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An equation originally derived by Lennard-Jones and Dent for the estimation of Madelung potentials is utilized to
study the properties of these potentials within the bulk and at the surfaces of crystals. It is clear from the equation
that potentials at atomic sites only one lattice constant distant from the surface are, in general, indistinguishable
from those in the bulk. The equation indicates also that Madelung sums in real space can be so organized as to make
them more tractable computationally than they are usually considered to be. Madelung potentials for atomic sites at
and near surfaces are obtained for NaCl(100), NaCl(110), CsCl(110), zinc blende (110), wurtzite (1120), and rutile

(001).

I. INTRODUCTION

Crystal-field effects on potentials in the vicinity
of crystal surfaces's? were studied not long after
the publication of Madelung’s original investiga-
tions® for bulk. In a classic paper, Lennard-Jones
and Dent? considered the electrostatic potential
outside the surface of an ionic crystal.? Contrary
to expectation, the potential was shown to be of
shorter range than that due to van der Waals
forces. There have been investigations of the dif-
ference between the Madelung potential at a sur-
face and that of the bulk: Herzfeld' treated ioniza-
tion effects at the surface of AgBr; more recently,
Levine and Mark® have asked whether this differ-
ence should cause surface atoms of semiconductors
or insulators to have core- or valence-electron
energy levels lying in their band gaps; and Slater,®
Parry,” and others have calculated the Madelung
potential as a function of depth below a surface.
The fact that surface-bulk differences are of con-
cern in the electron photoemission study of solids
is hardly surprising, but until recently surface-
atom chemical shifts have been notable by their
failure to appear in the spectra. With the advent
of angle-dependent photoemission techniques and
with the ability now to choose photon energy so as
to minimize the escape depth of the photoejected
electrons, spectral lines associated with surface
atoms are beginning to be observed.®®

The purpose of this paper is to extend our under-
standing of surface Madelung effects and to pre-
sent computed results heretofore unavailable for
certain surfaces of CsCl, wurtzite, zinc-blende,
and rutile structures. These are especially inter-
esting in that surfaces of metal oxides which have
the wurtzite, rutile, and corundum® structures
are employed as catalysts,'® and photoemission
studies have recently been made of the zinc-blende
surfaces of GaAs(110) and GaSb(110) by Eastman
and co-workers.?

In Sec. II we derive a key equation® of Lennard-
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Jones and Dent (henceforth denoted LJID) by a
method differing from theirs. Some implications
of this equation for surface Madelung effects and
for the calculation of bulk Madelung potentials ap-
pear not to have been recognized. From the LJD
equation, which describes the potential due to an
infinite planar slab of charges, it may be seen that
the potential reaches its asymptotic value in a very
short distance normal to the slab if the slab has
no net charge. As a consequence, atoms within
the crystal at a distance only one lattice constant
from the surface have Madelung potentials which
are indistinguishable from those of atoms well
within the bulk. Further, a bulk or surface Made-
lung potential calculation reduces to sums involving
but a few slabs and, as will be seen, accurate re-
sults may be obtained without the need to sum far
out in real space in the slabs. This means
that Madelung sums in real space can be ac-
curately evaluated by small-scale computation
with present-day computers and, in simpler cases,
even with programmable hand calculators. As an
aid in understanding the short-range character

of the potential due to a slab, the longer-range
potential due to a column of charges is considered
in Sec. III. The result for the column is, of
course, also pertinent to stepped surfaces. Real-
space sums for a number of crystal surfaces are
given in Sec. IV. Results are limited to cases in
which the surface plane of ions, in addition to hav-
ing no net charge, would be a mirror plane if it
were in the crystal interior. This is often, though
not always, the case for principal cleavage planes;
certain other cleavages will be considered in a
subsequent paper. Although the Madelung sums
have been calculated in real space, the LJD equa-
tion involves a sum over two-dimensional recipro-
cal-lattice vectors and, providing one is not eval-
uating the potential for a point within the slab, the
sum may be limited to just a few vectors. It is
thus a simple hand calculation once the reciprocal-
lattice vectors have been determined. Lacking the
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in-slab result, one cannot calculate the absolute
Madelung term; one can, however, easily calculate
the variation in the potential as one moves away
from a surface and, given a value for the potential
in the bulk, one can obtain the absolute value of

the potential at or near the surface. In Sec. V this
scheme is employed and its results are compared
with those of Sec. IV.

