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Augmented-plane-wave to Gaussian-orbital conversion procedure:
One-electron states and Compton profiles of fcc neon
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The methodology of using symmetrized augmented-plane-wave results as input for the

Wang-Callaway linear combination of Gaussian-type orbitals (LCGTO) band-structure

codes is developed and applied to fcc Ne as an example. At a cost of less than a 20% in-

crease in computing time (compared with a regular LCGTO run), one obtains both

muffin-tin and non-muAin-tin results. Certain technical advantages regarding basis-set

inadequacies and avoidance of spurious self-consistencies also accrue with this hybrid

method.

I. INTRODUCTION

In its canonical form, the augmented-plane-wave
(APW) method' for determining crystalline band
energies Ejk and orbitals pjk is restricted to periodic
potentials of muffin-tin (MT) form. With local
spherical symmetry inside spheres centered at the
nuclear sites and a constant value elsewhere, such a
potential admits of a solution corresponding to
plane waves in the external or flat region and to a
simple angular momentum (partial-wave) decompo-
sition inside each APW sphere. As is well known,
the result is a technique which is very efficient, reli-

able, and much used in computation of crystalline
energy bands, cohesive energies, etc. Another
often-used scheme, the Korringer-Kohn-Rostoker
(KKR} method, is also employed almost exclusive-

ly with the MT approximation.
The removal of MT effects has long been a con-

cern. The "nonflat" contributions (i.e., those non-

MT contributions occurring exterior to the APW
spheres) apparently were first considered by
Schlosser and Marcus. Subsequently, a number of
other authors ' have treated the problem in

diverse ways, generally involving Fourier expan-
sions, partial-wave expansions coupling nonzero m's

(
~

m
~

& I), perturbation theory to low order, etc.
The issue has also been confronted in the KKR
context. ' Nevertheless, the bulk of work to date
which has used APW or KKR techniques has been

in MT form.
Concurrently, entirely distinct electronic-structure

methodologies have been developed' ' which do
not involve the MT assumption. Methods involving

Gaussian-type orbitals (GTO's) have been of partic-

ular interest to us, since a variety of molecular' '
and film' codes using GTO's are in.active develop-
ment and use in this project. A particularly appeal-
ing package of crystalline codes is the Wang-
Callaway or LSU (hereafter) linear combination of
GTO's (LCGTO) package because of its availability

and extensive utilization by its originators.
We report here the formulas necessary to utilize

symmetrized-APW (SAPW) results as input to the
LSU package and comment on certain technical as-

pects of the computational procedure. As an exam-

ple, we report non-MT energy bands and Compton
profiles for fcc Ne and compare them with our ear-
lier MT results. ' We find the SAPW followed

by LCGTO strategy to give both converged MT
and non-MT results of comparable quality in less
than 20% more computational time than the calcu-
lation from scratch of the non-MT results alone.
Among the benefits of this modest increment of cost
are the following: (a) generation of MT results for
comparison with other MT calculations; (b) direct
assessment of non-MT effects; (c} provision of a
realistic starting potential for the LSU code and,
therefore, a reduction in the possibility that the
latter will be "hung" in a false minimum during the
self-consistent iteration process; (d} establishment of
an independent test for basis-set inadequacies early
in the LGCTO portion of the process. We ela-
borate on these benefits in later portions of the pa-
per.

II. METHODOLOGY

The effective Schrodinger equation which deter-
mines the one-electron orbitals P„(k, r ) and band
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Here and throughout we employ rydberg atomic
units. The potential V( r ) contains the Coulomb
potentials for the electrons interacting with the fixed
nuclei of the system and with one another, plus an
exchange-correlation contribution represented in the
Xa local approximation

—6a p(r)
3

sm

1/3

In the mufHn-tin approximation, the potential and

charge density are approximated by their spherical
averages inside each muffin-tin sphere and by con-
stant values outside.

In the LCGTO approach, the Bloch function is

expanded in a set of tight-binding basis functions

P;(k, r):

P„(k, r) = gc„;(k)P;(k, r) .
l

The P s are constructed in turn as properly phased
linear combinations of Gaussian orbitals u; placed
on the lattice sites of the system:

P;(k, r) = N ' ge "u;(r —Rz) .

