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potential-scattering models for the quasiparticle interactions in liquid sHe
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Using a Legendre function expansion, we obtain analytic results for the transport coefficients

and superfluid Ginzburg-Landau parameters of liquid 3He from any model quasiparticle sciitter-

ing amplitude with the form of a matrix element of a local two-body potential. e perform a

least-squares fit to the measured Landau parameters and transport coefficients and obtain ne arly

perfect agreement for models including Legendre components with l ~ 3.

Levin and Valls' have recently obtained good results for the transport coefficients and Landau parameters of
normal liquid 'He from model quasiparticle scattering amplitudes of the form (see Fig. 1)
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We call these potential scattering models because Eq.
(1) has the same form as the matrix element of a lo-
cal two-body potential. Levin and Valls studied
several different functional forms for the potentials
v(q) and j(q). To fix the parameters of their
models, they first calculated the Landau parameters,
which are given by one-dimensional integrals of u(q)
and j(q), and fitted these as closely as possible to
the measured Landau parameters for liquid 'He.
They used the scattering amplitudes determined in

this way to calculate the transport coefficients and su-
perfluid strong-coupling corrections, which are all
given by two-dimensional integrals.

In this paper we point out that with a parametriza-
tion of the potential scattering models suggested by
Wolfle~ (and also used in a restricted form by Levin
and Valls in their models c,d, e, and g), all the proper-
ties of' interest can be calculated analytically. This
then allows us to fit the model scattering amplitude
to any or all the measured quantities with minimal
computational effort. Furthermore, because our vari-
ational procedure in principle covers all potential
scattering models„we can determine the extent to
which the experimental results constrain the form of
the scattering amplitude, within the class of potential
scattering models.

For quasiparticles on the Fermi surface, the
scattering amplitude depends on only two indepen-
dent angular variables. We choose for these the two
"particle-hole" angles, which are related to the more
familiar Abrikosov-Khalatnikov angles 0 and $ by

r, y P4r P
x& = p~ p3 =cos'(0/2) +sin (9/2) cos$

x3 p ~ P4 = cos'( S/2) —sin'( S/2 ) cosg

FIG. 1. Scattering amplitude conventions. For all four
momenta on the Fermi surface T depends on only two in-

dependent angles. The particle-hole angles x2 = p3 p~ and

x3 p4 p ~
are a convenient choice.

The momentum transfers in the potential scattering
models are

I pi —p3I = 2&i:i( l -~2) /2

IP) P4I =2/'I-i(i -X3)/2,
and hence these momentum transfers may be re-
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T, (x, ,x, ) = W, (x, ) + W (X3)

TI(X3 X3) = Wl(X3) —W, (x3)
(4)

which automatically satisfy the exchange antisym-
metry conditions

T, (x, ,x3) =,( 3, 3), , ( 2,x3) =—,( 3, 3)

placed by x2 and x3 as 'the independent variables in

Eq. (I). We find it most convenient to work with the
singlet and triplet components of the scattering am-
plitude in the particle-particle channel. In potential
scattering models these have the form

which together with Eqs. (4) and (7) gives'

A I' = —„ I) [3 W, ( 1 ) + W, ( I ) ] 5 I o
—( 3 WII —Wl') )

Al = —I)[ W, (1)—W, (1))glo —( Wf+ WI') ), (9)

W (I) = $ W"
1 p

%e note that the Landau parameters depend only on
the potential scattering parameters with the same I,

except for A p and A p which also depend on the full

q =0 potentials W„(1). From Eq. (9) we immedi-
ately obtain the forward scattering sum rule

W, and W, are related to the potentials v(q ) and

j (q ) in Eq. (I) by

W (x) = v(q) —3j(q ), W(x) = v(q ) +j(q)

Since the I =0 term disappears from T, (x2,x3), W[)

does not enter any physical quantity. Consequently
v(q ) and j (q) cannot be uniquely determined by ex-
periment; all physical quantities are unchanged if we
replace v(q) by v(q) +3C and j (q) byj (q) + C,
where C is any constant.

