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Localized vibrational modes in Fermi liquids. General theory
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There exist an abundance of physically realized situations in atomic, chemical, molecular, nuclear, and solid-state
physics which are modeled as a discrete state interacting with a continuum. One of these situations, a localized
oscillator coupled to be the particle-hole excitation continuum of a Fermi liquid, forms the area of inquiry here.
Special emphasis is placed on the electron-hole pair excitations of a metal, although the results are more general. In
particular, an exactly soluble model, in which a localized harmonic oscillator is coupled to the pair-density
fluctuations of a random-phase-approximation Fermi liquid by an interaction linear in both oscillator displacements
and density operators, is considered. It is shown that this model is equivalent to a system of coupled harmonic
oscillators, and, as such, the eigenstates are obtained via a straightforward normal-mode analysis. Expressions for
the local spectral function of the oscillator are obtained in terms of level-snift and broadening functions which are
evaluated in closed form in the density-of-states limit. Parametric calculations for vibrational line shapes are made,
and the results are discussed in terms of "exponential-decay theory. "The general results presented here have direct
bearing in areas such as surface vibrational spectroscopy of adsorbed molecules, metal-hydride spectroscopy, and
surface chemical-reactivity theory,

I. INTRODUCTION

%hen viewed from a field-theoretic point of
view, the basic structure and mathematical con-
tent of theory on a broad spectrum of superficial-
ly unrelated physical phenomena in condensed
matter, chemical, and nuclear physics are often
times quite similar. Consequently, mastery of
the basic theoretical ideas should enable one to
more easily access relevant points for ones own
specialized work from research in other areas.
However, a danger presents itself since field-
theoretic formulations of problems frequently
tend to obscure the inherent physical simplicity
of the model being worked upon.

For reasons to be detailed later, the focus of
inquiry here is on the dynamically coupled system
consisting of a localized vibrating massive part-
icle (atom or molecule) and the electronic excita-
tions of an infinitely (or semi-infinitely) extended
Fermi liquid, within (or upon) which the particle
is embedded (or adsorbed). For present pur-
poses, the Fermi liquid will always be a metal,
adequately thought of as a free-electron gas, in
which case the valence-electron excited states
consist of a discrete collective plasmon (or sur-
face plasmon) with eigenenergy typically in the
5-15-eV range and a continuum of lower-energy
electron-hole pair excitations within the range
P (ur(k) & kv~, where k is the pair wave vector
and v~ the Fermi velocity. Such a division is
meaningful provided the wave number of the ex-
citations is less than some k„roughly of order
of the average inverse interelectron separation
within the electron gas. Since the effects studied
here do not depend upon the interparticle Coulomb

interactions, the final results apply as well to
neutral Fermi systems.

More specifically, the localized particle is im-
agined to undergo harmonic oscillations character-
ized by a "bare" frequency or energy cp =Sp
~ 0.25 eV. Owing to the significant mismatch be-
tween the vibrational and plasmon energies, coup-
ling of the particle motion to the electron-hole
pair excitations is expected to provide the dom-
inant dynamic effect. Regarding the oscillator
as a quantized boson field, the problem is then
one of a spin--,' fermion field coupled to a boson
field by some prescribed, physically meaningful
interaction. Depending upon the details of the in-
teraction which can often be taken as a linear func-
tion of some field variable for each field, this
problem then shows up in many different contexts
such as electron-phonon related phenomena in the
solid state (Refs. l, 3, and 4), 'He-'He mix-
tures, radiationless transitions in chemical phy-
sics, and meson-mediated interactions in nuclear
matter. '

For the electron gas treated within the random-
phase approximation (RPA), the linearly coupled
field problem possesses a particularly simple
mathematical structure which is exactly soluble
(equivalent to a normal-mode analysis) and which
provides clear insights into the physical signif-
icance and origins of the interaction-induced fea-
tures of the coupled fields. ' This can be seen
upon consideration of the physical content of the
RPA which is basically a semiclassical theory in
the sense that those elementary excitations of the
electron gas retained in the theory correspond to
density fluctuations, either single particle-hole
pairs or coherent superpositions of pairs to form
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the collective plasmon mode. ' The individual
particle nature of an electron or hole does not
appear in the theory and any interactions are be-
tween density fluctuations rather than. particles.
Consequently those interaction terms in the in-
teracting electron-gas Hamiltonian which involve
four fermion operations

Vi234aia2a3a4
1,2, 3, 4

are replaced by a bilinear coupling between den-
sity fluctuations

Af2PiP2
eff

1 2

In this form ip; = [p;, H ], the equation of motion for
the density fluctuations is linear in p, and thus
the eigenvalues are obtained by a normal-mode
analysis ' where it is found that the excited eigen-
states correspond to harmonic density oscilla-
tions about the mean electron density. This cor-
respondence has prompted explicit modeling of
the RPA electron gas in terms of quantized Tom-
onaga oscilletors s3tisfying the usuel boson
conditions, and has led to the view of the excited
solid as a weakly interacting gas of boson ex-
citations, hence the descriptive name bosonized
electron gas. What this means for us is that
the problem of a localized oscillator linearly
coupled to the excited states of the electron gas
is equivalent to a problem of coupled harmonic
oscillators and thus is also exactly soluble.

