
PHYSICAL REVIE%' 8 VOLUME 24, NUMBER 4 15 AUGUST 1981

Transmission of particles through a random one-dimensional potential
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The transmission of a particle through a random chain of delta functions is studied both
numerically and analytically. Several statistical ensembles were used. The results show
that the logarithm of the transmission coefficient obeys the central-limit theorem and its
average scales linearly with the length of the system. The averages of the transmission
coefficient and its inverse show ensemble-independent behavior only in the weak-scattering
limit. They scale exponentially with different characteristic lengths, which are related to
the average of the logarithm of the transmission coefficient. In the strong-scattering limit
the averages of the transmission coefficient and its inverse depend strongly on the statistical
ensemble used, thus indicating that they are not physically meaningful quantities.

I. INTRODUCTION

Transmission of a particle through a one-
dimensional random potential has become a much-
studied problem in the theory of disordered sys-
tems, ' because of its relation to the localization of
the quantum states and to the zero-temperature
transport properties of thin metallic wires. The
transmission coefficient T has interesting statistical
features. It was shown that only its logarithm,
which is related to the inverse localization length
(a ), obeys the central-limit theorem, whereas aver-

ages of T and T ' become unrepresentative of the
ensemble for macroscopically large systems. '
Results for the latter averages, which, for long
enough samples, are considered to represent the
conductance and the resistance of the system, have
been already obtained for a number of different
models ' showing their expected exponential
dependence on the length of the system. However,
relations between (a) and the corresponding de-
crease and growth rates have been derived only for
specific limiting cases as, for instance, the white-
noise potential. ' Explicit expressions for (a) are
mostly lacking, and the question of the influence of
the statistical ensemble on the above averages has
not yet been addressed systematically.

We want to investigate these questions for the
model of randomly spaced delta functions of equal
strengths. We use several inethods ranging from
numerical studies to various analytical approaches
to calculate the averages of T, T ', and lnT to elu-

cidate the relationships among these quantities. We
derive an analytic expression for the inverse localiza-
tion length (a ) for low density of delta functions.
On the other hand, we study the changes of the
averages of T ' upon changing the statistical en-

semble while preserving the macroscopic parame-
ters. We confirm earlier statements ' ' ' about the
average of T and its inverse in that we observe cer-
tain universality in the regime of localization lengths
which are large compared with the mean distance
between the delta-function potentials (impurities).
Here we find that, independent of the ensemble (let-

ting L~ ~),

—(lnT) = (a)L,
ln(T-') —= yL = 2(a)L,
—ln(T) = 5L = —,(a)L,

where L is the length of the system. However, for
smaller localization lengths, quantities (2) and (3)
become ensemble sensitive so that even minor
changes in the statistical ensemble cause dramatic
variations in their behavior. Thus, as pointed out
earlier, it is meaningless to use them for scaling ar-
guments in the strong-scattering regime.

The paper is organized as follows. In Sec. II we
present the model and describe the statistical ensem-
bles to be used. Section III gives the numerical data
for (a), (T), and (T '). In Sec. IV we derive
the analytical expression for (ct) and study (T ')
for two of the statistical ensembles. Finally, the
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results are discussed and compared with previous
work in Sec. V.

II. THE MODEL

Consider a chain of delta-function potentials of
equal positive strengths located at x ~,x2, . . . ..

bg 5(x —x~), b & 0. The Schrodinger equation

for a particle of mass m moving in this potential is

+ 2P'ggx —x )q(x) =k g(x),
d g(x)

J
(4)

where p' = mb/A and E = A' k /2m is the energy.
The positions xj are random. We study the follow-
ing statistical ensembles:

Ensemble 1. N coordinates x ~,...~z are distribut-
ed at random and independently in the interval

(Og, ). We denote by n = N/L the density of the
impurities (5 functions).

Ensemble 2. In this ensemble we specify the
length L of the sample and the density n but allow
the number of impurities N to fluctuate. Members
of this ensemble are realized by cutting randomly
segments of length L from a sample of length
W && I with ~J = nW impurities randomly and
independently distributed, as is ensemble 1.

Ensemble 3. Here we fix the number of impuri-
ties E and the concentration n. We put the first im-

purity at the origin, x i ——0. xz & x
&

is chosen ac-
cording to the distribution P(x2 —x

~ )

= ne ' ' This pro. cedure is repeated (N —1)
times. In this ensemble the length L = xN is ran-
dom, its average being (L ) = N/n

These ensembles are physically equivalent, which
is to say that the averages of sensible physical quan-
tities should not depend on the choice. If, however,
the average of some quantity does depend on the en-

semble, this means that the average is not represen-
tative of the "typical" sample and has little physical
meaning.