A number of things are neglected in this paper.
Surface potential effects associated with surface
reconstruction, with surface-bulk differences in
the oxidation states of atoms, or with charge trans-
fer between the surface and the bulk have not been
considered. Also, the effective potential of a
charged ion in the vicinity of a surface or of the
final-state hole left behind by a photoelectron in-
volves significant polarization terms.!! Some of
these matters will be dealt with in subsequent
papers.

II. THE LENNARD-JONES-DENT EQUATION

In this section we show that the potential outside
an array of charges distributed periodically within
a planar slab decays exponentially to a constant
and, if there is no net charge in the slab, the
constant is equal to 27o,, where o, is the dipole
moment perpendicular to the plane per unit area of
the slab. Thedecayterms vary ase~ %%, where G is
the magnitude of a two-dimensional reciprocal-lat-
tice vector appropriate tothe slab, andz is the per-
pendicular distance of the sampling point from the
plane. Inasmuch as the smallest nonzero G’s are
of the order of 2r/a,, with a, a lattice constant
and ¢~2"=0.0019, it is clear that decay to the
asymptotic value of 2r¢, is very rapid.

J

Such a result follows from the general expression
for the potential due to an infinite planar distribu-
tion of charges. Let

B =062 = 2 rl (1
T
where ¢, is the quantity of ith charge, Fi gives its
location, and T locates the point at which the poten-
tial is being sampled, with (p, z) being the cylin-
drical coordinates of that position. If the charges
lie close to a plane and if they are periodic in k
position in the slab, the potential can be written

3(5,2) = 2 e pq(2) (2)
G

where the G’s are the reciprocal-lattice vectors of
the two-dimensional array and where

vate) =5 [ abe S5, 2), (3a)

with A the planar area.
One may write

r,=R,+5,,

where ﬁ! locates the jth unit cell and 5,, gives the
position of the kth charge within the cell. Restrict-
ing the slab to be one unit cell thick, ﬁj must be
parallel to the slab but 3k may have components
parallel and perpendicular to it, i.e.,

.5;3 = -6-‘1'3 + .515 .
Letting
p'=p- ﬁ/ ~ Ok
it follows that

_._1 = ~iGe3 dr —_1. -G (R +E”)f *r ~iGed 1
¢§(Z)—Afdpe 4 Z = ﬁj—5k| -quke i*% dp'e m (3b)

the number of unit cells. The angular part of the
integral is 2mJ(G - p’) and

° ’ 7 Ty _____1______.2_11 -G(l-ﬁk}
21r£ p'dp'J(G p)[ﬁlz_‘_(z_G:)Z]l/Z_G € :

Thus,
- N = el
o(p, 2) =2”Z Z q(G)eiG P g62, (4a)
G
where q(a) is a “structure factor”

(@) = 51 2o are’S Bk, (4b)
R

-
Equations (4) are the LJD equation.'?-** For spe-
cialized cases the equivalent of this equation has
appeared earlier in the literature in the work of
Madelung® and of Born and Stern.! One notes that
as z becomes large only the G -0 term survives.
For example, consider the unit cell to have a pair
of charges, +q and —¢, with their dipole moment
u perpendicular to the plane. Setting 5" =0 and
5'=+5/2, Eq. (4b) becomes

2(8) =2¢ sinh(G6/2)/G

=limqgd=p;
G¢—o

and far outside the plane

&(p,z ~o) ~ 21N u/A=270, , (5)
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where, as before, o, is the dipole density. It is
worth noting that the contribution of a dipole layer
to the work function is twice this, i.e., 4mo,, since
the potential is +270, on one side of the dipole
layer and -270, on the other.

