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Tedrahedral rnolecules or polyatomic ions (e.g. , methane or the ammonium ion) in a solid ex-

perience a rotational potential with 12 equivalent minima. The rotational-energy spectrum

shows a characteristic tunneling spectrum which, since the advent of high-resolution neutron

scattering techniques, is accessible to the experiment. Tunneling frequencies have since been

used to determine rotational potentials with the aim to assess the rather unknown anisotropic

intermolecular forces. Further information is contained in the intensity of the tunneling lines,

in their polarization for different directions of the momentum transfer and in their
~ 0 ~

depen-

dence. To extract this information we have undertaken a detailed study of the tunneling wave

functions including their librational width and the symmetry of the spin functions. For the

properly symmetrized wave functions neutron scattering matrix elements have been calculated,

and line intensities have been derived. The calculation has been performed for fully protonated

and fully deuterated molecules (XH4 and XD4). The pocket-state formalism has been used,

and the influence of finite-width pocket states on the line intensities has been studied in detail.

Special attention has been attributed to molecules at low-symmetry lattice sites. On the one

hand, the interpretation of the experimental data is particularly difficult for low site symmetries;

on the other hand, there are fewer degeneracies and consequently more transition lines. The
increased experimental information can be used to determine the symmetry elements and the

strength of the rotational potential. The information contained in the intensities turns out to be

extremely important.

I. INTRODUCTION

A molecule or polyatomic ion experiences an
angle-dependent orientational potential as it rotates in

a solid. For tetrahedral molecules this potential
possesses 12 equivalent minima or potential pockets.
If the potential barriers between the pockets are high
and if the moment of inertia of the molecule is large,
the molecule sits in one of the 12 pockets and per-
forms small angular oscillations around its equilibri-
um orientation, The angular oscillations are also
termed librations. The librational ground-state wave
function in one of the 12 potential pockets is called a
pocket state. For high barriers and large moments of
inertia the 12 pocket states are degenerate. For low
barriers and small moments of inertia this degeneracy
is lifted because of the overlap of the librational wave
functions in different pockets. For tetrahedral
molecules in low-symmetry crystal fields, the dom-
inant 120' overlap matrix elements h~, h2, h3, and h4
for rotations of the molecule around the four three-
fold symmetry axes are all different. This is also true

. for the less important 180' overlap matrix elements
H„, H~, and H, for rotations around the three two-
fold symmetry axes of the molecule. Consequently

the 12 states are separated into a singlet A state,
three triplet T states, and a doublet F. state. Several
nuclear-spin states may combine with each of these
levels. This considerably increases the multiplicity of
the levels. ' Specific-heat' and nuclear-magnetic-
resonance' T~ measurements provide integral infor-
mation on the tunneling splitting, while neutron
and advanced NMR techniques" " provide spectro-
scopic information and thus can yield a complete lev-
el scheme. Experiments of the latter kind have been
performed on solid CH4 (Refs 4and 11) .and recent-
ly on a11 isotopic methanes' CH4 „D„with
n =1,2, 3, 4, furthermore on methane adsorbed on
grafoil, ' on SiH4, ' and on a number of NH4+
salts. ' " " In all the examples mentioned so far,
the orientational potential reflects the tetrahedral
symmetry of the charge distribution in the
molecule. " It is very nearly tetrahedral also in
CH4 „D„(for n =1,2, 3) which, however, are no
spherical top molecules. There are 12 equivalent
minima or potential pockets. Rotational tunneling
with one degree of freedom is realized for CH3 side
groups ""rotating around the bond which con-
nects them to the rest of the molecule and for NH3
molecules rotating around the axis of their dipole
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moment which often is aligned by the electrostatic
field in the crystal, One-dimensional rotation in

threefold symmetry with three potential pockets is
conceptually much easier. '"

The tunnel splitting may be used to obtain the tun-
neling levels and several authors have related the lev-
el spacing to the orientational potential which deter-
mines the rotational motion of the molecule. " '

In this paper we will calculate the intensities of the
different tunneling transitions in a neutron scattering
experiment. The intensities are closely related to the
shape of the wave functions. This is analogous to
phonon intensities which yield the polarization vec-
tors of the phonon modes.

One way to describe the wave function of a tunnel-
ing system is by means of linear combinations of
pocket states. '0 The intensity is strongly influenced
by the way the pocket states are combined to tunnel-
ing wave functions. These combinations are deter-
mined by the symmetry requirements under proton
or deuteron exchange and by the site symmetry at
the position of the XH4 or XD4 molecule. (X =C or
N). For strong potentials, i.e., for small splittings,
the tunneling states are strongly peaked and their de-
tailed shape is of lesser importance for the calculation
of the intensities. This is true in spite of the fact that
the splitting itself depends on the shape of the wave
functions in the overlap region, i.e., on the tails of
the pocket states.