The parameters characterizing the system are the
strength of the potential relative to the wave

III. NUMERICAL CALCULATIONS

For the numerical calculations we used the rela-
tion of T to the transfer matrix M:

T = 2( , Tr&P Mi'+ 1)— (7)

The numerical calculation of M was done using the
same method as in Ref. 10. The statistical proper-
ties of e = lnT/I. were investigated using ensemble
1 with as much as 10 systems generated in the
computer. The maximum number of potentials
within one system, located at randomly chosen sites,
was E = 800. Because of the exponential depen-
dence of the matrix elements of M on the length of
the system care had to be taken during the calcula-
tion in order to avoid operations involving large and
small numbers, Results for the distribution of a are
shown in Fig. 1. The full curves are Gaussians with
the first and second moment numerically deter-
mined. The well-known fact that a obeys the cen-
tral limit theorem is demonstrated in the insert,
where the variance of a, (Aa ), is plotted against
(a) for various chain length. For not too large
(a) the data are consistent with

(aa') = 2(a)/L .

As noticed earlier' it is very hard to calculate
( T) and ( T ') directly, because of the extremely
broad distribution of T. Therefore we used the
Gaussian distribution of a and calculated these aver-

ages from

number

p= p'/k,

and the number of impurities within one wavelength

v= n/k . (6)

Ensemble 1 will be studied numerically. For en-
semble 2 we calculate the average of the logarithm
of the transmission coefficient analytically in the
low-density limit (v « 1). The average of the in-
verse of the transmission coeAicient is calculated for
both ensembles 2 and 3 analytically.

(T ') = exp( ,L(a) +L (b—a ))erfc
1 (a) + «~a')

(2(g 2) )I/2 (2(ga2) )I/2

(T) = exp( ——,L(a) + L (b2)a)erfc

The second moments corresponding to the distribu-
tions of T and T ' are, as expected, exponentially
increasing with L. Results for (a), ln(T ')/L,
and —ln(T)/L are shown in Figs. 2 and 3. Since

( ) —«~')
(2(~a') )'"

(a) turned out to converge quite rapidly with the
length of the system (even for v = 1, (a) became
independent of the length of system above L = 100)
we have plotted for this quantity only the results for
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l5 —ln( T)
L

(12)

to-

This is readily obtained from Eqs. (8)—(10) in the
limit L ~ Oo. For larger values of (a) these rela-
tions are no longer valid.

IV. ANALYTICAL THEORY

A. Localization length

0, In order to solve the Schrodinger equation (4) we

decompose the wave function into r'ight- and left-

going waves

P(x) = g(x) + f(x), (13)

0,
where

g(x}= e' —g Pje
Z ~ (X

(14}

0. f(x) = g Pje
X- )X

2—
I—

0.1 0.2 0.5

0 ~
Wg

04
OaaaaasI

0.5

Inserting f(x) into Eq. (4), integrating over xj —5
to x~ + 5, and taking 5~0 we get a system of X
inhomogeneous equations for the scattering ampli-
tudes P,.

a
~n

FIG. 1. Distribution of the inverse localization length

a,P (a/n), as obtained numerically (dots) from an ensem-

ble of 1000 systems with N = 25, 50, 100, 200, and 400
impurities. The potential strength was P = 2.0 and the
density of the impurities was v = 0.05. a is measured in

units of the average inverse spacing n between the impur-
ities. The full curves are normalized Gaussians with first
and second moments as obtained from the numerical
data. The inset shows the squared variances of the data,
(Aa'), multiplied by N for systems with N = 25 (0), 50
{6), 100 (Cl), 200 {V'), 400 (Q), and 800 {0)delta potentials
as a function of the mean value of a, (a).

ikx ik ~x —xl ~

4, =V e ' —QAe
l+J

with

LM
=

p —i

The transmission coeAicient is

(16)

(18)

To calculate the average of lnT we will use a modi-

fication of the method developed by Lifshitz and
Kirpichenkov' for tunneling through barriers with

impurities. Using (14) twice, once with x and once
with x + hx, we get

N = 400. We note that for small (a ), in the limit

of large L,

ln(T ')
( )

(19)

(20)

