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Thermodynamic properties of fcc metals at high temperatures
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We have carried out an exact and consistent calculation of the thermodynamic properties of monatomic fcc
crystals at high temperatures. These properties are obtained from the Helmholtz free energy of the crystal F(V,T)
by means of the appropriate thermodynamic relations. It is crucial to the success of the calculation that we have

been able to obtain the volume dependence of the free energy. F(V,T) includes the static lattice energy and the
vibrational contributions from the harmonic and lowest-order (cubic and quartic) anharmonic terms in perturbation

theory evaluated in the high-temperature limit. The atoms interact via an effective nearest-neighbor central-force

potential P(r). We have calculated the specific heat at constant volume and at constant pressure, the thermal

expansion, the coefficient of linear expansion, the isothermal and adiabatic bulk moduli, and the Gruneisen

parameter for the following fcc metals: Cu, Ag, Ca, Sr, Al, Pb, and Ni. Good agreement with experiment is obtained

in all cases. We discuss the implications of these results for further studies of the properties of metals.

I. INTRODUCTION

The evaluation of lattice dynamical theory by
comparison with experiment is fraught with in-
consistencies and uncertainties in the well-studied
and supposedly clear-cut case of the equilibrium
thermodynamic properties of solids. ' ' The basic
problem is that theory most readily deals with the
system at constant volume whereas, experiment-
ally, it is at constant pressure. Moreover, the
theory is customarily expressed in terms of the
volume at absolute zero V„ the unperturbed state
in perturbation theory, instead of the equilbrium
volume V(T) at which the experiment is performed.
Uncertainties creep in through the process of ad-
justing for the difference between V, and V(T).
While it is perfectly straightforward, in terms of
thermodynamic relationships, to convert from
constant pressure to constant volume, it is not
straightforward in practice. This fact has been
demonstrated in a recent study of the specific
heat of aluminum by Shukla and Plint. ' They set
forth the procedure clearly and consistently, but
uncertainties arise in its execution, particularly
in the step converting C~, the specific heat at con-
stant volume V(T) to that at volume V, . Not only
does one need to know the equation of state accu-
rately, but also other experimental quantities en-
ter that are not well known, e.g. , derivatives of
the bulk modulus. Add to this uncertainties re-
garding the electronic and vacancy contributions
to the specific heat and one no longer has a re-
liable test of the theory.

In the work we shall report here, we have been
able to improve the theoretical side of things con-
siderably using a monatomic fcc crystal model

with nearest-neighbor central-force interactions
between atoms. This breakthrough results from
Shukla's calculations" of the lattice sums needed
to obtain the Helmholtz free energy as a function
of temperature and volume, F(V, T). After calcu-
lating I' (V, T) for the model lattice in the high-
temperature limit (T& BD, the Debye tempera-
ture), it is then simple to apply the appropriate
thermodynamic relations and obtain the properties
of interest. Our preliminary calculations of the
thermal expansion of fcc metals' were initiated
for a different purpose but they were sufficiently
encouraging to make further tests of the theory
essential, for if the other thermodynamic prop-
erties are well represented by this simple near-
est-neighbor model, then we need to understand
why this is so. This model potential is certainly
very different from the long-range oscillatory
potentials obtained from pseudopotential theory,
which have met with success in the simple met-
als"

We have calculated the lattice contribution to
C~ and C~, the isothermal and adiabatic bulk mod-
uli, B~ and B„respectively, the thermal expan-
sion a, and the coefficient of linear expansion o.

for the following fcc metals: Cu, Ag, Ca, Sr, Al,
Pb, and Ni. These results represent the first
exact and consistent lattice dynamical calculation
of the thermodynamic properties of a model lat-
tice in the high-temperature limit. There still
remains the problem of the electron contribution
to these properties and, at temperatures close
to the melting point, the contribution of vacancies.
We estimate these contributions wherever possi-
ble, but this is the weak link in our comparison
with experimental data —except in those cases
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where no data exist. In Sec. II we outline the
theory we have used in these calculations, in Sec.
III we present the results, and in Sec. IV we dis-
cuss the usefulness of this model for fcc metals
in practice and its implications for the theory of
metals in the crystalline state.