The expected low sensitivity of the intensities on
the detailed shape of the pocket states was the start-
ing point for an earlier calculation where the pocket
states have been replaced by 5 functions in the mini-

ma of the potentials. It has been criticized by Ozaki,
Kataoka, and Yamamoto ' that this approximation
has also been applied to the case of solid CH4 with

quite a sizable tunnel splitting which is an indication
of not so narrow pocket states. In the present paper
we shall go beyond the 8-function approximation by

using isotropic pocket states of finite width. The
width parameter for solid CH4 will be taken from an
earlier calculation. ' It will be seen that the crude 5-
function approximation provides quite a good zero-
order approximation for the intensities. The main 'ef-

fect of the finite width of the wave functions is a
reduction of the intensities with increasing momen-
tum transfers. Such a behavior, reminiscent of the
usual Debye-Wailer factor, is expected. Ozaki et al. '

have constructed their wave functions as linear com-
binations of free rotor functions" which have been
optimized to represent the measured tunnel splitting.
Their functions are better than ours in the sense that
they also contain the anisotropy of each individual
pocket state originating from the anharmonicities of
the potential pockets. In view of the relatively good
results obtained even with 5 functions, it is clear that
anisotropic pocket states will not change our results
appreciably. Therefore we have restricted ourselves

to the very simple finite width pocket states. A gen-
eralization to anisotropic states is, however, possible
also within the pocket state formalism.

II. CONSTRUCTION OF THE WAVE FUNCTIONS

The tunneling states of different molecules in the
sample do not couple. ' The neutron scattering cross
section therefore is a sum over the contributions
from the individual molecules. The double differen-
tial scattering cross section of a single molecule can
be written (we follow the notation of Ref. 30):

$ P„P lMl25(cu —o),)
I I

(2.1)

(2.2)

This is the cross section for neutron scattering into
the solid angle element d 0 around 0 and into the
energy interval between E and E+dE. Unprimed
symbols relate to quantities before scattering, primed
symbols to the same quantities after scattering.
lp, k) = p, ) exp(i k r ) is a plane-wave state (wave
vector k) of the neutron in the spin state lp, ). lP )
is a tunneling state of the molecule, P„and P are
the statistical weights for the states of the neutron
and of the molecule, h~ is the energy gained by the
neutron, and fee, is the energy difference betweenaa
the states lP ) and lP ). Vis the interaction of the

neutron with the four protons (or deuterons) of the
molecule

(2.3)

(2.4)

r and S are the position and spin operator of the
neutron, ry and I„are the position and spin operator
of one of the four protons (or deuterons) of the
molecule. A „.= a„h is the spin-independent part of
the proton (deuteron) scattering length, and

A,d =2[1(l+1)] ' 2a,.„, i's the spin-dependent part.
To evaluate Eq. (2.1) we need the wave functions

lQ ). A former treatment'0 of the problem had two
shortcomings: (i) it was restricted to protonated
molecules and (ii) the pocket-state wave functions
have been approximated by 8 peaks in the potential
minima. In this paper we shall extend the treatment
to deuterated molecules and we shall consider wave
functions of finite width.

Equation (2.1) will first be evaluated for the case
of a tetrahedral molecule in a tetrahedral field. This
is the situation encountered in (NH4)2SnC16,
where the 120' overlap matrix elements are all equal:
h ~

= h, = h3 = h4 = h (note the change in notation
from Ref. 30). The three T levels then are degen-
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crate with an A-Tlevel spacing 4& T=8h and a TE
spacing 4T E =4h. Building on this most symmetri-
cal example we shall explicitly derive the scattering
law also for trigonal site symmetry with h~ ~ h2= h3
=,h4 and for site symmetry 2 or mm2 with h~ = h2

w h3 = h4. The formalism is valid for any symmetry.
To define the pocket states we attach a coordinate

system to the crystal in such a way that Fig. 1 shows
one of the 12 equilibrium orientations of the mole-
cule. The numbers 1, 2, 3, and 4 in Fig. 1 identify
the four sites around a central carbon (CH4, CD4) or
nitrogen atom (NH4+, ND4+) which may be occupied
by protons (or deuterons). The individual protons
(deuterons) of the molecule are not identified. The
tunneling wave functions

~ P ) are then constructed
as linear combinations

lq. ) =D.l@.) g b, [X.), (2.5)

of pocket states'

m 1

[ X ) [p]p3p3p4) (2.6)

p, „(with y = I, 2, 3, and 4) denotes the spin state of
the proton at site y without identifying which proton
it is. Following Ref. 30 the so-defined pocket state
[X ) is written with an angular bracket to distinguish
it from ~X~) = ~p~p2p3p4) where p,„identifies the in-

dividual proton. The functions [X ) are totally sym-
metric under a symmetry operation of the tetrahe-
dron [corresponding to an even permutation of the
four protons (deuterons)). ' For protons p~ assumes
the values +3 and ——,. The sum in Eq. (2.5) then

1 1

runs over M =16 terms. For deuterons p, ~ assumes
the values +1, 0, and —1 leading to I=81 terms in

Eq. (2.6). The rotational state function ~$ ) with
o. =A, E, or T is introduced in order to allow for a
finite librational width of the wave function. It
describes the oscillations of the frame (Fig. I) which
has been used to define the symmetrized spin func-
tions and multiplies each spin function [p~p3p3JIL4)
When the rotations are described in terms of quater-
nions r = (r~r3r3r4), a Gaussian function centered at
the equilibrium orientation r,q

= (0,0,0,1)

(r~y ) = (r~X ) = C exp(X r4) (2.7)

would be a good representation for ~g ). Wave
functions of the type (2.7) have been used several
times in context with tunneling. ' More sophisticated
forms of the rotational part of the wave function
are necessary when tunneling frequencies have to be
determined with high precisions. For relatively weak
potentials the width parameter X is different for the
A-, T-, and E-type wave functions. '6 This is the
reason why different transitions should have a dif-
ferent

~ Q ~
dependence as predicted by Ozaki et al. "

For stronger potentials the differences between X&,
XT, and XE become very small and the effect disap-

pears. C is a normalization constant which guaran-
tees the normalization of ~@ ) on the surface of the

four-dimensional unit sphere: III' d r[(r~X )[3=1. In

the limit of small amplitudes the mean squared angu-
lar displacement ( y ) of a molecule from its equili-
brium orientation Teq is found from the equation

(y ).=(yl+yl+yl).
= I2 (X.(.) ",(.