To find the Landau parameters we use Landau 's
exact result for the forward scattering amplitude,

T"(8, st) =0) = —„' (3 T, + T, ) = QAI'Pl(costi)
(~p

T"(II, $ = 0) = —( T, —T, ) = QAI'P(cose)
( p

(g)

We parametrize the potential scattering models by ex-
panding H', and H, in the Legendre polynomials

OO OO

Ws(x) = $ Wl'Pl(x), W, (x) = $ WI'PI(x)
(~Q (~p

$ (A,'+A;) =0
IW

( I 0)

Wl') = —, (Al') —3AO ) —$(AI' 3AI')—

In place of an equation for H'p we obtain

Ao +Ao = W, (1)—W

which combined with Eq. (I 1) simply reproduces the
forward scattering sum rule. We note in passing that
the s-p approximation by Dy and Pethick is a poten-
tial scattering model if only Landau parameters with

1 are included and the forward scattering sum
rule is satisfied.

The normal-state transport coefficients and the su-
perfluid strong-coupling corrections through order
T, /TI' are determined by integrals quadratic in the
quasiparticle scattering amplitude. The expressions
for these quantities are summarized in the Appendix.
For our parametrized potential scattering models,
these integrals reduce to quadratic forms in H (". For
example, the quasiparticle lifetime r(0) is given by

which is satisfied by all potential scattering models as
a direct consequence of Eq. (4) for T, Invertin. g Eq.
(9) yields

H (' = 3(' —3A(', I ~ 1

Wl' ———(Al' + Al ), I « I

(I 3)g (A; WIWr + 8 ~ Wls Ws~ + C ~ WIWs )r(0) g T f II I II I II Il~p (r~p

The coefficients in Eq. (13) and in the corresponding expressions for the other physical quantities are linear com-
binations of integrals of the following types:

) ' m ' ' n
1 —x2 1 -x3jiI

' (I n ) = (Pi (xi )P, (x I )
I 2 2

r

1 —x2j„', (m, n) = Pl(x, )P, (x, )
I 2

' m ' ' n
1 —x3

2
(14)

j ' m ' ' n
1 —x2 1 - x3

I
'

2 2
jl (I II ) Pl(X3)P (X3)
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~here
rl rl G(x),x3)

(G (x2yx3) ) ~ dx2 ' c/x3
4m "-t " "2 [(x2+x3)(1 —xp)(1 —x3)]' '

Our analytic results for these integrals are

(15)

/ I

j„;(nt, n) = g $
p Oq 0

1)u+q, I +p I I'+q I'
R'(mn;, p, q )2(p+q+m+n)+1, I, P, ,

1 f 't

p + q + //? + /? 2p + 2 q + 2/ll + 2/l
R'(m, n;p, q) =

/l 2/l

r

P + q + /?? + /l

R'(m, &;Ip, q) =
P +/ll

2p + 2Q + 2/ll + 2/l

2/ll + 2p

p + q + //l + /? 2p + 2 q + 2//l + 2/l
R'(m, n;p, q) =

//? 2 /ll

In Ref. 4 we have tabulated the coefficients through
I =3 in expansions analogous to Eq. (13) for the
transport quantities and the superfluid Ginzburg-
Landau parameters.

To determine potentials which fit the Landau
parameters, transport coefficients, and superfluid
strong-coupling coefficients, we adjust the scattering

parameters H /" to minimize the sum of squared de-
viations of the calculated physical quantities from
their corresponding experimental values. Table I

summarizes the results obtained by fitting to the
melting pressure values of Ao, Ao, 3[, r(0) T
h, ~ and XD.' [See the Appendix for definitions of
the X's and of the functions Sr: 0(X) discussed

TABLE I. Melting pressure calculations. The scattering amplitudes were obtained using the transport coefficients and Landau

parameters as fitting parameters.

Fs Fcl
0

Fs
1

FP
1

F' Fo
2 A0s A 0 A 1 2

Exp.