II. THEORY

A. Free energy and thermodynamic relations

The Helmholtz free energy of the crystal F(V, T)
is made up of the static lattice energy and the
harmonic and the lowest-order (cubic and quartic)
anharmonic terms of lattice dynamical perturba-
tion theory. ' " Shukla' has shown that, for a
nearest-neighbor central-force model of a mona-
tomic fcc crystal in the high-temperature limit,
the various contributions to the free energy can
be expressed in terms of the pair potential Q(r),
where x is the nearest-neighbor separation, its
derivatives with respect to x, and dimensionless
Brillouin-zone sums S&, which are functions of a
parameter g, defined by

(T)(dT)

(4 ))

where T, is the reference temperature, so that
care must be taken when using experimental val-
ues in thermodynamic relationships.

(iii) Specific heat at constant volume C~:

or, from Eq. (2),

C v 3g 1 — '
2

- 2E'4 x k T
2E,(~)

(6)

(iv) Isothermal bulk modulus Br:

We caution that in experimental data"" u is often
defined as

y'(r)/~
y "(~) —@'(~)/~

'
&'E v 2B V 2 g )

E ('V T)
T

(7)

Thus the whole dependence of the Brillouin-zone
sums on volume enters through the parameter g,
=a,(y). This volume dependence was taken into
account for the first time in our preliminary study
of thermal expansion' and it was shown to be im-
portant. The full expression for E(r, T) is given
there [Ref. 7, Eqs. (2-9)]. Here we just indicate
the volume and temperature dependence of the
various contributions,

where F"(r, T) is the second derivative of E(r, T)
with respect to x at constant temperature.

(v) The specific heat at constant pressure C~:

C =C +9(x'(T)v(T)B T,
= Cv+2aNn'(T)r'(T)BrT.

(vi) The adiabatic bulk modulus B~:

)r(r, T) =k)T( ' rr(r)+T (r)kT

+T(r)(kT) —kT(nk' T),
(vii) The Grtineisen parameter y:

3u pB~
(10)

where the E((x) are simply related to the functions
defined in Ref. 7. Terms 1, 3, and 5 represent
the harmonic contribution to the free energy, term
2 represents the static lattice energy plus the
temperature- independent anharmonic contribu-
tion, and term 4 represents the temperature-de-
pendent anharmonic contribution.

The thermodynamic properties of interest are
given by the following relations.

(i) Thermal expansion c(T):

&(T) =r(T)/x(293) —1,
where we have chosen the pair separation at T
=293 K to be the reference length.

(ii) Coefficient of linear expansion o.(T):

In the remainder of this section we outline the pro-
cedure used to obtain the various derivatives that
enter these relationships and give such details of
the Brillouin-zone sums and interatomic potential
as are needed for numerical evaluation of the
thermodynamic properties.

B. Differentiation method

The equilibrium nearest-neighbor separation
r(T) is determined from the minimization equation

E'(r, T) =0,

by iterative application Of
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5r = -E'(r, T) /E "(r, T) . (12) Q(r) 0 (+-2a 0 to~~ 2gs +~+ &0)/~b)D
1 —2b

The coefficient of linear expansion u(T) requires,
further, the differentiation of r(T) with respect to
T. All these derivatives, E'(r, T), E"(r, T), and
Cr/dT, were obtained from a five-point numerical
differentiation formula'4 using an interval of 0.001.
Change of the interval by a factor of 10 did not al-
ter the results.

C. Brillouin-zone sums

The Brillouin-zone sums S&(a,) which enter the

E,(r) in Eq. (2), have been computed by Shukla"
for values of p, in the range -0.1 + a, & 0.1. In
order to evaluate the S&(a,) at any value of a, in
this range, and hence at the required value of x,
we fitted Shukla's values to 6th-order polynomials
or exponential polynomials, depending upon
whether the sum had zero value or not within this
range. A table of the least-squares coefficients
for such fits is given in Ref. 7. These fits repro-
duce the numerical values of the S&(a,) to better
than 1 part in 10'.