~
X.)

=3/S. +O(I/S.') . (2.&)

In cases where X is large, (7 ~X ) is a function
which is sharply peaked at the equilibrium orienta-
tion. Then one may equally well use the function

(r1@.) = (r IN. ) = C.r4 (2.9)

which for large N is also sharply peaked at the
equilibrium orientation. 33 A similar integration as
Eq. (2.9) yields

(y )g =3/N +O(1/N~) (2.10)

In the following we shall rather use (r~N .) be-
cause several integrations are much easier to per-
form. The coefficients b of Eq. (2.5) have been
determined in several steps. First consider a spin
state [X~) = [p~ p3p3p4) together with the 11 states
[X ) which follow from even permutations of the
symbols p, ~, p,2, p3, and p4. The 12 even permuta-
tions correspond to different configurations of the
spins at the four sites which are occupied by protons

FIG. 1. Equilibrium orientation of a tetrahedron in a

crystal field. In a pocket state the tetrahedron performs
small angular oscillations around the equilibrium orientation.
Different pocket states are obtained by even permutations of
the spin states of the four protons or deuterons at the
corners of the tetrahedron.
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or deuterons. The 12 spin configurations are related
to each other by rigid body rotations of the
tetrahedron; they are pocket states. We combine
these 12 pocket states [X ) to linear combinations of
A-, T„-, Ty-, T,- or E-type symmetry

l~.) =D. gg. [& ) (2.11)

The coefficients g are found in Table I. The index
o. identifies one of the 12 symmetry representations.
D is a normalization constant which is different for
the 3, T, and Estates. [DA =I/412(1+8b),
Dr = z, and DE = I/412(1 —4b) where b is the 120'

overlap. ] In XD4 where each of the p, ; may assume
three different values we have the following possibili-
ties for [p)pzp3p4): [tztzaa), [ntzotP), [aaPP),
and [aaPy) with n W P & y & n. In XH4 molecules
with only two possible values for p, ;, the last case
does not exist. From [nants) one oniy obtains the
A-type combination ~rid) = [atzna). An inspection
of Table I shows that there are no functions of T-

and E-type symmetry. Similarly we generate one
function each of 3-, T„~-, T»-, and T~,-type sym-
metry from [atzuP). Again the E type combinat-ions
are absent and

For the same reason the six permutations of [anpp)
decompose into one A-, three T-, and two E-type
combinations whereas [nn/3y ) yields all (12) possible
combinations (=A, 3x3 T, 2E).

One thus obtains 81 combinations ~71 ) for XD4
molecules and 16 combinations

~ rl, ) for XH4
molecules. The symmetrized functions are eigen-
functions of the tunneling Hamiltonian H, (in the

pocket-state subset of the Hilbert space). They are
also eigenfunctions of I'. I = g, I is the opera-
tor of total nuclear spin. and thus the eigenvalues of
P are (I*)= p, t + pz + p3 +p4. Table I has been con-
structed for the case of a tetrahedral molecule at a
site of tetrahedral symmetry. For lower site sym-
metry the decomposition into A and E states remains
unchanged. The states of T symmetry, however,
have to be arranged differently:

() (2..)) = g~..~&(r.)) . (2.12)

The coefficients R are found from a diagonaliza-
tion of H, in the 3 x 3 subspace of T functions

(q(T )iH, iv)(Ta)) =E 8 ft .

For trigonal site symmetry (ht = hz = h3 & h4) and
for symmetry 2 (ht =/t& W h3 = h4) the coefficients
R do not depend on the size of the overlap matrix-
elements, they are determined by symmetry alone.
For cases of lower symmetry as, e.g. , m with

h~ ~ h~ = h3 ~ h4 encountered in NH4C104, '" or for
no site symmetry at all with all four h~ different, the
3 x 3 submatrix of H, has to be diagonalized numeri-
cally and the R depend on the special values of the
h~. We do not consider these cases of low symmetry.
For tetrahedral site symmetry where all h~ are equal:
h& =h2=h3=h4=h, the wave functions of A-, T-,
and E-type symmetry belong to the eigenvalues
E„=8h, Er 0, and EE =——4h (with h —(0) of the
tunneling Hamiltonian.

In a last step, linear combinations ~P ) are formed
from the ~q ) which diagonalize I . This is easily
achieved as the 81 & 81 matrix (rl

~

I ~rl, ) already is

block diagonal, the maximum block size being 4 & 4.

TABLE I. The coefficients g ~ which are used in Eq. (2.12) to construct properly symmetrized wave functions ~q ) from the

pocket states [x ). a denotes the symmetry label A, T„t, etc. , and m enumerates the 12 pocket states.