(2.3)

(2.4)

Here X is the number of unit cells in the periodic
volume and the u s are given by

energies E„(k) is

[—&2+ V(r)]Q„(k, r) =E„(k)1t„(k,r) .

(2.1)

where N, is a normalization constant and M1 J (r) is
f,

a Kubic harmonic of order I; and type j, normal-
ized to unity with respect to integration over solid
angles.

. The use of this basis ansatz yields a secular prob-
lem which contains integrals of V(r) and p(r) that
are particularly amenable to treatment by lattice
Fourier-transform techniques. The LSU code uses
Fourier coefficients of the Coulomb potential
Vc(K, ), the exchange-correlation potential V„,(K, ),
the density p(K, ), and the inverse square of the
cube root of the density p ~ (K, ). The muffin-tin
form of the augmented-plane-wave output makes it
rather simple to generate these Fourier coefficients
in a form appropriate for use as input to the rest of
the LSU code.

%e define the Fourier coefficients of a function
f(r ) (in accordance with the Wang-Callaway nor-
malization convention), as

f(K) = I f(r)exp( —iK r)dr. , (2.6)
XQ

where PV denotes the periodic volume (comprised
of N unit cells, each of volume Q). Thus, iff(r)
has the periodicity of the lattice,

f(K) = —J f(7)exp( —iK r)dr .0
For f(r) of MT form and one atom per unit cell,
we have

f(r), 0& r &R,
fMT(r) = fo a constant for r & R,

in the unit cell.

1. —(r2
u;(7) =N;r'e ' A 1 J(r), (2.5) Thus, for K@0,

sf (K) = —I f(r)e ' 'dr + I f&g
' 'dr = — I f(r)rsinKrdr —4 foR,j ~(KR—, )

spb ext, g g o K

(2.7)

In (2.7)j 1(ER,) is the spherical Bessel function of
the first kind. For K = 0, we find

f(0) = —,4nff (r)r dr +f0.( Q —, mR, )—Vc(K) separately from V„,(K), we construct the
Coulomb contribution in Q to VMT(r) by simple
subtraction:

Vc,Mr(+r = VMT(7) —V„,(7) . (2.9)

(2.8)

In an SAP%' calculation, we generate the self-
consistent muffin-tin potential, exchange potential,
and charge density. Since the I.SU code requires

The quantity pMT (r) is trivial to construct. Appli-
cation of Eqs. (2.7) and (2.8) is then straightforward,
and one generates the needed starting Fourier coeN-
cients readily. A minor technical point (which, in
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fact, proved frustrating to us at first) is that the LSU
code assumes that the Fourier coefficients stored for
the exchange-correlation potential V„,(E) are for
a = 1.0. Since most of our APW calculations are
for other values of u, it is necessary to remember to
scale the calculated V„,MT(E) by a ' before storing
them.

The integrals to R, were done on the 441-point
Herman-Skillman mesh by five-point Newton-
Cotes quadrature. Each integral was evaluated to
upper limits that were from six Herman-Skillman
points inside R, through five points outside, fol-
lowed by eleven-point interpolation of the value
onto R, itself.

To hasten the convergence of the reciprocal-lattice
expansion of the Coulomb potential, the LSU code
employs an Ewald procedure. A superposition of
atomic screening potentials V, (r) = Q„V,(r —R z),
where

V, ( r) = — exp( —Pir )
2Z 2

T

——[exp( —Pir ) —exp( Pir )j, —2 2 2

(2.10}

is added to and subtracted from the Coulomb po-
tential in each cell. As written, the LSU code fits

the constants P; (by an empirical procedure
described by Wang and Callaway ) to the crystal
potential which arises from a superposition of free-

atom wave functions. For convenience, we elected
to fit the P; parameters to the intrasphere APW
Coulomb potential. The results do not differ ma-

terially from those found by starting from the free-

atom superpositions.