L

g(x + b,x) = e'" "g(x) — g Pje
x &x.&x+hx

For the scattering amplitude PJ corresponding to xi E [x,x + b,x] we have from (14) and (16)

1k (x ~ —x} ig ~x.—xi ~

4j pe g(x} p y Ole
X (XI (L
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FIG. 2. The numerically determined averages of the transmission coefficient, ( T) (closed symbols), its inverse, ( T )
(open symbols), and the inverse localization length, (a) (+ ) as a function of the strength of the impurity potential, P.
The threee averages are appropriately scaled to the same units, namely n. The number of impurities in the systems is

X = 25(, O), 50 (h,h), 100 (CI,Cl), 200 (V,V), and 400 (+,Q). The solid curve is drawn as a guideline for the eye connect-

ing the numerical data for (a). The dashed and dashed-dotted curves correspond to 2(a) and (a)/4, respectively. The
density of the impurities is v = 0.01 (a), O.OS (b), 0.5 (c), and 1.0 (d).

For infinitessirnally small hx = dx we neglect the
possibility of more than one impurity in [x,x + dx]
and simplify (19) to

g(x + dx) = (1 + ikdx)g(x) —Ppb, , (21)

'imp pg (x) p y Ale
x (xI (L

(22)

where Pp is the scattering amplitude for a delta
function within [x,x + dx] and the random variable
b is unity for those configurations which have an
impurity just to the right of x (with probability ndx)
and b, = 0 if this is not the case (probability
1 —ndx) The amp. litude Pp is sum of two terms:

((ip = pg(x) . (23)

The sum in (22) contributes only terms of order v
to (lnT). ~e shall verify (23) below. Accepting it
for the moment we proceed to derive a differential
equation for (ln ~g(x)

~
). Substituting (23) into

(21), squaring the resulting equation, and taking the

logarithm we get

ly. However, an argument similar to that of
Lifshitz and Kirpichenkov can be used when the
density of impurities is small, v && 1. The basis of
the approximation is the following fact: To calcu-
late (lnT) we can neglect the backscattering terms
.in (22) and write

where the first term corresponds to the wave in-

cident from the left and the sum represents the ef-
fect of the backscattering from the impurities to the
right of x.

So far no approximation has been made but we
cannot solve the system of Eqs. (21) and (22) exact-

ln
) g (x —dx)

)
= ln

( g (x)
(

2

+ln (
I —pb + ikdx

I

Averaging over all configurations results into

(24)
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F1@.2. (Continued)

d(ln ~g(x)
~

) (25)
Substituting this into (21) we obtain the corrected
form of (25)

Setting x = L in the solution of (25) we get for the
inverse localization length

(~) =—
n=nln(l+P )+0
k

4i = Ve'"'g(x) Vdoe" . —

Solving (27) and (2S) we have

2e 2ikt

g(x)2 2ik&

(2g)

(29)

Now we must return to the justification of (23).
It will be done explicitly by including one term
from the sum (22) and showing that it leads to
higher-order corrections. Let us then assume that
there is an additional impurity to the right of the
point x atx+ t, t ~ 0. Let us denote by Pi the
scattering amplitude of this impurity. Equation (20)
reduces to

((o = i g(x) —Vogie""' (27

Qx
(ln

~ g (x)
~

), = n ln
~

1 —p ~

—n ln
~

1 —p e '"' ~, (30)

(31)

a +m/k
+2e 2&kt 2 0

a
(32)

for any a. This shows that our approximation (23)

is correct to first order in the density. In Fig. 3 we

plotted the low-density expression (26) together with

numerical results for low and higher density. The

where the subscript t at the average denotes averag-

ing over all configurations for which the second im-

purity to the right of x is located at x + t. To get

the final result for the localization length we average

(30) over t with the probability distribution ne

The correction on the right-hand side of (30) is

nz dte "'ln~ 1 —p'e""'~' '

0

The crucial point is that the integral multiplying n

in (31) does not become of order n ' for small n,

because the average of In
~

1 —p e2'"'
~

is zero:
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&a)
n

I.O

of the average of the inverse transmission coeAi-

cient. ' Their method can be adapted to study the
model of this paper. The implementation, as well

as the results, depend on the ensemble employed.
We start with ensemble 2. Denoting by M(x)

the transfer matrix of the system of length x we ob-

tain a set of differential equations for the elements of
the matrix (M (x)M/(x) ).' Increasing the length

of the system by dx the following equation holds to
first order in dx:

Ml (x + dx)Ml(x + dx)

where

=X M // (x) //(x)MX, (33)