Symmetry
operation Permutation Tx 1 Tx3 Ty & Ty2 Ty3 T.3 E( E2

1

2

3
4
5

6
7

8

9
10
11
12

E
C2x

C2y

C;(111)
C+(»1)
C+(»1)
C3+ (111)
C,+(111)
C3 (»1)
C';(111)

'-( )

1234
4321
3412
2143
2314
4132
1423
3241
3124
4213
2431
1342

+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1

+1
+1
—1

—1

0
0
0
0
0
0
0
0

0
0
0
0

+1
+1
—1

—1

0
0
0
0

0
0
0
0
0
0
0
0

+1
+1
—1
—1

+1
—1

+1
—1

0
0
0
0
0
0
0
0

0
0
0
0

+1
—1

+1
—1

0
0
0
0

0
0
0
0
0
0
0
0

+1
—1

+1
—1

+1
—1

—1

+1
0
0
0
0
0
0
0
0

0
0
0
0

+1
—1

—1

+1
0
0
0
0

0
0
0
0
0
0
0
0

+1
—1

—1

+1

+1
+1
+1
+1

+1
+1
+1
+1
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ir( ) A(3)H(3) ( ) (2.13)

~2
I does not mix functions of different symmetry and,
of course, it leaves I, diagonal.

Thus the functions l P ) simultaneously diagonalize
0„ I', and I . They are the correctly symmetrized
eigenfunctions which will be used for the calculation
of the neutron scattering matrix elements.

Up to now we have diagonalized the Hamiltonian
in the subspace spanned by the 16 (or 81) librational
ground-state pocket states. The quality of the func-
tions l(i( ) obtained by this procedure depends on the
choice of the librational ground-state function l@ ).
We have used the Ritz variational principle to opti-
mize the parameter N defined in Eq. (2.9). N has
been chosen such that BE /BN, =0 where
E = (p lH, lp ). Of course the parameter N, as-
sumes different values for the states of different
symmetry. For CH4 in phase II with a potential

(3.4)

4

~4~ (gA IA +g Tx ITX + g Ty ITy + g Tz ITx )
y~]

An operator P&, P», P~~, and P~, follows'from the
operators Py which operate on the particles at posi-
tions y according to

terms represent the spin-flip scattering. The discus-
sion is the same for all four. terms of Eq. (3.3); it is
therefore sufficient to discuss one of them, say Eq.
(3.3c). The matrix element (2.2) of W between the
neutron plane-wave states l k ) and

l
k ) becomes

M= —,A,d y, gg I+ y
1

~l
where g„=e xp(i Q r „) and Q = k —k . The opera-
tor in Eq. (3.4) is decomposed into its irreducible
representations'" "'

and A'3' = —35 Ir'/28 the following values have been
obtained: N& =13,53, N&=14.04, and N& =14.32.

III. NEUTRON SCATTERING CROSS SECTION

Pg = P) + P2 + P3 + P4

P» =+P) —P2 —P3+ P4

Ppy = —P) + P2 —P3 + P4

Py., = —P )
—P2 + P3 + P4

(3.6a)

(3.6b)

(3.6c)

(3.6d)
The spin-independent scattering amplitude 3„in

Eq. (2.5) is not an operator in spin space. It there-
fore only contributes to the diagonal matrix elements
in Eq. (2.2) but does not contribute to the tunneling
transitions. We will therefore omit contributions
connected with A„ from now on. Defining

and

I- =I" +iPry

s—+ =s"+ Is~,

(3.1a)

(3.lb)

A „may be rewritten

Ay =A,d[S*I'„+—,(S+I„+S I+)] (3.2)

( lA„l ) =+—,'A„I;,
&plA, lp) = ,'A:I*„, —
(plA„l ) =+-,'A„I„+,

&~lA„lp) =+ ,
' A„I„—

(3'.3a)

(3.3b)

(3.3c)

(3.3d)

These matrix elements are operators which only act
on the proton (deuteron) spin and on the rotational
part lg ) of the wave function. The first two terms
refer to the non-spin-flip scattering, the other two

3„is an operator which acts on the neutron spin and
on the spin of the proton (deuteron) at position y.
We form matrix elements with respect to the neutron
states lp, ) = lu) ="up" and lp, ) = lp) = "down" be-
fore and after scattering

This is a definition where the site 4 is distinguished.
It is noteworthy that W decomposes into irreducible
representations of A- and T-type symmetry, but does
not contain an operator of E-type symmetry. In the
product (P, l Wlp ) only those terms contribute

which are totally symmetric (of A type). From the
group multiplication table for T symmetry and the
lack of F. terms in 8'it follows that a neutron cannot
induce an A to F. transition. This selections rule is

valid for protonated as well as for deuterated sam-

ples, '4

With the operator (3.5) transition matrix elements
between the spin part of the wave functions which
have been constructed in Sec. II are calculated. Tru-
ly elastic transitions (A A, E, Eb, T„T„,etc.),
are induced by the A component of the operator, ine-
lastic transitions (A Tand T E) as well as elastic
transitions which for reduced symmetry would be-
come inelastic as, e.g. , T„~T~ are related to the T
component of the interaction operator. The matrix
elements thus contain factors of the type
G.A= &4AlgAI@A), GTT (O'Txlgrylg'T ), x

GTE (@T lgTx l 4xE&, etc Here
I q4 }~ I brx) ~ l 4E ),

etc. , represents the rotational part of the wave func-
tion. In an earlier treatment i/A), lgT„), lgE) all

have been approximated by sums of 8 functions,
then Gy =gy and G», Gq~, etc. , become sums of ex-
ponentials. In this paper we will evaluate Gy with the
rotational wave function (TlN ) defined in Eq. (2.9).
The actual calculation is postponed to Sec. I~.

When all the matrix elements between the 16
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TABLE II. XH4. Intensities for transitions between the groups of states with symmetry n and o'
where a, n'=A, T„,T, T„or E T.he following abbreviations have been used: a2 = ~Gz ~2,

b2=)G&„(2, )b=(Gz~[2, and b2=(Gz, (2. Here G is composed from G„= (exp(iQ R„)) with

y = I, 2, 3, 4 according to Eqs. (3.6). A common factor 0-;„,/864 has been extracted from Tables II
and III.