One specific feature of the present problem de-
serves some additional comment. As mentioned
earlier, the low-frequency localized oscillator
is expected to be dynamically coupled most strong-
ly to the continuum of extended electron-hole pair
exeitations of the solid, and as such bears aformal
similarity to other phenomena involving discrete
state mixing with degenerate continua such as the
Anderson model for magnetic impurities, the
Fano configuration-interaction approach to auto-
ionization, the Bixon- Jortner model for intra-
molecular radiationless transitions, "substitu-
tional mass-defect vibrational modes, ' ' polaron
effects in mixed-valence materials, incomplete
relaxation in photoelectron-Auger-x-ray emis-
sion spectroscopy, and chemisorption theory.
As emphasized in the review article by Elliot,
Krumhansl, and Leith, ".. . model Hamiltonians

show that to a good approximation electron,
yhonon, magnon, and exciton problems reduce
to the same formulation. . . . we have noticed
considerable duplication in the timing and
content of ideas put forth by specialists in these
particular topics, and hope by our presentation
to supply the reader with a basis for comparing

the literature of random systems no matter what
the context. " It is in this spirit that this paper
is presented.

The structure of this paper is the following. In
Sec. II, the model Hamiltonian for the system of
localized oscillator and a free-electron gas coup-
led via an interaction linear in both oscillator dis-
placement and electron-gas density fluctuations
is established. In a manner similar to that used
by Dover, ' the exact equations of motion for the
field variables are constructed in Sec. III along
with their RPA reduction. Within this model,
the formal equivalence to a system of coupled
harmonic oscillators is stressed. " The eigen-
values, normal modes, and local spectral prop-
erties are obtained in Sec. IV. Both quasilocal-
ized resonances as well as truly localized modes
are discussed. Section V is devoted to a further
reduction of the spectral functions with a "con-
stant matrix element" or electron-hole pair den-
sity-of-states limit. Parametric calculations
are presented in Sec. VI. General discussion is
offered in Sec. VII.

Specific detailed applications are reserved in
order to minimize obscuring the general features
of the model with the parochial interests of the
writer. Nonetheless we note that the model is
applied to problems associated with infrared '
and electron-energy-loss ' vibrational line shapes
for adsorbates carrying a net electronic charge
as well as for dipole line shapes, hydrogen vi-
brational line shapes in metal hydrides, and
surface-enhanced chemical reactivity theory. "'"

II. MODEL

We consider a theory in which the coupled sys-
tem of electron gas and localized oscillator is
described by the Hamiltonian

H= Z egg~g„-+@(uoB~B + Hi, t',

where the symbols have the usual meaning";
a's and B's are Fermi (electron) and Boson (os-
cillator) operators satisfying anticommutation
and commutation relations, respectively, &g
=k k /2m is the free-electron eigenvalue, ~0 is
the localized oscillator frequency, and the coup-
ling term @„,is to be discussed. Since spin ef-
fects do not appear explicitly in our considera-
tions, their indices will be suppressed hence-
forth.

Closer ties with physical models are possible
if the Hamiltonian is expressed in the representa-
tion of electron-density fluctuations and oscillator
displacements. In terms of the electron oper-
ators, pair creation operators are
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t
p &w a 0 '+a 0

kg k~ k

and density-fluctuation operators

p = a" -a"— p"-k~ k ~ kq

from which it can be seen that a, density fluctua-
tion of wave vector q is a coherent superposition
of electron-hole pairs. In the case of the local-
ized oscillator, the canonically conjugate momen-
ta and displacement are given by"

(4a)

(4b)

with M the "mass" of the oscillating particle. The
simplest physically significant coupling between
fields varies linearly in both oscillator displace-
ments and density fluctuations and has the virtue
of presenting an exactly soluble model within
RPA. ' This is expressed as

(5)

where X; is the "coupling constant" depending
upon the specifics of the system in question. This
will be discussed at an a.ppropriate time. With-
in the (Q, p) representation, Eqs. (1)-(5) give
the model Hamiltonian:

1 I' 2

H= e~- +— —+M&o Q I + X-Qp-.
2 m )k

With pg, =agag or equivalently, in the (a, H) rep-
resentation:

Ekakak+ AcooB B

l &/2
+ & ~

(H'+ H)a- -a- .~
3M&go)

™" '

Equations (6) or (7) characterize the model with
which we will work.