/«2
1«3

94.13 -0.738 15.66

67.49 —0.724 14.21 —0.753

—1.0 0.9895

0.390 -0.191 0.9854

93.34 -0.737 14.51 -0.766 0.497 0.289 0.9894

-2,822

—2.622

-2.799

2518 . —08
2.477 —1.005 0.362 —0.199

2,486 -1.029 0.452 0.273

Exp.
I «2
l«3

T(0) T ( psec m K )

0.26
0.26
0.26

1.31
1.30
1.31

0.70
0.71
0.70

~D

0.01
0;03
0.04

KT(erg/cm sec)

10.7
10.5
10.6

'gT (P mK )

0.88
0.89
0.88

1&T (cm mK /sec)

0. 1 7

0. 1 7

0.17

I«2
I«3

H Sp

1.1997
1.0120

1 1

-1.4729 5.4912
—1.4576 5.5732

-0.1633
—0.7252

WS
2

0.9594
—0.3666

W3

0
0.3732

0
2. 1556

I

E xpt.
/«2
/«3

2.00
2.21
2,24

ACg

1.90
2. 13
2. 12

0.74
0,70
0.70

-~ = ~/ 245

—0.72
—0.86
—0.87

1

12 +
3

~It 345

—0.33
—0.48
—0.47

3 P24

—0.47
—0.40
—0.40

( i —.v)

0.39
0.38
0.40

/«2
l«3

AP1

-0.066
—0.074

AP2

-0.130
—0.103

AP3

-0.124
—0.123

3 p4

-0.266
-0.298

Ap5
—0.460
—0.469

g pWC

0.004
0.003
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below. l With only / «3 scattering parameters includ-

ed, all the known Landau parameters and transport
coefficients are fit to within 1% of experiment.

In our fits of the scattering potential parameters to
the experimental quantities we use r(0) T'„)x, h.~,
and XD as constraints rather than the transport coeffi-
cients because the latter are primarily determined by
the quasiparticle lifetime r(0). In fact, r(0), K, and
D constrain the quasiparticle scattering amplitude less
than would three independent angular averages of the
quasiparticle scattering rate, because (1) the X are
less sensitive to changes in the scattering amplitudes
than is r(0) and (2) Ss o(h. ) is a slowly varying func-
tion of A. in the regions of physical interest for K and
O (but not for r)).

The extent to which the Landau parameters and
transport coefficients determine the form of u(q) and
j(q) is indicated in Fig. 2.' Potentials (a) were
determined by optimizing a scattering amplitude with
%&4'AO only for I «2 (see also Table 1). Although
this scattering amplitude fits the transport coefficients
accurately, the fit to the Landau parameters is not as
good as can be obtained by including I =3 terms in

the potentials. The optimum potentials for I «3 are
shown in Fig. 2(b). The shape of the scattering po-
tentials in Fig. 2(b) and the accuracy of the fit to the
experimental quantities are essentially unchanged by
increasing /, „ to five.

Levin and Valls call the potentials in Fig. 2 "spin-
fluctuation-like" because —j(q) has a maximum at

q =O. In all our calculations, including fits with

5 pq45 and 6 ptq+ 3
6 p345 as constraints and calcula-

tions at all pressures with as many as 13 scattering
parameters, we find a maximum in —j(q) at q =0;
in this sense we also find that the scattering arnpli-
tude is "spin-fluctuation-like. " Ho~ever, we find
.the best agreement with the Landau parameters and
transport coefficients from a scattering potential j(q)
which is much less sharply peaked than those ob-

tained by Levin arid Valls. This is consistent with the
transport coefficients being most sensitive to the
low-order moments of the scattering potentials be-
cause the weight factors determining r(0), h. ir, )t,
and A. D depend linearly or bilinearly on the particle-
hole angles.