III. APPLICATION

limitations) in Ref. 26, they are given in Table I.
This basis yields Hamiltonian and overlap matrices
of dimension 51 at a general point in the Brillouin
zone (BZ}. In the course of selecting a basis we
tried first a 9s,6p, 3d set—which turned out to have
a peculiar feature: It obliterated the 3s-like state at
I . As we had the SAPW result for the eigenvalue
associated with that state, it was immediately clear
that the smaller basis was deficient. Although the
deficiency would be obvious in Ne even without
having the SAPW bands, this experience points to
an unanticipated advantage in the APW-GTO pro-
cedure. For a less familiar solid, misinterpretation
(as physically meaningful results) of artifacts due to
basis-set inadequacies might well be reduced or
avoided by the APW-GTO procedure rather than
the standard LCGTO procedure. In any event the
12s,8p, 3d set had no comparable deficiency. The
customary scrutiny of the eigenvalues of the Bloch
overlap matrix was also performed at selected high-
symmetry points in the first BZ. No difficulties
with the 12s,8p, 3d basis were uncovered.

The APW-GTO runs consisted of 13 SAPW
iterations followed by nine LCGTO iterations. All
but the last LCGTO iteration were performed on a
Brillouin-zone mesh of 256 points. The last itera-
tion was on 2048 points. Typically, the iterative cy-
cle was repeated until the changes in the leading
Fourier coefHcients of the Coulomb and exchange
potentials were less than 10 Ry. Equivalent pre-
cision in the straightforward use of the LSU code
requires 11 to 12 iterations. On an Amdahl
470/V611 running under the IBM MVS operating

TABLE I. Basis set for neon (12s,8p, 3d).

APW calculations have been reported from this
roject2&, 22 on the cohesive energy and Compton

profile of fcc Ne in the Xo. model. Subsequently
Khan and Callaway (hereafter KC) reported
LCGTO-Xa calculations of the fcc Ne energy
bands. They gave special emphasis to the need for
large values of a( & 1) to achieve decent agreement
with the experimental value of the band gap. The
opportunity therefore exists both to test the results

of APW-to-LCGTO procedure (hereafter APW-
GTO) against the KC results and to explore non-

MT effects in the Ne crystalline Compton profile.
All the calculations reported here used the 12s,

8p,3d GTO basis employed by KC. Because the
orbital exponents could not be listed (due to space

47 870.21300
7355.834 90
1660.176 20
460.538 77
146.038 08
50.413 86
18.716542
7.397022
2.067 677
0.775 195
0.291 76
0.15

129.802 31
30.419334
9.621 517
3.546452
1.414 350
0.578 893
0.216045
0.12

5.0
0.3
0.15
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system, the AP%'-GTO calculations took between
15% and 20% more time than the corresponding
direct LCGTO runs. %e feel that this modest in-

vestment of machine time is justified by the payoff
in having both MT and non-MT results.

Since our earlier AP% calculation on Ne which
came closest to the experimental cohesive energy
and static lattice constant was with a = —,, we be-

gan this work with that value. We first calculated
the Ne energy bands at the static lattice constant
(a = 7.7 a.u. ) determined from the APW calcula-
tion. ' (The experimental lattice constant after remo-
val of zero-point effects is a = 8.4348 a.u. KC
used a = 8.4020 a.u. ) The APW-GTO bands
which resulted are shown in Fig. 1 for the valence p
band and for the conduction bands up to 4.0 Ry
above the valence band. Given the differences in a
and a, our results do not seem to be significantly
different from those of KC, until one gets to the
bands at about + 2.0 Ry. There our results at the
zone center are reversed from the KC results; we
find I &5 below F&2, not above, although split by
about the same amount. Some of the bands at I are
shown in Table II. To check our results, we per-
formed an APW-GTO calculation for neon with

a = 1. Again, we found the I"
&z level below I t2.

Since this implies a rather different band structure
from that given by KC, we derided to do additional
checking. Specifically, we were interested in deter-
mining whether the reversal of I i5 and I"

~2 levels
was a residual MT effect or due to the specific value
of the exchange parameter. For this we took
a = 8.4020 a.u. , the value used by KC, and deter-
mined the energy bands by a straightforward
LCGTO calculation as well with the AP%-GTO
procedure. Again we found that the ordering of the
levels remained unchanged and the two calculations
indistinguishable. The SAPW ordering is preserved
in both calculations. %e reluctantly conclude that
the band-structure diagram in Ref. 26 is incorrect
for these levels. %'e hasten to remark that KC did
point out indirectly [compare the KC Table I,
which is non-self-consistent (non-SC), with their Fig.
1, which is SC] that the ordering of the I ~5 and I &z

levels changes as one proceeds from non-self-
consistent to self-consistent calculations. %e do not
observe such a switch and suspect that some kind of
labeling error was made in constructing their Fig. 1.
It should be noted that the symmetry of a state
must be determined a posteriori in the LCGTO cal-