D. Modified Morse potential

The pair potential Q(r) and its derivatives ap-
pear explicitly in the functions E,.(r) and also im-
plicitly through a, in the functions S&(a,). For the
calculations in Ref. 7, we used a simple Morse
potential fitted to the sublimation energy and

Debye temperature of the metal concerned. It
was also assumed that, at absolute zero, the
nearest neighbor was situated at x„ the minimum
of the potential well, i.e. , r =r(0) is determined
by the lattice constant at 0 K. However, we noted
there that Q "(r) was largely responsible for the
slope of the computed e(T) curves and that some
adjustment of the curvature of the potential might
give better agreement between e(T) and experi-
ment than we had obtained. To this end we have
modified the potential as follows

The values of the parameters D, and g are unal-
tered by this modification of the potential since
both P(r) and Q"(r) are independent of b, and
hence identical to the Morse potential, when z =ro.
The parameter b has been determined during the
course of the calculation for each metal by re-
quiring that e(T) fits the experimentai results in
the neighborhood of the Debye temperature. The
usual. form for the Morse potential is obtained
when b =1. This simple adjustment to the curva-
ture of the potential for xwxo has the desired ef-
fect of bringing the results into good agreement
with experiment, as we shall see in the next sec-
tion.

III. RESULTS

A. Thermal expansion

%e have carried out the calculations described
in Sec. II for the following fcc metals: Cu, Ag,
Ca, Sr, Al, Pb, and Ni. The thermal expansion
of these metals has been well studied over quite
a wide temperature range in most cases,""so
we are able to match the computed &(T) [see Eq.
(2)] to experiment at the lower end of the tempera-
ture range and thus determine b. Table I lists the
values of the potential parameters used in these
calculations. Values of x, are taken from Varshni
and Bloore" except in the case of lead, where we
have used the value of Boiling quoted in Ref. 10,
Do is obtained from the sublimation energies given
by Seitz,"and a is obtained from 8D (see Ref. 7).
We also list here the values of GD and melting
temperature" T„(or, in the ease of Ca and Sr,
the phase transition temperature), to indicate the
limits of the temperature range to which this
theory is applicable.

In Figs. 1 and 2 we compare the computed c(T)
with experiment. In each case there is excellent

TABLE I. Parameters in calculation: Morse potential parameters, xp (Ref. 15), a, Dp

(Ref. 16), and b (see text); Debye temperature Qz and melting or phase transition (*) tem-
perature, T& (Ref. 12), coefficient of electron specific heat Op (Ref. 26), and M' (see text).

r, (A) a (A ) D, (10 "g) 8D (K) I~ (K) 0'p (10 J/molK )

Cu
Ag
Ca
Sr
Al.

Pb
Ni

2.5471
2.8765
3.9264
4.2804
2.8485
3.4779
2.4849

1.1857
1.1255
0.8380
0.7867
1.1611
0.7776
1.3909

0.9403
0.7874
0.5535
0.5442
0.6369
0.5500
0.9843

2.265
2.3
1.0
1.0
2.5
1.5
2.4

342
228
234
147
423
102
427

1356
1234
720*
830+
933
600

1726

6.945
6.276 .

29.999
36.401
13.389
31.380
70.291

1.391
0.986
2.529
2.582
2.144
3.371

14.793
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FIG. 3. Coefficient of linear expansion n(T) of copper,
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ment: Cu (Ref. 13), x; Pb {Ref. 12), x; Ca (Ref. 12),
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agreement over quite a large range of tempera-
ture. As T is approached, the experimental val-
ues increase more rapidly than c(T). This is to
be expected since we have not taken vacancies in-
to account. Our calculation effectively deter-
mines the lattice parameter rather than the lat-
tice dilation. However, except in the case of at.u-
minum, "the difference between these two quanti-
ties is too small to be discernible on the scale of
Figs. 1 and 2. Clearly, the treatment of vacan-
cies in the high-temperature lattice needs further
study.

The difference between e(T) and experiment
will obviously be enhanced in the coefficient of
linear expansion o(T) as can be seen in Figs. 3
and 4. We note that none of the o.(T) curves are
in as good agreement with experiment as one would

expect, judging from the e(T) curves. However,
the experimental values" "have been obtained by
differentiation of a third-order polynomial fitted

to the experimental thermal-expansion data, a
procedure which can be quite unreliable. For this
reason, we stand by our values of o.(T) in the re-
gion where e(T) agrees with experiment.