X Ty T2

A

X

Ty

Tg

F.

l35a
45 b„2

45by2

45 bg2

0

45 b„2

27a
26b 2

27 by2

36b„2

45b 2

27b2

27a
27 b„2

36b 2

45b 2

27 by2

27bx2

27a
36b,'

0
36b„2

36by2

36b 2

0

states for CH4 or NH4+ and all the matrix elements
between the 81 states for CD4 have been calculated
these elements are squared and inserted into Eq.
(2.1). The tunnel splitting usually is very small. (A
few iueV corresponding to roughly 0.1 K). For usual
measuring temperatures ( T & 4 K) all the statistical
weights P, are equal (P = —for CH4, NH4+ and

1

P =
s, for CD4). Small tunnel splittings are related

with small energy transfers and therefore also the
modulus of the momentum of the neutron is practi-
cally unchanged: k = k' and k'/k =1. With the help
of Eq. (3.3) the sum over p, and p,

'
is performed.

%e do not sum over o, and n' but rather group all

the states of 3-, Tx-, Ty-, T,-, and E-type symmetry
to obtain the intensities in the different elastic and
inelastic lines. The results are given in Tables II and
III for protonated and deuterated samples.

The Q dependence of all the strictly elastic lines is
contained in the factor a . As the three T states are
degenerate, all the inelastic and the elastic lines
which would be inelastic in reduced symmetry have a
common factor b„2+ b~2+ b,2 which determines their Q
dependence. The former treatment with 5-type wave

functions lead to the following powder average:

a'=4[1 +3jp(OR) ]

and

b2 = by2= b2 =12[1 jp(QR) ]

where R is the proton-carbon distance. An inspec-
tion of Tables II and III shows, that for 5-shaped
wave functions the total cross section is 4o-;„, for all
values of g. In this limit one also finds from Tables
II and III that the intensity ratio of the outer
(A T) to the inner (T E) transition is —for the

protonated samples and
6

for the deuterated sam-
5

ples. It should be noted that these results have been
derived for temperatures which are high in compar-
ison with the tunnel splitting (k&T ))4„r and

E). For low temperatures only the A state is po-
pulated and for long neutron wavelengths the total
scattering cross section ' of the protons in CH4 in-
creases to 80-;„,.

In light methane temperatures around l K are low
enough for an observation of the effect. A recent
successful experiment on ammonium perchlorate'~

TABLE III. XD4. The same as Table II for deuterated molecules, Both tables have been con-
structed for tetrahedral symmetry and temperatures which are high in comparison with the tunnel
splitting.

Ty

A

X

Ty

Tz

E

70a2

30bx
30by2

30bz2

0

30bx2

42

42b,2

42b 2

36b„2

30by2

42b,2

42a2
42b„2

36by2

30b 2

42by2

42b„2
42a2

36b 2

0
36bx2

36by2

36bg2

20a
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with a tunnel splitting of -10 p, eV was performed at
much lower temperatures (down to 70 mk). For
XD4 molecules the total incoherent scattering cross
section increases from 4o-;„, to 70-;„,when the tem-
perature is lowered to values where only the A state
is populated. For CD4 this would again correspond to
measuring temperatures below 100 mk.

(b) =(b +b +b)aa + & aa

=
I G,„..I'+

I G„..I' +
I G„..I'

and

(4.2a)

of the neutron scattering operator (3.5). For short-
hand we define

IV. FINITE-AMPLITUDE WA VE FUNCTIONS
(Q ) (4.2b)

The problem which remains to be solved is the
determination of the expectation value of
g„=exp(iQ RT) in a pocket state (2.9). This is the
task for transitions without a change of symmetry,
for transitions with a change of symmetry (a n')
the matrix elements

To calculate Eq. (4.1) a primed coordinate system
(x',y', z') is defined which is fixed in the molecule.
Then Eq. (4.1) is evaluated for a unit vector R
which rotates with the molecule and which is parallel
to the z' axis:

R =(x',y', z') =(0, 0, 1)G, = (exp(i Q K, ) )

= (N ~T) exp(iQ K,) (TIN ) (4.1)

Its components in the crystal fixed coordinate system
are obtained from

have to be calculated. From Eq. (4.1) we than form
the matrix elements of the irreducible representations

R=D R

where"

1

Tf T2 T3+'T4 2(T(T2+'T3T, )

D = 2(T)T2 —T3T4) [T+ T2 T3+ T4

2(T, T3+ T2T4) 2( T2T3 T~T4)

2(T1T3 —T2T4)

2(T2T3+ T)T4)

T] '72 + T3 + 74
2 2 2 2

(4.3)

The coordinates in the space fixed frame are

x =2(T~T3 T2T4), y =2(T2T3+T]T4) z Tj T2+'T3+'T4

%'e define

5 =z —1 = —2(T +T )

(4.4)

(4.5)

where use has been made of the relation $,', T,'=1. Equation (4.1) is expanded for small values of x, y, and 5
up to fourth order:

(exp(iQ K) ) =exp(iQ3) (exp(ig~x + igzy + ig35) )

=exp(ig3) [1+iQ3(5) —
2

(Q~' +Q2 ) (x ) —
—, Q3 (5') —6iQ3 (5') —2iQ3(Q,' +Q2 ) (x'5)

+(g4 +g4)(x4)+g4(54)+g2Q2(x2y2)+g2(g2 +g2)(x252)+]
(4.6)