/Ry

-"0.5

L h,
FIG. 1. Self-consistent APW-GTO bands for fcc Ne at a = 7.7 a.u. and a = —.The lowest band shown is the 2p-like

valence band.
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TABLE II. Ne energy bands at I"{Ry) for a = 7.7 a.u. and u = —and 1 relative to I"»(2p).

Symmetry

SAPW
Energy {u = —)

2
APW-GTO

Energy (u =
3 )

SAPW
Energy (u =1)

APW. -GTO
Energy (u = 1)

I 1s

r,

I is

0.00000
0.81951
2.31824
2.73603
2.869 92

0.00000
0.825 31
2.33042
2.753 43
2.895 75

0.00000
1.182 23
2.686 17
3.10969
3.20902

0.00000
1.189 88
2.704 12
3.13078
3.245 61

culations, whereas the APW-GTO calculations have
the explicit SAPW state symmetry identification
available at the start of the GTO iterations. It is
difficult to compare our energy levels with other
published data ' on Ne bands because of the dif-
ferent computational methods and because of the
limited range of energies considered. For example,
at I, only levels up to I 25 were shown in the band
diagrams given in Refs. 29 and 30.

Some measure of the adequacy of our APW-
GTO procedure can be obtained from comparison
of a few characteristic energy-band quantities. For
Ne at a = 8.542 a.u., Dagens and Perrot reported
a non-SC Hartree-Fock (HF) band gap of 1.87 Ry
while Kunz and Mickish reported the SC
Hartree-Fock gap as 1.86 Ry. After inclusion of
correlation corrections Kunz and Mickish arrived at
a calculated band gap of 1.63 Ry. In his review,
Rossler quotes the experimental value as 1.58 Ry.
Local-exchange models are known to underestimate
band gaps in insulators such as these. KC at-
tempted to compensate for that peculiarity by em-

ploying a = 1 or greater. At a = 8.4020 a.u. and
a = 1 they found a band gap of 1.19 Ry, identical

with our APW-GTO result and only 0.01 Ry larger
than the SAPW value. Our specific values are in
Table III.

We find the same valence bandwidth (0.0302 Ry)
from APW-GTO as do KC at a = 1 and
a = 8.402 a.u. , a reassuring indication that our pro-
cedure and theirs both converged to the same result.
The SAPW valence bandwidth at this a and a is
0.0303 Ry.

In the course of these calculations we discovered
a characteristic of the LCGTO methodology and
practice as implemented in the LSU code which
makes it vulnerable to being hung in a self-
consistent minimum which does not correspond to
the true SC solution of (2.1). By accident, we ob-
tained on one occasion a seemingly proper but actu-
ally rather poor set of starting Fourier coefficients
for the LCGTO part of the APW-GTO procedure.
We were surprised to encounter, at the first itera-
tion, a set of bands which had the 2p states some-
what too close to the 2s states (as compared with
the SAPW results) and the ls states about 2S Ry
above their SAPW values. At least briefly we were
even more surprised to discover that this glaring dif-

TABLE III. Energies of the bands (in Ry) at I of Ne at a = 8.4020 and u = 1 for
LCGTO, APW-GTO, and SAPW.

Symmetry LCGTO APW-GTO

I1s
I1
I2s
I ls
I"12

0.00000
1.19005
2.520 59
2.863 30
2.975 77

0.00000
1.19166
2.525 00
2.86433
2.978 81

0.00000
1.18200
2.51029
2.82S 60
2.95074
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p' '(r) = [pa(r) + 6p(r)]'~'

= pa (r)+ —,p0(r) '~'5p(r), (3.1)

with pp( r) the zeroth-iteration charge density. Our
experience seems to indicate that even fairly subtle
deficiencies in pa [by which we mean deficiencies
that are not obvious to an experienced user who in-

spects a tabulation of p0(7)] will vitiate the lineariza-
tion (3.1). We suggest that the APW-GTO pro-
cedure has at least a modest advantage in avoiding
this problem since the potentials and charge density
used to start the LCGTO part of the process are
rather realistic crystalline quantities.

ficulty would not be remedied by iteration and that
these unrealistic states would reach apparent self-

consistency in the LCGTO iterative cycle. Such is
not the case in our experience with the SAP% code
nor with molecular-Gaussian orbital codes.