B. Bulk modulus

The lattice contribution to the bulk moduli [Eqs.
(7) and (9)] is shown in Figs. 5-10. In all cases,
the computed curves lie well below the experi-
mental values. This is to be expected since
we have taken no account of electrons in our model
and they are known to have a substantial effect on
the compressibility of metals. We can make a
rough estimate of this effect in the same spirit as
we treat the electron contribution to the specific
heat, viz. , by means of free-electron theory. "
For zN electrons in a volume V the. free energy
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(15)
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and the total adiabatic bulk modulus is then given
by

(Cv'+ o 1')

As we see in Figs. 11-16,Cp is in good agree-
ment with experiment" over most of the temper-
ature range considered for each metal. Only in
aluminum, nominally trivalent, and nickel, ferro-
magnetic, is the situation anything less than satis-
factory. In aluminum, any significant increase
in z above unity makes the bulk modulus (Fig. 8)
too large while Cp (Fig. 14), which is much less
sensitive to z, is not improved appreciably. In
nickel, reduction of z to the quoted value" of 0.6
improves the agreement between Cp and experi-
ment but decreases B~ to values comparable to
those of the lattice contribution alone. A value
of z = 3 is needed to bring B~ into agreement with

FIG. 14 Specific heat of aluminum. Lattice contri-
bution C', C~&, ———,Cz, ——,l.attice plus electron con-
tribution, Cz, ——,Cz plus vacancy contribution, —--.
Experiment: x.

experiment, but then the values of Cp are too
large. We show the effect of varying z in Figs.
10 and 16. Regardless of the value of z, the large
value of ao for Ni leads to a predominantly linear
dependence of Cp on T, rather than the flattening
at high temperatures which is observed experi-
mentally. We note that the situation for lead, nom-
inally quadrivalent, is similar to that for alumi-
num, although Cp is in very good agreement with
experiment when z =1. However, a value of z:
= 2.75 is needed. to raise B~ to the experimental.
level with a consequent increase in the Cp values.
Not unexpectedly, this simple treatment of the
electrons is inadequate to deal with the more corn
plex electron configurations that obtain in Al,
Pb, and Ni. For nickel, in particular, our cal-
culations have not included the. magnetic contri-
bution to the specific heat which gives rise to
anomalous behavior in the neighborhood of the
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Curie point (631 K). This contribution has been
estimated by Pawel and Stansbury' and by don-
nelly, Loomis, and Mapother. 4 We show their
results in Fig. 16; they are in good agreement
with ours.

Finally, we consider the vacancy contribution
to the specific heat. This is given by the rela-
tion

Cv"=&exp ~ l~l expl
s fE)' f E, —

(kT) ( kT (22)

where s& and E& are, respectively, the entropy
and energy of formation of a single vacancy. Val-
ues of E& are quite reliable since they can be
extracted from the temperature-dependent factor
exp(-E&/kT) in measured quantities such as the
vacancy concentration ' or the trapping rate of
positrons, "but the determination of s& requires
accurate knowledge of the absolute value of the
equilibrium concentration of single vacancies,
and this quantity is less well known. We have
used values for E& and s& given in a review by
Seeger. " Values of s&/k are typically -0.5; but
higher values, -2.0, are also quoted for alumi-
num. " 'This amount of variation in s&/k affects
Cz~ by a factor of -10 and it is only for the higher
value of s&/k that Cv ' is large enough to be visible
on the Cp plot (see Fig. 14). A much larger con-
centration of vacancies would be necessary to
account for the observed upward swing in Cp at
high temperatures.

FIG. 16. Specific heat of nickel. Lattice contribution,
Cv, —-- —;C~, ——;lattice plus electron contribu-
tion, CJ,{0.6), ; CJ {3.0), —-. Experiment: x. Anal-
yses of Connelly et al. {Ref.4), z; Panel and Stansbury
{Ref. 2) ~, {see text).

a quantity that enters the Mie-Gruneisen form
of the equation of state. Insofar as y departs from
a constant value, it provides some measure of
the nonharmonic character of the real crystal
and, for this reason, it is often used in the analy-
sis of experimental data. "' Table II shows the
results we have obtained. In the range of tem-
perature considered here, there is little variation
in y. The calculated values of y are quite close
to the experimental values, except in the case
of lead. This is consistent with the particularly
low values obtained for B~ in this metal. We also
include in Table II values of the reference length
r(293), since r(T) rather than «(T) is needed in
our calculations. In all cases, r(293) is in excel-
lent agreement with experiment.