One may show that Eq. (5) is generally valid be-
ginning by expanding the exponential of Eq. (3b)

eia-ﬁj=1+i6 . §j+ v

In the limit G -0, only the first term remains.
Direct integration yields

¢E—>o(z)".—‘f ‘dp’ Z

and, with no net slab charge, i.e.,
ZQk:O’
%

we obtain

p12+(z 5.\.)2]1/2

¢ o2) =2%N PPN
R
as stated before.

In summary then, if there are normal dipoles
in the slab ¢ -~ 270, if there is net charge ¢ =+,
and if neither is present, ¢ —0. Further, the scale
length for approach towards the asymptotic value
is quite short, ~a, a unit lattice vector in the slab.

A bulk Madelung sum thus reduces to a sum in-
volving but a few slabs. Although Eq. (1), the real-
space summation for any given slab, converges
slowly, the calculation becomes quite compact by
use of the following scheme. Do the sums for the
slabs of interest and for a “distant” one, whose z
corresponds to 5 to 10 slab thicknesses. All the
sums converge at the same rate once the distance
out along the slabs p is much larger than z; i.e.,
the difference between the finite and infinite sum
is the same for all. Thus, with the asymptotic
result for the “distant” slab, all the finite sums
can be corrected. Typically, it is sufficient to ex-
tend the sums to about 100q, along the slabs.

This approach may be viewed as a modern ver-
sion of Madelung’s original scheme?® for calculation
of bulk potentials. He divided the crystal into
slabs and used the equivalent of Eq. (4), which he
obtained for certain special cases, to calculate
contributions from slabs other than that in which
the sampling site lay. He divided that slab into
strips and, in much the same way, calculated con-
tributions from strips other than the one holding
the sampling site. Finally, he summed this last
strip analytically, something not readily done for
many crystals of interest.

When the surface plane of atoms is a mirror
plane in the bulk crystal and has a net charge of
zero, a case to be further considered in Sec. IV,

the Madelung potential at a surface atom is simp-
ly

bs=3¢5+3¢(p,0). (6)

Here ¢, is the bulk Madelung term and ¢(0) is the
Madelung sum over the surface plane. Because
the first term includes only $¢(0), the second term
is needed. The rapid falloff with z of the contri-
butions from slabs, ¢(z), leads one to expect that
¢(0) makes by far the largest contribution to ¢ g,
and thus that

¢s~ ¢B .
Indeed, it will be seen in Sec. IV that ¢, is typical-
ly only about ten percent less than ¢p.
A more general expression than Eq. (6), appli-
cable whether or not there is mirror symmetry,
is of course

(Ps:(f)B—E(P(P,Z), (7)

where the sum is over the slabs not existing on
one side of the surface. Provided that ¢, =0 for
the slabs, only a few terms contribute. What is
more, the sum does not involve ¢(p,0), the sur-
face slab itself. In this case, Eq. (4) may be used
as will be done in Sec. V.

III. ASYMPTOTIC BEHAVIOR AND CONVERGENCE
CONSIDERATIONS

The potential due to a single dipole varies as
1/2%, and Eq. (5) for a sheet of dipoles shows that
the potential at large z is constant. It is enlight-
ening and useful to examine the intermediate case
of the potential due to a column of charges. LJD
have derived the result and it may be obtained fol-
lowing the preceding section. It is

ORI IR AR O
G &

where K, is a modified Bessel function, G is a
two-dimensional reciprocal-lattice vector, and
N/L is the inverse length of a unit cell in the
column. In the limit of large z and again assuming
no net charge in a unit cell

ple~) -2 L, (9)
where
p= Zk)qkaz . (10)

Note that 6; is parallel to z. We see that the po-
tential due to the column of charges falls off asym-
ptotically as 1/z, a behavior intermediate between
that of a single dipole and that of the planar sam-
ple. As a result, the spatial dependence of the
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potential at distances of the order of ¢ from an
edge or step on a crystalline surface can be quite
different from that associated with a neat plane
of cleavage.