We suspect two sources for the difficulty. The
more significant is probably the practice of fixing
all but the lowest (in K) 40 —60 Fourier coefficients
at their zeroth-iteration value. %hile there is no re-
quirement in principle that this limitation be im-

posed, there are obvious computational economies if
the starting potential is sufficiently realistic. The
other source of difficulty with a set of starting
Fourier coefficients which is unrealistic lies in the
procedure used in the LSU code [note especially the
discussion associated with Eq. (20) of Ref. 23] to
treat the p'~ term in (2.2). As discussed in Ref. 23,
p' at any iteration is approximated as

(4.2)

00 ne
sph 0 (4.3)

in which n, is the number of band electrons per
unit cell and J,~h is the isotropic Compton profile.
In our calculation, the sums over E, were carried
out over 3647 reciprocal-lattice vectors. No contri-
bution was included from the 1s wave functions.
We note that the impulse approximation is probably
not valid for 1s electrons anyway. It is also neces-

sary that the electron distribution be sampled at a
sufficiently large number of points in the Brillouin
zone to give an adequate representation of the
momentum distribution function. In the calcula-
tions presented here, 2048 points in the full Bril-
louin zone were employed. We do not expect any
discernible change in the values quoted here if more
points are used in the zone.

The computed Compton profiles for a = 7.7 and

a = —, are given in Table IV for the [100], [110],
and [111]directions. The spherically averaged pro-
file is computed from

A straightforward procedure exists for evaluation
of J~(q) using wave functions expressed as combina-

tions of Gaussian orbitals. The details have been
discussed previously. A point to remember is the
convergence of the reciprocal-lattice sum which ap-
pears in these calculations. A check on this conver-
gence can be obtained from the normalization con-
dition of Js (q):

IV. COMPTON PROFILE
1

Jspis(q) =
35 [10Ji00(q) + 16Jiia(q) + 9Jiii(q)] .

(4.4)

The Compton profile is a measure of the electron
momentum distribution. Let p denote the initial

momentum of an electron in the system, ~ denote
the change in momentum after a Compton scatter-

ing event has occured, and Rcu denote the energy
transferred to the electron. In the impulse approxi-
mation, the cross section for scattering into a fixed
direction is proportional to

J„(q) =
3 J dpp(p)6(q —p 2),

(2ir)

(4.1)

in which p(p) is the momentum distribution func-
tion, ~= ~xl~l, ~d

J,zh values for both the APW-GTO calculation and
the previous SAPW calculation from this project
are given as well in Table IV. For comparison,
they are also plotted in Fig. 2. Observe that the 1s
core contributions to the SAPW profile have been
subtracted from the results for the total profile re-
ported in Ref. 22. Except for high values of q, it is
noted that J(q) from the straightforward SAPW is
slightly higher than the J(q) from the APW-GTO.
%e also note, as pointed out in Ref. 22, that the
calculation of Compton profiles from an SAPW
basis is prohibitively expensive, particularly in view
of the relatively coarse k-space mesh. On the other
hand, once the APW-GTO self-consistent calcula-
tions have been completed, it takes around 12 min
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TABLE IV. Calculated Compton profile for neon (a = 7.7, a = —, ).