To check the rate of convergence of the Legendre
expansions we have calcuiated r(0) T' using Eq. (13)
with H "calculated from the spin-fluctuation model
with / =0.96. The expansion for r(0) T' [Fq. (13)1
converges to within 8% of the exact value if we retain
only terms with / «3 and to within 4% if we add the
I =4 terms,

In Table I we also list the strong-coupling correc-
tions to the Ginzburg-Landau parameters calculated
with the same scattering amplitude which fits the
transport coefficients, etc. In this calculation the
linear combinations of 4 p's which can be extracted
from experiment were not used to determine the
scattering amplitude. Our calculations of the 6p's
include, in addition to the scattering amplitude in

Table I, a smooth cutoff in the frequency sums 5
[see Eqs. (A10), (Al 1), (A12), and Ref. g]. This
cutoff comes from the frequency dependence of the
pairing interaction, quasiparticle lifetime, etc. Since
the details of this cutoff are not known, we have
evaluated the frequency sums using a frequency-
dependent order parameter of the form

A(e„;T) =A(T)/[1+(e„/e, )']

Figure 3 shows the 5 calculated as a function of e, .
Our calculated 6 p 's are in best agreement with ex-
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FIG. 2, Scattering potentials for 3He at melting pressure.
Potentials (a) were optimized with Im, „=2. Potentials (b)
were optimized with 1~« =3.

Q3 t I I I'1 I I I I I I I I I 1 I I I

0 0.'I 0.2 0.3
X =2&k~ T, /te,

FIG. 3. Cutoff dependence of the frequency sums. The
curves are normalized to the cutoff independent values:

Sb, =6.8, Sd =10.1, and Sf =30.4 With E, =0.068k~T~,
x, decreases from 0.25 at 34 bars to 0.15 at 12 bars and 0.06
at 0 bar.
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TABLE II. Calculated corrections to the Ginzburg-Landau parameters.

P(bars) hp4

12
16
20
24
28
34.4

—0.034
—0.041
—0.048
—0.056
—0.062
—0.074

—0.080
—0,088
—0.095
—0.101
—0.105
—0.103

-0.117
-0.128
—0.136
-0.140
—0.139
—0.123

—0.199
—0.229
—0.254
—0.273
—0.286
—0.298

—0.195
—0.235
—0.277
—0.321
—0.369
—0.469

periment if e, =0.068k~ Tq. The calculated specific-
heat discontinuities are 11% larger than the melting
pressure results in Ref. 9; equivalently the calculated
values EP245 = —0.87 and APtp+ 3 AP345 —0.47 are

moderately large compared with experimentally deter-
mined values of —0.72 and —0.33„respectively. '

However, the difference in these two quantities,
which is the most sensitive indicator of A-phase sta-
bility, is 0.40 compared to the experimental value of
0.39. To emphasize the tenuous stability of 'He-A
we note that the smallest this difference can be for a

stable A phase is 0.33. Thus, a precise theoretical
determination of the pressure at the polycritical point
(PCP) is difficult. We have calculated the hp; at
lower pressures (see fable 11) using scattering ampli-
tudes determined by the procedure described above,
and taking e, (p) =0.068k„T, (p). From th-. ese 6 p s

we obtain 27 bars for the PCP, compared to the ex-
perimental value of 22 bars.

To summarize, we have obtained analytic expres-
sions for the normal-state transport coefficients and
superfluid strong-coupling corrections for 'He assum-
ing that the scattering amplitude has the form of a

matrix element of a local two-body operator. %e
have optimized our scattering potentials to obtain ac-
curate results for all the known Landau parameters
and normal-state transport coefficients. Our calculat-
ed strong-coupling free energy coefficients are in

reasonable agreement with experiment.
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APPENDIX

In this Appendix we list the formulas for the
normal-state transport properties and superfluid
strong-coupling corrections in terms of the normal-
state quasiparticle scattering amplitude. "

(i) Quasiparticle lifetime:

(0)
87r2h6 1

(m') k'T' ( W({),@))

(ii) Thermal conductivity:

~ = (m'/2) nka( T/TI:) v,'. r(0)SI. (k„)
) „= ( W(t), P) (1+2cose) )/( W(e, @)) .