The natural convergence of a planar or column
sum in real space depends on the symmetry of the
charge distribution in a unit cell. The potential
at one site, due to the LMth moment of the charge
distribution at the other, is the well-known spher-
ical term®*

87(-1)L

A Tasul 2N

LyM
tal 410 (1)
where pf is the Lth moment of the charge distri-
bution and Y# is a spherical harmonic of the direc-
tion R to the distribution. For moderate to large
R values, the number of cells encompassed in a
lattice sum varies as R? for a slab and as R for a
column. With these weighting factors for Eq. (11),
we see that the sum converges poorly for a slab
if the unit cell has a dipole moment, but rapidly
for slabs having higher moments or for columns
with dipoles and higher moments. Clearly, for
ease of computation it is advantageous to choose
the unit cell so as to avoid low-order moments and
this can often be done.

IV. RESULTS: REAL-SPACE SUMMATIONS

If the calculation is carried through a sufficiently
large number of slabs, one can obtain not only the
Madelung potential as a function of distance from
the surface but also the bulk potential, ¢,, which
may be compared with values available in the lit-
erature. Table I shows results of calculations of
potentials at surfaces of several crystals as well
as the Madelung energies of the bulk. The surface-
site Madelung potentials are given with respect to
¢ 5 and their signs correspond to the potential for
a positive test charge. Electron binding-energy
shifts have the same sign. The Madelung energies
for the bulk are derived from the standard relation

Es=%zq¢¢>2’
7

where the sum is over the atoms making up a
“molecule.” This energy is often reported*®:*¢
with a common valence factor divided out; here,
we indicate values taken for the charges. For 50/
50 compounds such as NaCl, ¢, is equal in magni-
tude but opposite in sign at the two sites, and E,
has the same magnitude. For crystals such as
TiO,, in which the anion and cation are at ¢, of
diffevent magnitudes, the standard relation between
¢4 and E; is more complex. Parry’s calculations’
for NaCl surfaces and estimates of Levine and
Mark® for several ¢  are included in Table I. The
new estimates are in excellent agreement with

Parry’s results; they are generally in poorer
agreement with those of Levine and Mark and the
disagreement is most marked for GaAs, a case
for which they made a semiquantitative estimate.

In all cases the Madelung potential at an atomic
site in the surface layer is smaller in absolute .
magnitude than the potential in the bulk. Thus, in
the surface, electrons at cation sites are more
deeply bound and those at anions less bound than
in bulk if all other factors, such as.site charge,
are the same. The shifts are seen to oscillate
as one moves away from the surface towards the
crystal interior and the bulk value is rapidly at-
tained. These oscillations are associated with the
fact that adjacent planes of atoms are not identical:
i.e., just under a given atom there will tend to be
one of opposite charge. Surface and bulk potentials
differ by roughly ten percent.