J)oo J»0 ~APW

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

2.6155
2.6076
2.5828
2.5382
2.4717
2.3825
2.2718
2.1426
1.9993
1.8471
1.6927
1.3967
1.1375
0.9182
0.7363
0.5907
0.4765
0.3858
0.3126
0.2543
0.2091
0.1734
0.1441
0.1201
0.1012
0.0859

2.6059
2.5978
2.S747
2.5320
2,4665
2.3788
2.2698
2.1445
2.0086
1.8641
1.7135
1.4067
1.1256
0.8994
0.7278
0.5961
0.4871
0.3911
0.3103
0.2490
0.2053
0.1735
0.1474
0.1229
0.1010
0.0837

2.6143
2.6057
2.5796
2.5342
2.4675
2.3793
2.2707
2.1437
2.0022
1.8517
1.6977
1.3992
1.1350
0.9144
0.7356
0.5917
0.4766
0,3850
0.3122
0.2S48
0.2092
0.1729
0.1439
0.1204
0.1014
0.0857

2.6108
2.6026
2.5783
2.5343
2.4682
2.3800
2.2706
2.1438
2.0043
1.8561
1.7035
1.4019
1.1314
0.9086
0.7322
0,5934
0.4814
0.3880
0.3114
0.2520
0.2074
0.1733
0.14S6
0.1215
0.1012
0.0848

2.6481
2.6481
2.6481
2.5588
2,5290
2.3727
2.3443
2.1811
2.0429
1.8825
1.7397
1.4274
1.1472
0.9274
0.7405
0.6032
0.4817
0.3839
0.3122
0.2544
0.2073
0.1700
0.1420
0.1182
0.0989
0.0822

on an Amdahl 470/V6 to calculate J(q) for
0 & q ( 4 a.u. in steps of 0.01 along all three sym-
rnetry directions. This is a significant saving in
computational effort and expense. Because of the in-
creased precision provided by the finer k mesh, our
results from the APT-GTO calculation are prob-
ably much more reliable than the SAPW results.
However, because of the lack of any experimental
data, no definite conclusion can be reached. Euwe-
rna et al. ' found from HF calculations that the
Compton profile for Ne is isotropic, consistent with
the usual picture of a weakly bound solid of essen-
tially spherical atoms. Their results do indicate,
however, a slight variation in J(q) along the dif-
ferent directions. We also found a weak anisotropy
in J(q). Directional differences in J(q) are plotted
in Figs. 3 —5, and a comparison of our values with
those of Euwema et al. ' is shown in Table V. To

attempt a valid comparison, we have subtracted the
core part (is atomic HF Compton profile ) from
the results in Ref. 31.

V. CONCLUSIONS

We have demonstrated the utility of the APW-
GTO hybrid method to determine energy bands.
The method is unusual in that we can assess non-
muAin-tin effects on band structure as well as
cross-check such things as basis-set eA'ects.

Compton-profile calculations are facilitated greatly
by this method, which turns out to be superior to
APW calculations, in so far as computational in-
vestment versus reward is concerned. Our results
for Ne compared well with those of other workers.
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TABLE V. Comparison of Compton profiles from APW-GTO and HF calculations. HF results from Ref. 31 with

1s contribution (Ref. 38) subtracted.

APW-GTO

Igloo

HF
J&oo

APW-GTO
~»o

HF
~&]o

AP&-GTO HF

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2

. 1.4
1.6
1.8
2.0

2.6155
2.6076
2.5828
2.5382
2.4717
2.3825
2.2718
2.1426
1.9993
1.8471
1.6927
1.3967
1.1375
0.9182
0.7363
0.5907

2.5422
2.5362
2.5154
2.4746
2.4142
2.3346
2.2354
2.1192
1.9912
1.8552
1.7154
1.4360
1.1800
0.9604
0.7732
0.6192

2.6059
2.5978
2.5747
2.5320
2.4665
2.3788
2.2698
2.1445
2.0086
1.8641
1.7135
1.4067
1.1256
0.8994
0.7278
0.5961

2.5422
2.5372
2.5174
2,4766
2.4142
2.3316
2.2324
2.1192
1.9962
1.8652
1.7264
1.4350
1.1700
0.9544
0.7752
0.6222

2.6143
2.6057
2.5796
2.5342
2.4675
2.3793
2.2707
2.1437
2.0022
1.8517
1.6977
1.3992
1.1350
0.9144
0.7356
0.5917

2.5462
2.5402
2.5194
2.4766
2.4092
2.3286
2.2374
2.1302
2.0002
1.8572
1.7104
1.4320
1.1800
0.9584
0.7722
0.6182
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