III. EQUATIONS OF MOTION

Having established the relevant Hamiltonian we

now ean proceed to the equations of motion gov-
erning the system dynamics. The Heisenberg
equation for the time-dependent pair operator is,
with Eq. (6),

(6)

Q + (u, Q = —— X~.pg. = ——,A.„".p„- „-, (10)t
kl k, k'

which shows how the oscillator displacement de-
pends upon the pair dynamics through p„- „-.

=p~t„;(f). At this stage, Eqs. (9) and (10) are ex-
act for the linear coupling of Eq. (5). A general
solution of these coupled equations is difficult.
However, a very useful approximate solution can
be obtained by suitably restricting the type of
density fluctuations which one considers. The RPA
represents one exactly soluble model resulting
from an appropriate set of restrictions.

There exist a variety of representations and

derivations for the properties of the RPA electron
gas, all of which must have identical physical con-
tent in spite of their apparent mathematical dis-
similarities. "' ' Here we choose that picture
which emphasizes the analogies between the prop-
erties of the density fluctuations and those of a
harmonically oscillating system, thus facilitating
contact between the bosonized electron gas and

simple mechanical harmonic oscillators. '
Within the present context, the RPA is intro-

duced in the following way: From Eqs. (2) and (3)
it is noted that k and q can take on any values.
The RPA places a restriction on the allowed values
by retaining only those terms in the unrestricted
k sum of Eq. (3) which correspond to creation of
a hole within (outside) and of an electron outside
(within) the Fermi sphere. The scattering of an
electron or hole from one state to another, both
states being outside (within), are not considered.
Thus the RPA version of the density-fluctuation
operator, Eq. (3), is written as

a- -a- +
l kl &P& I'k l &P~

l k+q l &g&

akyqak ~

The second ingredient of the RPA is the assumption
that the pair states [Eq. (2)] can be regarded as

Expressing the pair- and density-fluctuation oper-
ators in terms of Fermi operators as in Eqs. (3)
and (3) and evaluating the commutators using the
anticommutation relations

(0/i Qj]= 5j, j'y (tlap Qj] = [Qjy 0j]'=0 p

Eq. (6) can be cast into the form

0 t ~ ~g~
~pea k7oka ~ @ (Pk, .k'+q ok-k', k'+8

where h~'k;-= e;„--ek- is the unperturbed electron-
hole pair energy . Since Q=@(t) in Eq. (9), an
oscillator equation is also required. The Hamil-
ton equations Q = BH/sI' and I' =-BH/BQ, with H

given by Eq. (6), provide



I654 J. W. GAD ZUK

distinct entities obeying boson commutation rela-
tions

[PH~»'~']=5i i 5g g
~ ~

[pg;, pg; ]= [pg;, p„-.;]=0. (12)

Physically this implies that an electron-hole pair
propagates as a unit and does not exchange elec-
trons or holes with other pairs. Although the
Pauli principle is mildly violated by this assump-
tion, this will not lead to any significant con-
sequences as long as the number of pair excita-
tions is small relative to the number of states
within the Fermi sphere. This is always so when-
ever the interaction energy responsible for the
pair excitations is small relative to the Fermi
energy. Note that it is this step of bosonizing the
pairs, and thus density' fluctuations, which per-
mits replacement of interaction terms containing
four Fermion operators by effective perturbations
with two boson operators, thus reducing the prob-
lem to that of a normal-mode analysis. '

With regards to the linear coupling, incorpora-
tion of Eqs. (11) and (12) in Eq. (5) yields the
RPA interaction between the localized oscillator
and the host electron-hole pairs:

ff" "= Z ~-Q(p-+p --)RPA

II»l &S~
, l Pal &s z

Bookkeeping is made easier by introducing the
operator

A»» P»»+ P» w

kq kq -k-q

(13)

(14)

~ 'f pgA»»+ (d "~A "» -2$ Cg "»«
kq kq kq q kq ~

and

(15a)

+ (soy = —(Oo kq
I kl&Pp

Ik+qi &P+

(15b)

which are just a set of coupled harmonic oscilla-
tor equations. In obtaining Eq. (15), we have used
the fact that Ak--= pk;-+ p „- - together with the

't ="'
Heisenberg equation ihp = [p, H] and p given by
Eqs. (9) and (13}. The physical picture repre-
sented by Eq. (15a) is one in which the initially
uncoupled pair oscillators are driven by a force
that is proportional to the displacement of a lo-
calized discrete oscillator. However, from Eq.
(15b), the displacement of the localized oscillator
depends upon the force due to all the electron-
hole pairs and it is through the mediation by the

and rescaling the oscillator displacement through

Q -=x,p and X; =-BX;/~, where X, -=(5/M~ )'~'. Equa-
tions (9) and (10), with the RPA interaction of Eq.
(13), are then easily manipulated into the form

localized oscillator that the original independent
electron-hole pairs couple. Nonetheless, the
linear interaction permits diagonalization of the
set of Eqs. (15a) and (15b), in terms of delocalized
normal modes composed of an admixture of elec-
tron-hole pairs and localized oscillations, with
the degree of relative admixture varying with
energy of the normal modes in a way yet to be
determined. Visually we can imagine a localized
oscillator dressed by a cloud of virtual pairs to
form a distinct eigenstate, very similar to a
polaron, but with pairs rather than phonons as
the virtual bosons. The eigenvalues and local
spectral characteristics must now be determined.