Expectation values of odd powers of x or y vanish
and have been omitted from Eq. (4.6); symmetries
like (x') = (y') have been exploited. When x, y,
and 5 from Eqs. (4.4) and (4.5) are inserted into Eq.
(4.6) all the expectation values are sums of terms of
the form

where

with

4A' =2% +2%,

(N), N2, N3, N4) =II) d"T Tt 'T2 T3 T4, (4.8)
I

(T, 'T2 T3'T4") =(N(, N2, N3, N4)/(0, 0, 0, 0)

(4.7)

The denominator in Eq. (4.7) originates from the
normalization constant C in Eq. (2.9). The in-
tegrals on the surface of the four-dimensional unit
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sphere are easily performed. " If one of the A; is odd, the integral is zero. If all N~ are even, the result js

(N] —1)!!(Np —1)!!(N] —1)!!(4N + Ng —1)!!
(N], Np, N3, Np) = 2'2~+~~ M +2N +1 !

(4.9)

with

M = (N] +Ng+ N3+ N4)/2

(W ] +%2 + JV3)/2
It is seen that (r] ]rq'r3'rq') is of order (1/N) ' ' ' . In a calculation up to order (I/N)~ all terms with

N] + Ng + N3 )4 may be dropped. x and y are of first order in i], rq, and r] Th. erefore the expansion (4.6)
contains all terms in the order (1/N)'. The terms (x~5') and (5~) are of order (I/N)3 and (I/N)~ They w.ill be
dropped, too. The remaining integrals in Eq. (4.6) are evaluated and terms of different order in (1/N) are col-
lected. To go beyond the special choice of the primed coordinate system with its z' axis parallel to the vector R,
we furthermore replace Q3 by Q R and 0~~ + Qq by (Q x R )'. The result is

1

2 I2 ~l
( lo. ]]) ]o.]t 1+ 1 —0 R + (Q R )

N 2 2

+ (0A' —2(Q R) + —[QA' —(Q K) ] + Q R[1+QR' —(Q K) )) (410)

From Eq. (4.10) we calculate the matrix element
(4.1)

G, = (g, ) = &~ ') (4.11)

by inserting the coordinates R, of the four protons

or deuterons of the molecule into the right-hand side
of Eq. (4.10). The width parameter N is N =N
=(N +N )/2 for a transition between states of

symmetry o] and u'. This is evident from Eqs. (4.1)
and (4.8). The inelastic transitions from A to T and
from T to E levels contain a factor (b')„r and
(6 ) rq, respectively (see Tables II and III). From
the values of Ã&, NT, and A'E given at the end of
Sec. II one obtains N~~ =13.785 and ATE =14,18 in
the case of CH4. From Eqs. (3.6) and (4.11) we find

= ( I Grx I' + l]Gry I
+

I Gr* I )

f

tunneling spectra of XH4 or XD4 molecules have
been determined by inelastic neutron scattering "or
by NMR methods)3 —i6, i9, 2o CH4 is the one with the
largest tunnel splitting and consequently there is no
example with broader wave functions or smaller
values of A'. In Figs. 2 and 3 we have evaluated Eq.
(4.10) for N =14, its value for CH4. For CD4 or
(NH4)qSnC16 the appropriate value is N =20 which

means that the corrections of order I/N and I/N~ are
even smaller or that the series expansion in terms of
I/N is valid to even larger values of QR.

The intensity ratio of the outer to the inner transi-
tion R = l(A —T)/1(T —F) recently has been deter-

4 4

= 3 XIG,I'- g (G„G, +G, G, )

I
, aa

(4.12)

Expression (4.12) has been evaluated for three dif-
ferent directions of the momentum transfer Q rela-
tive to the equilibrium orientation of the molecule.
The result is shown in Fig. 2. The angular average of
(l]'), over all directions of Q is shown in Fig. 3

where also the zero-order' and first-order approxi-
mation in 1/N to Eq. (4, 10) is given. For Figs. 2 and
3 we have used the average value A =14. %eaa
have also evaluated the angular averages of (b')
for N& T=13.785 and for A'TE=14. 18, but there is
almost no difference. For 0R =2, e.g. , we find
(b')qr/(b') rE =0.999. From all the examples where

'Oinel 3-
aine (i,),0)

(l,0,0)

(1,1,1)

QR

FIG. 2. Inelastic scattering cross section of a XH4
molecule for different directions of Q as a function of the
modulus of 0. The direction of Q is defined relative to the
equilibrium orientation of the molecule in the coordinate
frame of Fig. 1. To obtain a;„,~ the intensities of all transi-

tion lines which are in elastic in low symmetries have been
added. The lines are based on Eq. (4.10) with inclusion of
the terms of order 1/N and 1/N . For the drawing N =14.
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V. SITE SYMMETRIES LOWER THAN Td

4-

Q 3
~inc

FIG. 3. Powder average of the strictly elastic and the ine-

lastic scattering cross section. The different lines correspond
to different approximations in Eq, (4, 10). Dashed line: only
the term of order 1 in the wavy bracket has been used. This
is the 5-function approximation of Ref. 30. Dash-dotted
line: the terms of order 1/N are included. Solid line: con-
tains all terms of order 1/N2.

l

mined rather precisely'9: R =1.40+0.05. For the 6-
function approximation of Ref. 30 the value is 1.25,
as has been remarked in Sec. III. Kith the width
parameters N&, NT, and 4'~ for CH4 it is seen. that
the effective width parameter

2
(N +N ) is smaller

for the T-E transition than for the A-T transition.
The corresponding correction to the value R =1.2S
thus is negative. It is only of the order of a tenth of
a percent but its tendency is to worsen the agreement
with experiment.