For ionic charges of the order of one, the cal-
culated shifts are clearly significant in relation to
photoemission observations. For GaAs at the (110)
surface, Eastman and co-workers have reported®
that the Ga 3d core-level displays electron binding
increased ~0.3 eV and the As 3d binding decreased
~0.3 eV from values of binding energies in the bulk.
They attributed the shifts primarily to increased
charge transfer between Ga and As at surface
sites. However, the directions of the shifts ob-
served are consistent with reduced Madelung po-
tentials at the surface and, from the results given
in Table I, they are consistent with ¢ ~0.38. A
molecular orbital estimate*” by Coulson and co-
workers is ¢ =0.46, and Picus ef al. inferred a
value of 0.43 from infrared vibrational studies.®
Pauling provides a scheme for estimation of ionic
charging based on electronegativity differences*®;
this yields a charge of 0.04 for a diatomic GaAs
molecule and, when one multiplies this by 4 to
account naively for tetrahedral bonding, one ob-
tains a g of 0.16. Other versions?°+2! of the Pauling
scheme yield ¢=0.20 or ¢ =0.28. With Phillips’s
description? of bond ionicity in semiconductors
one obtains ¢ ~0.24. For other compounds, it
should be noted, the Pauling and Phillips descrip-
tions are in disaccord.?®* Finally Harrison’s po-
larity factor®* implies a value ¢ =0.87. It is clear
that the difference between bulk and surface Made-
lung potentials can account entirely for the ob-
served shifts. This difference is increased if what
has been published about surface reconstruction
is taken into account. There are, of course, )
phenomena other than those mentioned above which
contribute to surface-bulk core-level shifts.
Notably, there may be differences in final-state
screening. However, in first approximation, these
will produce common shifts at the different atomic
sites rather than opposite shifts such as were ob-
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TABLE I. Madelung potentials at atomic sites in and near unreconstructed surfaces of several crystals relative to
the potentials in the crystal interior. In the leftmost column are listed the crystals with assigned site charges desig-
nated, the unit-cell dimensions, and the relevant crystal faces; the second column gives the distances from the crystal
face listed to the position of the atomic site, in terms of a; in the next three columns are listed the surface-bulk Made-
lung potential differences in eV, ¢ — ¢p, as obtained with the calculational method described in Sec. IIT of this work
and as calculated by others. Signs of the potentials correspond to a unit positive charge; thus for the 1:1 crystals the
upper signs refer to negatively charged and the lower to positively charged sites. Electron binding-energy shifts
correspond, for the individual sites, in sign and magnitude to the values given. Also given are the computed bulk
Madelung energies Eg, in eV, and the corresponding Madelung constants®A .

Distance of site bs— dp (€V)
Crystal from face This work Parry® Levine and Mark® Eg (eV) A,
Na*Cl™ (100) 0 ¥0.337 F0.33 ¥0.35 -8.923; 3.495
a=5.64 A a/2 £0.01
a 0
Na*Cl~(110) 0 ¥1.06 ¥1.06 1.25
a2 £0.16
V2a F0.01
(32 £0.01
@/ 2a 0
Cs*CI™(110) 0 F0.46 F0.71 —7.129 2.035
a=4.11A 12 £0.03
VZa 0
Ga%*As® (110) 0 ¥0.87q ~1.45 —q%9.636 3.783
zinc blende 1/2V2)a +0.10¢
a=5.653 A 1A 2 ¥0.01q
Zn* 0> (1120) 0 F1.92; —47.828 2.698
wurtzite 1/2)a +0.18;
a=3.2495 A a F0.01
c/a=1.602 (3/2)a 0
z2=0.375
Zn*'s¥ (1120) 0 F1.63; —40.342 2.677
wurtzite 1/2)a +£0.16
a=3.8225 A a ¥0.01
c¢/a=1.6378 3/2)a 0
z2=0.371
Ti** 0,2 (001) Ti 0
rutile 0 +5.47; —3.56 ~141.26 11.260
1/2)c ~1.16 +0.44
@=4.5929 A c +0.13  —0.05
c/a=0.6443 (3/2)c ~0.02  +0.00;
%=0.3056 2¢ 0 0

2 For its definition see, e.g. Refs. 15 and 16.
b Reference 7.
. ® Reference 5.

served in GaAs and GaSb by Eastman ef al. Ti ions in a state of oxidation different from that
TiO,(001) is the one case treated here for which in the bulk. These questions will be addressed
the bulk Madelung terms differ at the two sites. in a later paper.