IV. SOLUTION

Analysis of the eigenstates of a system consist-
ing of a localized discrete state interacting with
a continuun1 has been carried out within several
different contexts. 5 A common feature of all
problems of this type is that two forms of eigen-
states obtain. The discrete state is displaced
down in energy (red shift} by interaction with
higher-lying unperturbed continuum states and
up (blue shift) by the lower-lying continuum states.
Depending upon the net effect, new eigenstates
may be pushed above or below the continuum if
either the continuum or the coupling constant A.;
is bounded. Under these circumstances truly lo-
calized states (of the Koster-Slater type2 ) for the
coupled system are possible. More germane for
present purposes are the cases j,n which the dis-
crete state remains degenerate with the perturbed
continuum, in which case resonance "states"
are formed. The discrete state appears to be
shifted and broadened into a narrow band due to
the coupling with the continuum.

The acquisition of a "width" is frequently (and
somewhat misleadingly) interpreted as a mani-
festation of an energy decay process between ap-
proximate system eigenstates. For a true decay
process, energy must be transferred from the
system undergoing the transition to another body,
heat sink, or some other field. In the case of
resonance states, the eigenstates are delocalized
over the entire normalization volume of the sys-
tem with some states having greater amplitude
than others in the vicinity of the localized per-
turbation. The local density of states or spectral
function is a measure of the relative amplitudes
of system states at the localized center. In its
most simple form, this function will be a bell-
shaped curve such as a I orentzian (for unbounded
continua and uniform coupling constants ), peaked
near the unperturbed discrete-state energy. How-
ever, the width is not a measure of a decay time
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between "eigenstates"; rather it is a measure of
the distribution of eigenstates required to form a
localized wave packet on the scattering center.
One can view a localized resonance as consisting
of an initially coherent superposition of a little
bit of many states. From this point of view, the
width then relates to the timeseale over which
this spatial coherence is lost. For the pm'e
harmonic system which we have considered, an
initial localized disturbance will at first spread
throughout the system. However, if the system
is finite in extent (as all real systems are),
eventually the initial state will be restored, at
which time the cycle repeats itself. In practice,
this recurrence time is usually so much larger
than all other relevant time scales that any pos-
sible manifestations of the recurrence are neg-
lected in approximate theoretical treatments. The
omitting of reeurrences together with the inclu-
sion of anharmonic effects, present in nature but
not in our model, are required if truly irrevers-
ible decay is to be handled within the model. In

other words, discrete-state coupling with a con-
tinuum by itself does not necessarily imply the
irreversible behavior commonly associated with

energy decay. ' In order to clearly differen-
tiate between truly irreversible energy decay and

cyclic energy migration throughout a complicated
but nonetheless harmonic system, we have chosen
to present the theory of the discrete oscillator
coupled to host electron-hole pair excitations in
terms of exactly soluble normal modes.

The solution will now be obtained in the spirit
of Mahan's discussion' of Fano theory. The
pair operators and oscillator displacements are
written as normal-mode expansions

2X mq-Ql
Q

ww
l kg

(18)

which with Eq. (17b) yields the formal result

iX-I 2ro--2

((d~ (do) = &0 g
2 02
l kg

(19)

„=6', O2 +imZ(~, )&(&u', &uP) (20)
l kqkq,

in Eq. (19), where 6' represents a principal-part
integration and Z((u, ), related to the residue at the
pole, may be complex. In anticipation of the final
result, the suggestive definitions of level shift and
broadening functions

and

k, q kq

(21a)

(~r)—= ~ Q l~ I22(u-„'-&((o', -(A-')
k, g

(21b)

combined with Eqs. (19) and (20), and solved for
Z(~, ), give

(do h(Q3))
(22)

Special attention must be given to those pair states
in the summation for which the energy denominator
vanishes. Following Dirac, '~ we introduce a yet-
to-be-determined quantity Z(~, ) through the re-
placement

and

A-gt) = —e'"
l

(16a)
This object can be related to physical quantities
by consideration of the eigenvectors or normal
modes, formed as linear combinations of localized
oscillator displacements and pair fluctuations

p(t) =Q b, e'"&' . (16b) ( /

(,(t) =q,
~~

be" eQe,e;;,e' '),
w

k, q

(23)

a- (-(u +(o-)=-2X~-+2 02 0
kg& l l kq q kg l (17a)

b, ( ~, + (u, ) = —(o,~-X;ag, ,2 2 = (17b)

where the prime on the summation of Eq. (17b)
represents the restricted sum

~

k
~
&P~,

~
k+ q ~

&Pz. From Eq. (17a),

Insertion of Eqs. (16) in (15) generates a set of /

coupled algebraic equations for the coefficients
Qkq l and ~l ~

='gl 'gli 5l 5li + ~ 0 Qkw lg
kq, l

k, q

(24)

using also the orthogonality of pair states. Equa-
tions (18), (20), and (24) can be written as

where b, and ak-;, are the contributions of the os-
cillators and pairs, respectively, to the 1th norm-
al mode, and g, is an appropriate normalization.
Normalizing the eigenvectors "per unit energy, "
orthogonality and Eq. (23) yield