In this respect the calculation of Ozaki et al. '

which yields R =1.3 seems to fit the experiment
better. The reason for this better agreement might
be that the wave functions of Ozaki et al. are aniso-
tropic within the potential pockets and that this aniso-
tropy is different for states of different symmetry.

Up to now we have concentrated our attention on
sites with tetrahedral symmetry. The intensity of the
inelastic transitions 3-T and T-E then is b„'+ b~ + b,'.
The summation over the three terms b„2, b~, and b,
largely removes the strong Q dependence of the indi-
vidual terms. The intensity of each single term exhi-
bits an angular modulation by a factor 2 for a fixed
value QR =2. The angular modulation of the sum,
i.e., of the inelastic intensities in Td symmetry
amounts to 15% only. Two conditions should be ful-
filled in a measurement of the angular modulation.
(I) Obviously the inelastic transition of a substance
with low site symmetry should be taken. A possible
example is NH4C104, another one CH4 on grafoil will

be mentioned hereafter. (2) The modulation gets
more pronounced for large momentum transfers.
Here the new backscattering spectrometer of the ILL
in Grenoble should provide the necessary basis.

TABLE IV. CH4 on grafoil. Average of cos[Q ( r
—r&) ] for rotations of the substrate around an axis normal
to the carbon layers. The momentum transfer is parallel or
normal to the layers.

y & (, y and (' W 4 y A (, y or (= 4

0 = 0((p
Q=oqn

Jo(~8/30((R
1

Jo{48/9{7((R)
cos(40gR /3)

Angular modulations of the type just described
have already been observed for oriented samples of
CH4 adsorbed on grafoil. ' The methane molecule on
the grafoil surface feels a trigonal potential with the
threefold symmetry axis normal to the carbon layers.
The vectors n normal to the carbon planes have a
preferred orientation whereas there is complete disor-
der concerning rotations of the planes themselves
around n. Consequently the scattering intensity has
to be averaged over the distribution indicated above.

The calculation can be based on the 5-function ap-
proximation of Ref. 30. There the case of trigonal
symmetry has been discussed extensively (for
NH4C104 with an effective trigonal symmetry —the
small T-state splitting' of 0.15 p,eV was not known
when Ref. 30 was written). Use can be made of
Table VIII of Ref. 30 when the unique axis (the
threefold symmetry axis of the potential) is chosen
along the 4 axis of Fig. 1. The expression

G~G& +G~G&=2cos[Q (r„—r&)]

has to be averaged for rotations around the surface
normal n which is parallel to the 4 axis. The results
of the averaging process which depend on the direc-
tion of Q have been compiled in Table IV for Q
parallel and perpendicular to n. Adding up all contri-
butions from Table VIII of Ref. 30 one obtains the
intensities of all the transition lines. The result com-
pares favorably with the inelastic line intensities ob-
served by Smalley and Thomas. " There is full agree-
ment with respect to the polarization of the scattering
intensities for Q parallel and perpendicular to n.
Also the relative intensities within the single spectra
are well represented by the results of Table IV.

The following is a general discussion of tunneling
states and transition matrix elements in reduced sym-
metry. As long as we deal with tetrahedral
molecules, only the T states are affected by a reduced
site symmetry. In tetrahedral symmetry the T states
are denoted by (P(T ~)) where n = I, 2, and 3 for
functions of T„, T~, and T, symmetry, respectively.
The index j= 1, 2, . . . , E denotes the different trip-
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lets (K =3 for CH4 and K =18 for CD4) of T sym-
metry which can be formed from the spin functions.
For tetrahedral site symmetry the T states are degen-
erate; i.e., the tunneling Harniltonian H,' at a
tetrahedral site in the T subspace is proportional to
the unit matrix; it is thus diagonal in any representa-
tion and we have used the resulting freedom to con-
struct convenient wave functions

~
iP(T I) ) according

to a scheme similar to the one applied for operators
in Eq. (3.6). The degeneracy is removed for reduced
symmetry and transitions which are elastic for
tetrahedral symmetry become inelastic.

This means that the functions
~ Q( T &) ) do not di-

agonalize the tunneling Hamiltonian H, for general
(noncubic) site symmetry

A II

ll

c 0
0
0
0

matrix

TABLE V. Elements of the diagonal matrices A, X, Y,

and Z [Eq. (5.7)] fo'r XH4, c = —.

c
c
c

(e(T.g) IH lie(Tpj)) =(0 )-p . (5.1)

(5.2)

Concerning the spin functions this means that the
tetrahedral states ~ri(T &) ) transform to new states
~X(T &) ) which are adapted to the new symmetry.
For the calculation of transition matrix elements it is
convenient to group the states according to symmetry

(5.3)

with

p, =K(n —1) +j
Equation (5.2) now reads

(5.4)

where ~p) and ~X) are vectors of dimension d =3K
(d =9 for CH4, d =54 for CD4) and R is the super-

The matrix elements (H, ) & only depend on the
overlap of the angular wave function which is the
same for all T states and hence (H, ) & does not
depend on j. The matrix R which diagonalizes H, de-
fines the new eigenvectors

~
X( T &) ) for reduced site

symmetry (and the corresponding energies Er )

R)jE R)2E R)3E
R = R2)E R22E R23E

R3I,E R32E R33E

(5.5)

Cg =R~QR (5.6)

In practice it is more appropriate to start from spin
functions ~q) which are constructed such that they
are symmetrized (i.e., classified according to T„, T»,
and T, ) and eigenfunctions of I, without demanding
that they should be eigenfunctions of I'. For CH4
these functions automatically are eigenfunctions of
I, too. This is not the case for CD4. There one ob-
tains

Aa Zbg Yb,

6= Zb, Aa Xb„

Yby Xb„wa
(5.7)

If transition matrix elements only are calculated for

Here R are the elements of the 3 & 3 transforma-
tion matrix R of Eq. (5.2) and E is the unit matrix of
dimension K.