I.O
2

2.0

FIG. 3. Comparison between low-density analytical

results (full curve) and the numerical data for the aver-

aged inverse localization length (a) (in units of the den-

sity n) as a function of the potential strength P. The nu-

merical results are extrapolated with X~ oo for derisities

v = 0.01 and 0.05 (f), 0.5 (T), 1.0 g).

and

ikdx 0

O
—&kdx

1 —iP'6
k

ip'6
k

ip'6
k

(34)

(35)

agreement is good. The choice of the ensemble is
irrelevant for (u). It should be noted that this ap-
proach does not work for the averages of the
transmission coeAicient and its inverse, since the
correction corresponding to (31) turns out to be of
order n in that case.

B. Inverse transmission coefficient

A 8+iC
(M/ M/ ) (36)

The random quantity 6 is equal to unity if a 5 func-
tion is in the interval [x,x + dx] and zero other-
wise. Introducing the notation

Erdos and Herndon developed a method, based
on the transfer-matrix formalism, for the calculation

l

and averaging (33) we obtain the differential equa-
tions'for A, B, and C:

dA

0X

dB
IX
dC
8X

2P2v —ZP v

2P2v —2P v

—2Pv —2(1 —Pv)

A

The average of the inverse transmission coefficient is

given by

(, T ') = —,(1+3) . (38

For large x, A is proportional to e where X is the
eigenvalue of the matrix (37) with the largest real
part.

There are two possibilities: Either all eigenvalues
are real or one is real and the remaining two ima-

ginary and complex conjugate. If the latter possibil-

ity is realized, the real root is positive and the real

part of the imaginary roots are negative. This can
be seen as follows: Denoting the matrix (37) by X
we define D (A, ) = det

~
N —A, l

j
. The eigenvalues

are the roots of D. Since D (A, ) —+ —oo for
A, ~ + oo and D (0) & 0 there is at least one positive
real root. The sum of the roots is seen from (37) to
be zero. These two facts imply that the root with
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the largest real part is real. Thus, in the numerical
search for the zeros of D (A, ) we can restrict our-
selves to real values of A,.

For small densities, v && 1, we get

lim = 2P n (1 + 2Pv) + 0 (v ) .
ln(T ')

3

L
(39)

The first term in this result is to be compared with
the inverse localization length computed above to
first order in n. For arbitrary p there is no simple
relationship between them but for small. p we get
from (26)

(a) = nP + 0(vP, v )

ikh, x 0
p

—ikb, xe
(42)

Here Ax is the separation between nth and

(n + 1)st delta functions. We average (41), intro-

duce the notation

n

(AC„&i'„) =
n

—
& n

8„+iC„
(43)

and use

where ~//„ is the transfer matrix for n impurities, M
is given by (35), and the propagation matrix Y is

which is one-half of the leading term in (39).
To calculate ( T ') for ensemble 3 we derive re-

cursion relations for the averages of the elements of
the matrix ~/8 /8

n
(cos2kb, x) =

n +4k

(sin2kb, x ) = 2kn

n +4k

(44)

(45)

~X~„+»u „+,—O'Y'WZ„~XZ„1'M, (41) As a result we get the following recursion relations:

4

1+ 2P

2P v —4Pv
v'+ 4

4P v+ 2Pv

v +4

2P2

v —2Pv +4Pv
v +4

2v —4P v —2Pv
v'+ 4

—2P

2Pv —2v

v'+ 4

4pv+ v

v'+ 4

(46)

Again the exponential growth of (T„)
= —,(1 + A„) is determined by the largest eigen-

value of (46). For small density, v « 1, and arbi-
trary fixed p we get

ln( T„')
lim = n ln(1+ 2P )L

+4nv
2

. (47
(1 + 2P )

Ensembles 2 and 3 give differing results for ( T ').
They agree only in the weak-scattering limit and to
first order in n (terms of the form p n). '

The largest eigenvalues of the matrices (37) for
ensemble 2 and (46) for ensemble 3 were found nu-

merically for a wide range of values of P and v.
The results are shown in Fig. 4 together with the
data obtained numerically for ensemble 1.