&&ilier & =6(~~ —~r )
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Il(ter rr)r)r)r lt r(r I)+F~X~4sN-' tp

k, q kq

which is well behaved except for the double singularity associated with the product of the two principal-
part terms. This is dealt with by using the identity"

(26)

.and the equivalence

kq ~ (d& —hl- ~ (d&& —(d-„»

= gf(kq)5(~', -~', )5(~', —~,",). (27)
kq

Use of Eqs. (2lb), (26), and (27) in (25) with v,
= &a, , (i.e., keeping terms proportional to the delta
function) gives

~51OC~ 2(d Q(f(~ ))

2(do ~ (d& —(d&

df((d, )
'

g ( f (v &~co~) ~0

or explicitly

~tlcc)2 0 I 0
(d 2(d dc'

x 5(()) [M +Q) p((() )] ) (30)

I~ I'= (', .»+IC(»I*)C(. ))

Requiring

d(d = ].
0

and placing Eq. (22) in Eq. (28) produces the final
expression for the local vibrational spectrum of
the quasilocalized oscillator resonance:

2 (()c D((dl)
( )'"-.['- '- J( )j"[ ( )]' '- '

(2S)

with A(v, ) and 4((d, ) given by Eqs. (21a) and (21b).
As already noted, truly localized states can also

form. The signature for these states is that b, (&u, )- 0 in the energy region in which (d', = &u', + &u, A((u, ).
The first of these conditions is met, from Eq.
(21b), if either the coupling constant X; vanishes
for states in which ~', = (d-„or if the continuum is
bounded such that the sum on k, q does not extend
into this region. Whether such a state forms then
depends upon the proximity of (d, to , or upon the
strength of the coupling and thus level shift A((d, ).
The spectral weight for the localized state is de-
termined by rewriting Eq. (2S) as

[bI I'=—' llm
h(td )~0

~ ~
X

f(ai) —(ra, rr(ia, ) f(rd, )+(rr, rr(rd, ))

with f(&,)—= v', -&u,'—&,&(&,). The pole terms give

where the transcendental equation for f(&u, ) =0
must be solved in some convenient manner after
the specifics of the mixing interaction are set.
For our purposes, Eqs. (21), (29), and (30) con-
stitute the formal solution to the problem.

V. DENSITY-OF-STATES LIMIT

A particularly neat explicit solution to the prob-
lem follows when the coupling constant (or matrix
element) can be replaced by some angle-averaged
value in which the q dependence is approximately
dealt with by mapping X; onto some energy depen-
dent X(e). The usual prescription is to take &((d
~ e,) =R, a constant, and A (&u & v, ) =0, where &, is
a cutoff energy estimated from the range and/or
strength of the interaction, provided If&, ez(Hefs.
12, 33, and 35) where c~ is the Fermi energy In.
addition, for pair states with excitation energy
less than =e„, the k, q sums in Eq. (21) can be re-
placed by frequency integrals, that is

g f(~;)=jf(~)(r(~)&~, (31)
k, q

where p(~) =Q'~; 5(&u —(d-„', ) is the pair excitation
density of states. As detailed elsewhere, "for
~ ~ ~~, p(&u) is well represented by

P((d) =KPC CO, (32)

where p, is the Fermi-level electron density of
states in units of states per eV per atom, and p(~)
is in units of states per frequency per atom.

Within the framework just outlined, X; appearing
in Eqs. (2la) and (21b) can be pulled out of the
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summation. Then Eqs. (21b), (Sl), and (32) com-
bine to give for the level-width function

a(td, ) = 2m }x}'f p(td)ldll(td', -aP)d~
0

74 pi I}c.
I

cd» (dc
~~ cd

0, (d & 40

Similarly, the level-shift function is

and

A((d )=CCd = ——t A
7T (d

r
—

r 2' C

(35b)

with C =—7ch'p2
I
}c

I

'. From Eq. (35a), note that
A(cd, ) is always negative for cd, /cd, «1 and that

F

the avidth & is of order cd, /cd, (typically -0.1 to
-0.01) smatlex than the "level shift "Eq.uations
(29), (33), and (34) [(or 35a) and (35b)] also show
the following qualitative features:

=25'p', I}cI'cd, —1+——' ln ' ', (34)

valid for all &r except in the vicinity of the +r =&,
singularity, which is a sharp-cutoff artifact.