The matrix R transforms functions ~p) into new
functions

~
h. ) which remain eigenfunctions of I, and

I . New transition matrix elements are calculated by
rotating the submatrix of T to T transitions to the
new matrix

TABLE ~&. Elements of the diagonal matrices A, X, Y, and Z [Eq. (5.7)] for XD4., a = 2, b =1, . c = 2.
3 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A II

XI'I'

Yll

II

—b —b —c —c —c —c 0 0 0
0 b —c —c a —c —b —b 0
0 b a —c —c —c 0 —b —b

0 b —c a —c —c —b 0 c

c
c

c

b
—b
—b
—b

a
c
c
c
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TABLE VII. Intensity of T-T transitions for CH4 (and CD4} for reduced site symmetries: the-

left side refers to a threefold symmetry axis; T~ denotes the nondegenerate level, T2 and T3 the

degenerate ones; the right side refers to a twofold symmetry axis; T&, T2, and T3 denote the states
with energy eigenvalues —5, 0, and +5, respectively. A common factor o-;«/864 has been extracted

14
from both tables. The corresponding tables for CD4 are obtained by multiplication with —.The

intensities of A- T; and E- T; transitions remain unaffected by reduced symmetry.

T3

Ti
T2

T3

63+45jp
9 —9jp
9 —9jp

9 —9jp
54+54jp
18 —18jp

9 —9jp
18 —18jp
54+ 54j

54+ 54jp
27 —27Jp
0

27 —27Jp
27 +81jp
27 —27Jp

0
27 27Jp
54+ 54jp

the z component of the neutron scattering operator,
all four matrices A, X, Y, and Z are diagonal ma-

trices. Their elements are listed explicitly in Tables
V (CH4) and VI (CD4). Obviously they only ac-
count for the scattering without spin flip of the neu-
trons. Intensities are calculated for the transformed
matrix GN by summing over the moduli squared of
all transitions between states with energies E~& and

Eq&. In addition there is spin-flip scattering with
twice the intensity of the non-spin-flip part.

Explicit results shall only be quoted for negligible
180' overlap matrix elements 0„, H~, and 0, and the
following symmetries: (a) for a threefold axis at the
crystal site which yields the relation h~ ~ h2 = h3 = h4

for the 120' overlap matrix elements h;, (b) for a

twofold axis at a crystal site which yields h& = h2
~ h3 = h4. If there are more than two independent
elements h;, the matrix R also depends on the rela-
tive magnitude of the elements h;. Table VII lists the
results for powder samples and the two symmetries
indicated above. Apart from a factor the Q depen-
dence of the pounder averaged intensities is the same
for CH4 and CD4. In case of single crystals the inten-
sities of the transitions can be calculated on the basis
of Tables V and VI. In Ref. 30, where the transi-
tion matrix elements were explicitly calculated for
trigonal symmetry (a), intensities are also listed for a
single crystal with protonated molecules (note correc-
tion in Table VIII of Ref. 30). For a twofold sym-
metry axis, a symmetric splitting into states with

5t
T2

-25& r~

4,3m
4, 2m

222

FIG. 4. Level scheme for the rotational ground state of a tetrahedral molecule at crystal sites with different symmetry (only
the 120' overlap matrix elements h; are included). The reduction of symmetry causes a splitting of the otherwise degenerate T
states. 4 =4h denotes the main splitting, awhile 5~ = h2 —H~ and 52 =2(h~ —h3) refer to the T-state splitting for sites with
three- and twofold symmetry axes, respectively. Transition from A to E states are forbidden, as well as the T&,-T3 transition in

presence of a twofold axis. Except for very low symmetries there is always a pair of transitions with an energy ratio 2:1.
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ET) =5, ET2=0, ET3 —5 results and there is no
transition between the upper state (Er~) and the
lower state (ET3).

We now may ask whether the site symmetry of a
tetrahedron can unambiguously be determined on the
basis of a neutron scattering experiment. No exhaus-
tive discussion shall be attempted. Indicative for the
absence of 180 overlap is a energy ratio 2:1 for tran-
sitions from the 3 state and the E state to an aver-
aged T-state energy (Er-= (E»—+Er2+Er3)]. In

1

this case we may distinguish between four groups of
site symmetries (Fig. 4).

If there is no T-state splitting all h; have the same
magnitude. For only two levels remaining degenerate

three h; have identical values. No unambiguous con-
clusion on the basis of observed energies is possible
for the other two groups of symmetries: a symmetric
splitting (see above) is also possible for site sym-

metry 1. In this case the forbidden transition from
Tf T3 is indicative of the higher symmetry. More
generally this means that intensity information needs
to be included into the considerations. The general
case is described by seven independent parameters
(three H&, four h;). From a neutron scattering ex-
periment four independent pieces of information are
contained in the energies of the tunneling transitions.
In addition there are eight intensities which can be
used if the elastic intensity is measured as well.
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