(iii) Viscosity:

(A 1)

(A2)

1

, n v„-p,.-r(0) So(k—„)
(A3)

k„= ( W ( 0$) [1 —3 s, in ( {)/2 ) s

in2$�
] ) / ( W ( Hg) ),

(iv) Spin diffusion:

D = —, vF~(1 + Fo ) r(0) Sp( kD)

(1 —gD) = ( Wtt(8, g) sin'(0/2) (1 —cos@)) /( W(&, $) )

The scattering rates W(0, @) and Wtt(0, $) are given in terms of T, (0, @) and T, ({),$) by

(A4)

W(e, @) = v(0)-'[ —', T, (e, @)'+ ,
'

T, (e, y)'+ ,
'

T—,(e, y) T, (O, —y)],

Wtt(&, y) = (0) '[ —„T,(&, 0)'+ —, T, (&, y)'+ —, T, (&, y) T, (&, $) ]

(AS)
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where v(0) = m'kF/7r t T.he function Si, (k)
(So(k)) is

(„) g 2 +1
v(v+ 1) [v(v+1) —2)i]

(v odd)

(A6)

divide into three types:

u' = IV (0) (1 + 5n„)

P, =P,"'+IP, ,

Sp = ap"'+ a p" + a p,b'+ op,4 .

(Ag)

Our angular averages are defined by"

1

(G(II, $)) = Jl
~ Jt d cos—G(II, P)

2m' o 2
(A7)

(1) &u„ is the strong-coupling correction to the
quadratic free energy coming from the finite quasi-
particle lifetime and is related to r(0) by'a

ka T, h TI.-

4 vrpr kar(0) T'

The definition of the strong-coupling corrections is

partly a matter of choice. From a theoretical point of
view it is most convenient to define all corrections to
weak-coupling BCS theory as strong-coupling terms,
In the Ginzburg-Landau region these terms naturally

(2) The Ap;"' are strong-coupling corrections from
the frequency dependence of the normal-state pairing
interaction. These terms enter only through the
weak-coupling diagram [Fig. 3(a) of Ref. 8]; conse-
quently the AP;"' have the same ratios as the BCS
P's. From Serene and Rainer, '3

~pt'=(fi/16)S„, ([5T((II, $) Tj(II', $ ) + T(II, Q) T(II', Q )+ T(II, $) T((II', &f) ) + T(II, $) T(II', $')]x2) . (A10)

For all the scattering amplitudes that we have studied, Apf' is negligible.

(3) The remaining 4p; are not related by the BCS ratios. These terms are discussed extensively by Rainer and
Serene' and are given by

AP; = —(q/16)S. (X, (II, y) T (. II, $)'+ Y, (I), $) T, (H, $)'+Z, (II, y) T, (II, @)T (II, $) )

for o. =f, bc, and

I)Pd = (~/4) S„—(X,"(e, y) T, (II, y) T, (0', y')

+ Y;"(II, $) [T,(II, $) T, (II', Q') + T, (II, $) T, (II', @ ) + T, (H, $) T (II, $ ) ])

(A 1 1)

(A12)

AC„2(1+5 n „)
Cw, (2+6p245)

(A13)

6 t"8 —', (1+ca„)'
= 1.426, , (A14)

Cw [—+(Apt2+ 3
5 p34g)1

where rt = IV(0)/(30ka T,v„pf) The weight fa.ctors
X(H, Q), Y(8, $), and Z(8, $) are given in Ref. 4.
The S (n =wc, f, bc, d) are frequency sums over
products of quasiparticle propagators; these sums pre

listed in Refs. 4 and 8.
The specific-heat jumps for the A, B„and 3 1

phases are

temperature limit of the specific heat (evaluated at

T, ), Cg = ( , 7r')ka2—IV (0) T,

The condition for stability of the 1 phase relative
to the B phase is

(A16)

A..„T,'" =1.13m, e
]/x

(&p~2+ 3 &p345) -~p245~
3

Patton and Zaringhalam' have obtained a result
for the transition temperature in terms of the quasi-
particle scattering amplitude and a cutoff eo which ap-
proximately accounts for the frequency dependence
of the pairing interaction. For potential scattering
models this relation is

aC„, 4(1+g ~„)'=0.594
Cw (4+ a p24)

where 5P; = AP;/~P~~cs~, and C~ is the low-

(A15)

for Xi (0.

l4'I', I even

2(2I +1) 141', I odd

(A17)
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