TABLE II. Gruneisen parameter y and reference
length g {293).

r(293) (A) r,„&(293) Q.)

Ca

100 l.947 1.994
700 2.116 2.021

1300 2.127

200 2.411 2.378
700 2.461

1200 2.470

200 1.400
500 1.417
700 1.426

100 1.390
500 1.420
800 1.428

400 2.150 2.192
600 2.162 2.188
900 2.146 2.281

2.5609

2.8939

3.9520

4.3079

2.8717

2.5559

2.8894

3.9471

4.3026

2.8635

IV. DISCUSSION

We have carried out an exact and consistent
calculation of the lattice contribution to the ther-
modynamic properties of a monatomic fcc crystal
in the high-temperature limit, T &GD. We have
used a nearest-neighbor central-force model
with a modified Morse potential to represent the
atomic interactions, and we have applied this
model to the metals Cu, Ag, Ca, Sr, Al, Pb,
and Ni, using free-electron theory to account
for the electrons. We emphasize that, for a given

D. Griineisen parameter

For completeness, we have evaluated the Grun-
eisen parameter

3upg~ 3mVB~

Cv C

Ni

100 1.260 2.690
300 1.270 2.655
500 1.275

400 1.737 1.892
1000 1.714
1600 1.660

3.5062

2.4972 2.4916
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substance, the specific form for the pair poten-
tial is the sole input to the calculation of the lat-
tice-free energy. This simpl. e model appears
to be effective in determining the thermodynamic
properties of the system. It should be useful in
cases where, for whatever reason, high-temper-
ature experiments have not been carried out,
as in Sr, where there are no thermal expansion
data above room temperature, and no specific
heat data above 20 K. The lattice contribution
alone will give a lower limit to the true values
and demonstrate the trend to be expected as the
temperature increases.

'The success of this model for these fcc metals
is surprising in view of the wide range of electron-
ic structure (monovalent to ferromagnetic) that
they represent. Also, there is the large body
of evidence from pseudopotential theory to show
that a much longer-range potential is needed for
a good interpretation of diverse properties such
as the phonon spectrum, "' electrical resistivity, "
and superconducting transition temperature. " It
is, of course, perfectly clear that our simple
potential must be interpreted as an effective in-
teraction appropriate to the nearest-neighbor
model. That it is successful in dealing with the
thermodynamic properties of fcc crystals implies
that the nearest neighbors dominate the situation
and if the environment in which they move is
treated satisfactorily, and if the calculations are
carried through consistently, then the results will

reflect those of the real system under investiga-
tion. We emphasize the consistency requirement
because care must be taken, when choosing the
pair potential, that the potential parameters are
also determined from a nearest-neighbor model.
Our earlier study' showed that one could not use
a Morse potential with parameters obtained from
an "all-neighbor" fit and expect to get sensible
results in a nearest-neighbor calculation of the
free energy. We hasten to add that we do not
expect this simple nearest-neighbor central. -force
model to be adequate for dealing with microscopic
motions in the system such as defect motions,
or with absorption or scattering problems where
details of the interaction on a local level are of
importance. However, this is not an uncommon
feature of empirical potentials. The inconsisten-
cies and pitfalls, as well as the successes, in
fitting pair potentials to experimental data, have
been well documented. " Our work gives an em-
pirical potential that has the advantage of being
very simple and, we hope, useful in experimental
investigations. Its success provides a powerfu1.
incentive to 1.ook for a deeper understanding of
the model and a derivation of the effective inter-
action from first princip1. es, for it eventually
has to be reconciled with the effective potentials
obtained by fits to other types of experimental
data, e.g. , phonon spectra, elastic constants, and

defect energies. We hope that this very interest-
ing and important question will be pursued further.
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