It is instructive to consider some qualitative
features of the spectral distribution for the quasi-
localized resonance which follow from Eqs. (29),
(33), and (34). The situation is shown in Fig. 1,
where the cutoff continuum with linear density of
states representing the pair excitations, interacts
with the discrete. state at &0 to form the local
spectral distribution on the right. Typically, 5+0
& 0.2 eV, whereas &,-1-10 eV. Thus the net
downward repulsion of continuum states in the
range +0& &&(d, dominates over the upward push
from the 0&&&&0 states. Consequently, the reso-
nance peak is depressed or red shifted from its
noninteracting value and this would appear as a

/

softening of vibrational frequencies. In any event,
near the resonance &r -(d0+&(d with && «&0 so the
quantity x = cd, /cd, "- cd, /cd, «1. Performing a
small-x expansion on A(cd, ), given by Eq. (34), .one
obtains

Cd
~ Cd& 0

p„,((d, ) - C,'1/Cd „Cdo 6 CdC «Cd,
-2

I
in —,Cd Cd

which are indicated in Fig. 1. awhile this line
shape is far from Lorentzian, many of the inter-
esting departures appear in the wings which is that
part of the spectrum usually obscured by "back-
ground" in an actual experiment. One may then
wonder, to what extent naive application of "ex-
ponential-decay perturbation theory" produces an
acceptable line shape. The standard Lorentzian
result follows from the following steps. First the
physically significant RPA interaction, Eq. (13),
which varies linearly with oscillator and pair dis-
placement is replaced by the simpler transfer in-
teraction

HInt — jh. BP "+8 P
4c

in which products of two creation or annihilation
operators are neglected. Standard Anderson-mod-
el analysis" then yields the local density of states

(d
limA(cd, ) =—Ccd, -1+++~ ~ ~

I

~ 0 'tt ' ~c ]
(35a)

with

1 AZ, ((dC)

7f [CdC —Cdo —A&((dC)] + A&(CdC)
(36a)

~ ~C}I I (dc -(d(I}
A~ (td, ) = a' (Z - ', ) (36b)

CONTINUUM DISCRETE STATE

5w &0

P„,(~, )

RESONANCE

(36c)b, (cd, )= v Ix;I'5(cd, —cd-„;)
k~

which is Lorentzian if the frequency dependence
of A~ (cd, ) and A(cd, ) can be neglected. Further-
more, in the density-of-states limit,

FIG. 1. Schematic display of a localized state with
frequency &0 interacting with a bounded continuum
(0 +g +~,) whose density of states varies linearly with

As shown, the continuum states» coo (co & coo) red
shift (blue shift) the discrete state. The resulting local
spectral function for the discrete state is shown on the
right where various qualitative features of the perturbed
state are labeled.

~, (~ ) = n'p,* l~l'~, (-(+ »' ~"*
)C r

I'7}'h p~ I}cI cdc, cdc ~ cd~

AS(~c) =
S

0, (dr ~ chic

which for small x = cd, /cd, = cd,/cd„become
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VI. NUMERICAL RESULTS

At this point it seems worthwhile to explore the
nature of the numerical consequences of the model
presented here. The basic quantity which is of
interest is the spectral function, Eq. (29), which
is in one-to-one correspondence with line shapes
measured in vibrational spectroscopy. %e will
restrict considerations to the density-of-states
limited model so that the level-width and -shift
functions are given by Eqs. (33) and (34), respec-
tively. In Sec. VIA, the problem will be set up
for numerical evaluation and a rough argument
providing a connection between the coupling con-
stant and physical properties of the system will
be given. Section VIB pertains both to line shapes
evaluated with parameters in the range likely to
be relevant for vibrational spectroscopy of molec-
ular oscillators in or on real metals, as well as
line shapes over a broader range of parameters
chosen to illustrate the variety of solutions pos-
sible.

A. Generalities

For numerical studies, it is most convenient
to express the spectral function and frequency
variables in dimensionless form. Introducing the
quantities

x = (d(/(d

y —= (do/(d

C-=~5'p,' Pi',

(37a)

(37b)

(37c)

lim„.,A~(~, ) =-,' A{~,) = C~,/v and A~{to, ) = A{~,)
from Eqs. (35a) and (35b). Thus the Lorentzian
peak is shifted by A(ur, )/2 from the unperturbed
frequency. For comparison, the exact peak posi-
tion (for constant A and &) from Eq. (29) occurs
at

~& = &0[1+ A(&u, )/ufo]~2

(00[1 +~2 A(4) )/Q70 8 A {(d )/(00+ ~ ~ ~ ]
which is identical to leading order in A. The full
width at half maximum (FWHM) from Eq. (29) is
AmsM= A(~, )[1—A{a&,)/2&v, + ~ ~ ~ ] which is only
slightly more narrow than the I orentzian width
Az(ur, ). This exercise suggests that for weak-in-
teraction phenomonon which do not depend strongly
on the details of the line shape other than peak
position and width, exponential-decay theory
should provide an adequate algebraic if not phy-
sical representation. "

the width and shift functions [Eqs. (33) and (34)]
are

6 ((d&) = C(d x (38a)

A(tu, ) =-Ccu, f(x) = ' f(x)
2 2A ((g, )

7r 7rx

with

(38b)

(0 & x & 1) (39)

where x is the frequency variable and the param-
eters y and C specify the unperturbed oscillator
frequency and coupling strengths, respectively.

