY

FIG. 2. Density of states for electrons in a Markov
chain with e(A) = —e(8) = —2.5, 8'= 1.0, c = 0.5,
and I'&~ ——0.05, 0.1. Comparison of the exact results
(histogram) with the nearest-neighbor-pair approximation
expanded relative to the segregated perfect-crystal hmit
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no longer good [Fig. 2(a)] and we would need to in-

clude more distributions exactly (i.e., use a high-
order approximation) to improve the results.

In Fig. 3, we show examples of the pair-
approximation expansion with respect to the perfect
alternating crystal, Pqs ——0.5 [Eqs. (4.6) and (4.8)].
Again we have recalculated two of the cases treated
in Fig. 1, Pzz ——0.4 and 0.45. For Pzz ——0.45
[Fig. 3(b)], we find the approximation picks up the
sharp structure at the center of the band while only
showing a general indication of the peripheral struc-
ture. Furthermore in the band gaps the density be-
comes slightly negative. The independent-random-
variable approximation shown in Fig. 1(j) misses the
sharpness of the central structure and shows a much
smoother density which becomes negative at the
band edges. In both cases the negative densities ap-
pear where the approximation is attempting to drive
the density of states to zero. For Pauli ——0.4 [Fig.
3(a)], we again find that the approximation is no

0.S — «) PAB= 0.4

R
LLj
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~ -0.2
1.2
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FIG. 3. Density of states for electrons in a Markov
chain with e(A) = —e {8)= —2.5, 8' = 1.0, c = 0.5,
and P&~ ——0.4,0.45. Comparison of the exact results

(histogram) with the nearest-neighbor pair approximation
expanded relative to the alternating perfect-crystal limit

(Pgg ——0.5).

longer as good. Note that the expansion with
respect to the independent-random-variables average
has a significantly greater range of reliability than
does either of the perfect-crystal expansions. This is
to be expected since the expansions from the
perfect-crystal limits are dominated by only one
particular configuration of the alloy.

V. CONCLUSION

%e have presented a self-consistent approxima-
tion for calculating the properties of disordered al-

loys with short-range order. The approximation is
based on a relationship between the joint probability
distributions for dependent and independent random
variables. The approximation is constructed by cou-
pling this relation with the operator methods of aug-
mented space and the self-consistent theory for in-

dependent random variables. '

The use of the self-consistent theory guarantees
that the averaged Green's function has the proper
translational symmetry and is analytic. The theory
also exhibits the proper behavior in the dilute,
weak-scattering and strong-scattering limits. Furth-
ermore, the major part of the computational effort
which is involved in utilizing this approximation lies
in solving the self-consistent equations of I. Once
this solution is known it is relatively simple to cal-
culate the Green's function for the short-range-order
system.

The short-range order is included in the approxi-
mation in a physically reahstic manner, i.e., only a
finite number of the joint probability distributions
for the alloy are needed to construct the approxima-
tion. For any real system only a few distributions
will ever be known.

Example calculations for a Markov chain with

nearest-neighbor-pair distributions show good
overall agreement with exact results. In three
dimensions we expect significantly better agreement
since much of the structure in the exact density of
states tends to disappear as each atom "sees" a
more nearly average environment. A comparison of
the results for the limiting case of diagonal disorder
and independent random variables for one' and
three' dimensions provides a clear demonstration of
this point.

Although the theory and model calculations have
been presented for a random alloy, formally this
method is applicable to any disordered system with
short-range order, such as amorphous solids. The
continuous nature of the position random variables
for an amorphous solid introduces significant com-
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putational difficulties in this theory. We hope to ex-
amine this problem in a future publication.
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We may thus write

dp) ——+d p2,

= f„g(y)@(y)dp2(y) .

f g(y)dp, (y) = f g(y) „dp,(y)Y

(A 1)

(A2)

APPENDIX A: MATHEMATICAL

JUSTIFICATION OF EQ. {2.2)

As in Sec. II, we let sj denote the site occupation
random variable for site j; sj ——sz (ss) if an A atom
(8 atom) is present at site j. The collection of vari-
ables Is~ j1 EJ ——S, where J is the set of all sites,
comprise a strrctlp statlona+ stochastLc process,
which means that all joint probability distributions

+k(sji slzt ' ' ' slk) are invariant under translation.

These distributions characterize the process. A
mathematically equivalent way of viewing stochastic
processes is in terms of a measure on the space of
all possible realizations (configurations) of the pro-
cess. The distributions I'k define a measure m, on
the space X of all functions fmapping J into the
two-element set [sz, ss j; X= [f ~

f:J~ [sq,
ss j j. One can think of X as the space of all possi-
ble configurations of the solid, and the measure m,
indicates which configurations are "important" or
highly probable.

There are two concepts concerning measures that
will be used. If p& and p2 are measures on the
space Y, then pi is said to be absolutely continuous
with respect to p2, pi & p2, if A C Y and p2(A) = 0
implies pi(A) = 0. The measures p, i and pz are
called singular, p, g p, 2, if there is a set 8 such that
pi(8) = p2(8') = 0. Here 8' is the complement of
8. Loosely speaking, absolute continuity and singu-
larity are opposite extremes; the former says that p&
is "concentrated" on the same set (of configurations)
as p2, while the latter condition requires that they be
"concentrated" on disjoint sets.