V. DISCUSSION

A. The inverse localization length

As shown in Fig. 1 the distribution of the loga-
rithm of the transmission coefficient is Gaussian,

I

and obeys the central limit theorem. Its variance is

proportional to the square root of the length of the
system, as can be seen from the insert of this figure.
This behavior is in agreement with earlier results ob-
tained for the isotopically disordered chain, the
white-noise potential, " ' and the Anderson model
of a one-dimensional disordered system. Our nu-

merical result (8) for the variance of the distribution

agrees quantitatively with that of the white-noise

model in the weak-scattering limit, where the in-

verse localization length (a) is small compared
with the density of the impurities. For larger (a)
the data in Fig. 1 indicate some deviation from the
white-noise behavior, the proportionality factor
between L(ha )l2 and (a) becoming smaller than
one and depending on (a). However, this does not
effect the central-limit behavior. We conclude that
the average of lnT is independent of the statistical
ensemble, and can be used to define the inverse lo-
calization length through its linear dependence on
the siie of the system. The ensemble independence
of (a) is shown in Fig. 3, where we observe close
agreement between the numerical results for small
density (v & 0.1), which were obtained from ensem-
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FIG. 4. Comparison between the averages of the inverse of the transmission coefficient ( T ) as obtained for the
three ensembles described in Sec. II . The density of the impurities is v = 0.01 (a), 0.05 (b), 0.5 (c), 1.0 (d). Open sym-
bols denote the numerical data (from ensemble 1) for systems containing X = 25 (o ), 50 (6), 100 (D, 200 (7), and 400
(Q) impurities. The dashed and solid curves denote the results obtained from ensembles 2 and 3 as described in Sec. Dt',
respectively. For comparison, the large localization length limit 2(a) is shown as the dotted curve.

ble 1, and the analytical expression (26) derived for
small density from ensemble 2 in the preceding sec-
tion. For weak- (p ~& 1) and strong- (p && 1)
scattering potentials we obtain in this limit

(a) = nP, and 2nlnP, respectively.

B. Transmission coefficient

The behavior of the averages of the transmission
coefficient and its inverse is more complicated.
Since its distribution generally does not obey the
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central limit theorem we have (T) 'Q (T ').
This is shown in Fig. 2. One also expects that these
averages depend on the ensemble, which represents
the statistical properties of the system. This is
shown in Fig. 4. We distinguish two regimes. In
the "white-noise limit" ((a)/n « 1) the localiza-
tion length is proportional to (nP )

' and is large
compared with the mean spacing between the im-

purities. The three ensembles yield identical results
for ( T ' ). It scales exponentially with the length
of the system

with the (much larger) values obtained for ensemble
2. This seems reasonable, since in ensembles 1 and
3 the number of impurities is fixed, whereas in en-

semble 2 it is allowed to fluctuate. Thus, in view of
the fact that the average value of T ' is dominated

by its large values, which correspond to chains with

large numbers of impurities, we expect the average
of T ' to be larger for ensemble 2 than for ensem-
bles 1 and 3.

VI. CONCLUSION

the growth rate being closely related to the localiza-
tion length

in this regime. This agrees with the scaling law for
the resistance found by Anderson et al. for a disor-
dered chain consisting of arbitrary scatterers assum-

ing phase randomness between two successive
scattering events. It agrees also with the result for
the white-noise potential. "

%e were not able to derive analytical expressions
for the length dependence of ( T) for our model.
However, the numerical data obtained from ensem-
ble 1 (Fig. 2) indicate that ( T) decays exponentially
with length

and in the limit of large localization lengths the de-

crease rate 5 is related to the inverse localization
length by

We summarize our results as follows:
(1) The average logarithm of the transmission

coefficient is a physically meaningful quantity,
which for large systems scales linearly with the
length of the system. Its scaling behavior defines an
inverse localization length, which in the low-density
limit is given by

(a) = n ln(1+ P ) + 0(n ) .

(2) The transmission coefficient and its inverse do
not obey the central limit theorem. The corre-
sponding averages are not representative of the en-

semble. In the weak-scattering limit we nevertheless
find exponential scaling, which is solely determined

by the localization length, in agreement with previ-
ous work.

(3) For smaller localization length the averages of
the transmission coefficient and its inverse become
sensitive to the statistical ensemble which renders
these quantities somewhat useless in this regime.

This agrees with the result for the average conduc-
tivity of the white-noise model. ' '

For small and intermediate localization length

((a)/n ) 1) the averages of T and T ' still

depend exponentially on the length of the system
but there is no simple relation between the corre-
sponding characteristic lengths and the localization
length. There is also a strong dependence on the
statistical ensemble as is seen in Fig. 4. For larger
density the results obtained numerically from en-
semble 1, and analytically from ensemble 3, appear
to be close to each other, whereas both disagree
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