The frequency variation of the level-shift oper-
ator is given by f(x) which is plotted in Fig. 2.
Note that for x&0.83, the shift is negative. As
already mentioned, the divergence at x = 1 is an
artifact which would be replaced by a large but
finite functional form if the sharp cutoff was sof-
tened. The asymptotic lim„», x'f(x) =3 just reflects
the fact that high-frequency oscillators (&u, » +,)
basically see the pair continuum as a static entity
and thus the level-shift function becomes frequency
independent as it approaches zero.

One condition for sharp structure to appear in
the local spectral function is for the approximate
eigenvalue condition x'ly -y —(2/~)cf(x) =0 in Eq.
(39) to be satisfied. Defining g(x;y, C) —= (~/2C)
x (x'ly -y), this is equivalent to f(x) =g(x;y, C). The
quantity (2C/x)g(x;y, C) is also drawn in Fig. 2
for various values of y. In the special case in
which C = n/2, the intersections of these curves
with f(x) denote the positions of possible reso-
nances or true localized states if x, &1. With
arbitrary C, the g(x;y, C) curves must be re-
scaled.

A semiquantitative feel for the numerical range
of coupling constants in physically significant
situations is easily arrived at. As it now stands,
the coupling constant is

x 1+x
f(x) = —1+—ln—

2 1-x
where the continuum falls in the range 0~ x & 1
and truly localized states [Eq. (30)] occur only
for x&1. In terms of Eqs. (37) and (38), the quasi-
localized oscillator spectral functions, Eq. (29)
is written as

p.„(x;y, C) Cx
&o

i
—-y cf(x) —+—C x

Ey 7r

po = 2/7Hd (37d) where (5/Me, P '-=x, is the rms zero-point local-
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FIG. 2. Plot of the level-shift function f(x) = 7t A(x)/
2C(d, as a functionof x (heavyline). The continuum lies in
the range 0 &x &1. Also shown are the curves 2Cg(s;y, C)/
m treatingy parametrically. For the case in which C = 7l/2,
the intersection of g and f occurs at the discrete-state
eigenenergy.

ized oscillator amplitude and

2R, 12 (a, R.)
where a, = 2 95/r,'~' A. ' is the Fermi- Thomas
screening parameter. With BV/BQ= (fe)'/2R, ',
Eqs. (40)-(42) yield

(42)

(43)

where V(Q;[p]) is the self-consistently screened
Coulomb interaction between the oscillating parti-
cle and the density fluctuations. " As written
above, Eq. (40) has dimensions of angular fre-
quency. For the simplest case of an oscillating
"atom" carrying a net charge =fe and with an ef-
fective radius R, for the screening charge (=va-
lence-shell radius for atoms with unfilled shells,
=radius of lowest unoccupied shell for closed-
shell atoms"), the metallically screened interac-
tion is"

(fe)ss, 2, 2s~,

which with f= 1, x, = 0.1 A, and 8, =1 A gives
X-0.735 eV/5', which is a reasonable upper limit.
Use of this estimate in Eq. (37c) gives an upper
limit g„pp —-1.7p,„with p, in units of states per
atom per e7. The Fermi-level density of states
has variations between 0.27 eV ' for Ag, -0.4
eV ' for Al and other free-electronlike materials,
and up to -4.06 eV ' for Ni and other transition
metals. " Thus depending upon the host material,

pp could fall within the range 0 1 6 'Q pp 6 30,
all things other than the Fermi-level density of
states being equal.

In fact, this substantial variation could provide
the experimental means for ascertaining the im-
portance of electron-hole pair coupling to local-
ized oscillators. In alloy systems showing strong
changes in Fermi-level electronic structure as a
result of modest compositional changes, vibra-
tional spectroscopy line-shape analysis of im-
planted oscillators as a function of matrix com-
position seems to be a promising direction. Fi-
nally, a cautionary flag must be raised concern-
ing the actual values for coupling constants. The
numbers just obtained are maximum possible
values within the realm of physical intuition or
simple modeling, under ideal (although not out-
landish) circumstances. Values appropriate to
experimentally realized situations could be much
smaller. Since quantitatively meaningful calcula-
tion of these quantities is unlikely, the most prof-
itable direction for data analysis is in the answer-
ing of questions such as those of self-consistency
between observed level shifts and linewidths, "
both dependent on the same coupling mechanism
(if the proposed pair scheme dominates). Model
theory such as the present one provides the links
between shifts, widths, and general line shapes.