A basic result about absolutely continuous mea-
sures goes under the name of the Radon-Nikodym
theorem.

Theorem. If p~ & p2, then there exists a function
4(y): Y ~R, where R is the real line, such that for
any A {:Y, pi(A) = f C'(y)dp2(y).

lim fj'(x)dm, (x) = ff(x)dms(x)
p~O

(A3)

for any continuous f(x). Thus m, converges
"weakly" to mD despite the fact that m, J.mD for
all e.

This is, in eff'ect, what is done in Sec. III. The
measure mz is approximated by a measure mz such
that mr & m, (and thus Radon-Nikodym can be
used). The accuracy of the approximation is deter-
mined by the size of the set T, or equivalently, by
how many joint probability distributions are used to
define mr (recall that mr is defined by
a = 0 for o g T and a for o. ~ T as computed
using the joint distributions). It follows directly
from the definition of the integral that this sequence
(more precisely, net) of approximating measures

which is precisely Eq. (2.2). In the situation of in-

terest to us, p, &
is the short-range-order measure

mq, and p2 is the measure generated by independent
variables (with the same concentration of A atoms as

m&. Denote this measure by m, .
Note that Eq. (A2) [or (2.2)j is valid under the as-

sumption that mz g m, . However it follows from
ergodicity that ms lm„so and therefore it might
seem that the Radon-Nikodym theorem is of no
use. Nevertheless, we are certainly free to approxi-
mate mz by a measure m which does satisfy

m g m, and apply Radon-Nikodym to m and m, .
The question then arises as to whether we can ade-

quately approximate m& by measures m which satis-

fy m & m, when in fact ms lm, . The following

simple example is very instructive: let mL be the
uniform (Lebesgue) measure on the interval [-l, lj,
and mz the Dirac-point measure at x = 0. Clearly,
mL J.mD. Now let m, be the measures correspond-
ing to (truncated) Gaussian distributions with mean
0 and standard deviation e. Note that m, ~ mL,
and yet
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converges (as the set T becomes large) weakly to
ms, and thus in this limit, Eq. (2.9) is correct.

APPENDIX B: EVALUATION OF a

&f l@lf& =

Next we use the single-particle distribution:

Pi(» = s~ ) = c = &f I
5(si = s~ )@if &,

(B2)

In order to evaluate the a 's in Eq. (2.9) we need

only the normalization condition Eq. (2.10), the ex-

pressing of the joint probability distributions in

terms of augmented-space projection operators, Eq.
(2.12), and the relation'

5(» = s~ }If &
= c

I f & + I
c (1 —c}]'"

I fi &

P~(/, /') = &f I5(si = sq)5(si = sq)4
I f&,

2=a~ +aac(1 —c) . (B4)

=ca, + aI[c(1 —c)]' . (B3)

Using (B2) we find ai = 0. For the two-particle dis-
tribution we have

(Bl)

Using the expansion for qi [Eq. (2.8)] and its nor-
malization we have

solving for aiI yields,

aa = [Pzz(/, 1') —c ]/c(1 —c) .

Similarly for three-particle distribution we find

(B5)

Pgqq(/, /', /") = &f l5(si = sq)5(si = sq }5(si" ——sq)e lf &

= c3+ c~(1 —c)(a, + ai, i„+aII„) + [c(1 —c)] aa, i„.
Substituting the expression for aa, in (B5) gives

(B6)

Pygmy (1,/' 1' ) = c + c [Pgg(/ 1 ) + Pgg(/, / ) + Pgg(/ 1' ) —3c ] + [c( 1 —c}] aa '&, (B7)

and

an i
= IP&zz(l, l 1 ) + 2c —c[P„&(/1') + Pzz(/'1") + Pzz(/1")]j/[c(1 —c)]

All other a can be detehnined in the same manner using higher-order distribution functions.

APPENDIX C: CALCULATION OF O' USING

THE SELF-CONSISTENT APPROXIMATION
If we Fourier transform on the sites in the disorder
space according to Eq. (3.8) of I we have

In this appendix we describe how to compute the
matrix elements G' „=&mf

I
G

I
nf &

= &nf
I
G

I
mf & which are needed to approximate

[G~ „],„ in Eq. (2.9). The procedure is similar to
that used in Appendix 0 in Paper I. We follow the
notation used there. If n =i + a and m = i +/,
then by translational invariance

' o„(i)
G „" = &nf ()IG Imf&

=—g&( + }f,„)IG I( + P}f& .
I

(C 1)

Using relation (D5) of I, we have

' o„(i) l o„(i)o„,(I) ' fo„,(I)—
G~ „" = — ggF~+~~" E—/„" G„;~@. (C2)

ijr lu'

ijr Ql q

'fo,XE " Gj—I n —I n i+p

If we now Fourier transform G on real site indices
the equation can be reduced to the form

G-,: = ——XXXP(q)-;. '
Q $$ q

(C3)

X lt', , "e 'sG(q) . (C4)

Every term in (C4) is evaluated in the course of .

solving the self-consistent equations except those ele-
ments of F outside of the space projected by the I'
(which are defined in I). However, by using the
matrix P G P and Eqs. (3.16) and (3.17) of I, one
can generate any matrix element of F.
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