While photoemission studies have been made on
this surface,?®:2® there is the question as towhether

the surfaces actually studied were sufficiently V. SURFACE SUMS: RECIPROCAL SPACE

free of facets of other cleavage planes. TiO, As has already been discussed, Eq. (7), i.e.,
cleaves principally on the (110) plane, which in-
cludes charged atomic layers. A charged surface b= p— Z o(z),

layer is energetically unfavorable; the (110) sur-
face layer is almost undoubtedly Ti rich and has is particularly convenient for calculation of sur-
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face Madelung potentials, provided that ¢, the
bulk potential, is known. Evaluation of ¢(z), where
z=0, is readily made with Eq. (4) and several
examples are given in Table II. Contributions
from individual reciprocal-lattice vectors to

2 0(z) are indicated for the surface layer (the
same set of G’s is used for the estimates of the
interior layers). For comparison with experiment,
accuracy better than a few hundredths of an eV is
not needed, and it is seen that for the cases at
hand, this accuracy can be obtained with only two
&’s of Eq. (4). This is easily done by hand cal-
culation. Unfortunately, as Madelung recognized,
¢ 5 is not as readily obtained, since it involves

¢(z =0) for which Eq. (4) converges poorly. In such
a case it is better to revert to the real-space

sums of the preceding section.

VI. CONCLUSION

It has been shown that the Lennard-Jones—Dent
equation indicates useful and convenient ways to
calculate surface and bulk Madelung potentials.
If a crystal is divided into slabs composed of unit
cells of high symmetry, one finds that the indi-

vidual slab sums are readily calculated and that
the significant contributions to the potential at a
given site are made by just a few adjacent slabs.
The rapidity of approach of the potential to an
asymptotic value implies that the potential at sites
removed only one lattice constant from the sur-
face is, in general, indistinguishable from the bulk
potential. This has important consequences for
such experiments as electron photoemission, a
technique which, though probing only a small depth
of crystal, thus probes “bulk” as well as surface
properties. For surfaces corresponding to planes
of mirror symmetry in the bulk which were con-
sidered here, surface site potentials are typically
ten percent smaller than those in the bulk. This
result must be considered in the interpretation of
photoemission measurements on ionic and covalent
materials, as can be seen from Tables I and II.
Further, in comparisons of energy levels in iso-
lated molecules with levels in the same molecules
when adsorbed at sites lying just outside a surface
plane, effects of similar magnitude are expected.
Whereas the sum term in Eq. (7) takes into ac-
count the missing slabs for the bulk surface Made-

TABLE II. Madelung potentials at anion sites in and near surfaces of several crystals relative to the potentials in the
crystal interior. These differences have been calculated on the basis of the Eqs. (7) and (4) given in the text. Contri-
butions made by the individual reciprocal-lattice vectors to the full Madelung potential differences are listed in column 4.

The two leftmost columns correspond to those in Table I; the next column gives the reciprocal-lattice vectors, in units
of 27/a, pertaining to column 4; the rightmost three columns list the final Madelung anion-site surface-bulk and near-
surface-bulk differences as obtained from summing column 4, from the method of Sec. III, and from the results of

Parry.?
¢s— ¢pl@nion, eV)
Distance of site el —Zgb(p,z)é This work
Crystal from face @2n/a) (anion, eV)? —Z;du(b,z) Table I Parry®
Na*Cl™(100) 0 €,1) —0.3358
a=5.64 A 1,3) —0.0013
—0.3371 —-0.3373 -0.33
1/2)a +0.0027 +0.01
a —0.0013 0
Na*Cl™(110) 0 0,1) —1.4131
/2,1) +0.3635
(2vZ,1)_ © —0.0123
(next 4G’s) —0.0010
. —1.0629 -1.0629 —1.06
1/V2)a +0.161 +0.161 +0.16
W2)a . —0.017 -0.00 -0.01
(BN 2 +0.002 +0.01
Cs*Cl(110)
a=4114 0 2, 0) —0.5806
0,1) 0.1180
@vZ,1) 0.0052
2, 2) —0.0008
—0.4582 —0.46

2 The sum includes all planes and all symmetry-equivalent G's.

b Reference 7.
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lung difference, this term represents the only
slabs present for the adsorbed molecule. Thus,
the elucidation of information about the chemical
state of adsorbed species and of atoms at surface
sites requires consideration of the Madelung ef-
fects. Beyond this, the existence of these effects

provides unique avenues for obtaining chemical in-
formation from spectroscopic data.
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