B. Results

Examples of some spectral distributions given
by Eqs. (38) and (39) choosing a range of param-
eters likely to apply to conventional vibrational
spectroscopy are shown in Figs. 3 and 4. In both
eases, the interaction parameter t" is sufficiently
small that the curves are well represented by a
two-parameter bell-shaped function. Of course
the parameters are functions of the interaction
strength, as shown in the insets. Both the peak
displacement gu and the FWHM were determined
numerically. No significant departure from the
linear relation 1'», ~t" was noted and g& broke
off from a linear dependence only as the value of
Q approached and exceeded that of y. Significant
frequency red shifts bx/y =Zu2/u&, of the order
1-10% were obtained as a result of the discrete
oscillator state (with frequency near the bottom
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of the linearly varying continuum) mixing with the
electron-hole pair continuum. This conclusion is
reasonably general, independent of specific pa-
rameter values, and should have a good deal of
relevance in the interpretation of vibrational spec-
tra of adsorbed or embedded molecules,

In actual practice, orthodox vibrational spec-
troscopy typically shows a linewidth" & -1-5 meV
which implies from Eqs. (37a) and (38a), that
C -g/cu, -0.01-0.1, with ha&, -0.1 eV. In addition,
frequency decreases by as much as 50 meV are
observed for some modes. 4' If for the sake of
this exercise we assume that the pair mechanism
is responsible for this behavior, then the shift
-A/2= C&u, /a = 50 meV requires a cutoff falling
in the range 1.5 ega k~, &15 eV using the values
of Q implied by the width. Certainly the values
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FIG. 4. Same as Fig. 3 but with y=0.1.
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FIG. 3. Localized spectral function, from Eqs. (38)
and (39), for parameters within the domain of conven-
tional vibrational spectroscopy. Here y=0.01. The
inset shows the level shift and width as a function of the
interaction parameter C=wk p, P~ . Note the brea. ks in
the x axis.

for C inferred from Eqs. (37c) and (43) and for
@(d, given by the conditions of the model, fall with-
in the highly acceptable range required for com-
patibility with experimentally observed line
shapes. Thus at least the present model is in-
ternally self-consistent in that it produces line
shapes with the correct combinations of shifts and
widths, based on a choice of parameters expected
from a physically reasonable model.

In the analysis of vibrational spectra, the state
of the chemical environment (bonding sites and/or
bonding orbitals) of an adsorbed or embedded mol-
ecule is often inferred from observed shifts of
the order of 1/p. As has been shown here, at least
that order of red shift is to be expected from the
oscillator interaction with the bounded pair contin-
uum, independent of the chemical effects, sug-
gesting that a proper data analysis must take both
effects into account on an equal footing. In fact,
one of the more significant general points of this
exercise is this realization that the discrete-
state-continuum interaction produces such a large
shift even when the apparent broadening (or "life-
time decay width" ) is negligibly small. In other
words, when the oscillator frequency lies near
the lower edge of a continuum characterized by
the linear density of states, as depicted in Fig. 1,
the dominant observable effect due to the electron-
hole pairs, is a significant softening of the oscil-
lator frequency which, on the 1-10% level, can-
not be ignored, even if the vibrational width due
to pair interactions is much smaller.

For the sake of completeness, line shapes ob-
tained from Eq. (39) for choices of parameters

y and C which yield spectral distributions spread
out over a frequency range comparable with the
continuum are shown in Figs. 5 and 6. In Fig. 5,
the y =0.5 state is still far enough below the
x = 0.83 point where A(x) = 0 that it sees a basically
red-shifting interaction with the continuum that
pushes the state down into the small-level-width
region [b, (&u, ) = C&u, ]. Consequently, an eyeball
analysis of the curves yields a bell shape. Quan-
titatively this is not so accurate, as illustrated
by the nonlinear variations of 4w and I', &, in the
inset. In addition, we can see the initial linear
variation of R vs x for Q = 0.5, which is certainly
not indicative of a Lorentzian. Another aspect is
illustrated in Fig. 6 near the upper cutoff of the
continuum x-1. For the weakest interaction
shown, that is C =0.1, R(x) monotonically de-
creases and goes to zero as tin(1/(1-x)] '. How-
ever, as the interaction and thus Q increases, a
pileup of states occurs near but within the con-
tinuum edge as shown in the g = 0.25 curve. As
the interaction is further increased, these states
push out above the continuum forming the true
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sented which illustrate these points. While at-
tempts have been made here to place the general
results within the context of an experimental
world, specific applications of this theory to vi-

brational spectroscopy of adsorbed atoms and
molecules and metallic hydrides and surface re-
activity theory have been reserved for a later
paper. '4
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