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Core polarization and the equation of state of potassium
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We calculate the zero-temperature equation of state of potassium with a model Hamil-

tonian that includes core-polarization effects. Density fluctuations in the ion cores lead to
van der Waals interactions that are dynamically screened by the valence electrons. They
also lead to screening of other static interactions, effects that are incorporated through the

use of a background dielectric function e, (q). Inclusion of core-polarization effects yields

significant improvement between the theoretical and experimental equations of state, partic-

ularly at high pressures.

I. INTRODUCTION

In calculations of the thermodynamic functions
of the simple metals it is common to assume that
core-polarization effects can be neglected, an as-

sumption that is normally justified on the grounds
that the electrons in the corresponding ions are
tightly bound and in consequence not significantly
polarizable. It then follows that the dispersion
forces and the effects of any background dielectric
shielding associated with the internal structure of
the ions should be small, at least in comparison
with the much stronger Coulomb interactions and
electron-gas properties. Under normal conditions
these assumptions are usually valid: The screened
van der Waals interactions, for example, produce
only a slight softening of the replusive part of the
pseudopotential-derived ion-ion potential. At high

pressures, however, where interionic separations are
much reduced, the softening of such potentials can
have noticeable effects, as we shall see here. In ad-

dition, the likely importance of the background
screening can be gauged by examining the quantity

e, (0) = 1 + 4trn;a, where a is an ionic polarizabil-

ity and n; is the ionic number density. In the alkali
metal series this does not depart appreciably from
unity (the range is about 1.01 —1.27); nevertheless,
such departures can lead to quite significant correc-
tions to the various terms comprising the total ener-

gy of a metal, particularly at high pressure where

n; has been increased.
In a previous paper (referred to as I) we derived

a model Hamiltonian to treat the problem of a sys-

tem of interacting dipoles and electrons for use in

the calculation of thermodynamic and structural
properties of simple metals. It was shown there

that the collective core-core excitations give rise to
screened polarization waves, and the lowest-order

dispersion forces associated with these waves are the
screened van der Waals interactions. It was also
shown that in addition to participating in physical
processes involving collective excitation and dynam-

ic screening, the polarizable ions screen all the static
interactions. At the microscopic level the system of
ions constitutes an inhomogeneous dielectric which
for long-ranged interactions in situations of high

symmetry may be reasonably well approximated by
a dielectric continuum with dielectric function e, (q).
In this paper we shall apply the principal results of
I to be the case of potassium which has a rather
substantial ionic polarizability (see Table II of Ref.
1). It also has a high compressibility which makes
it well suited to the present calculation.

The paper is orgainized as follows: In Sec. II, the

key results for the total energy of a simple metal
with polarizable ions are restated. In Sec. III we in-

torduce the additional approximation needed to
evaluate the zero-temperature isotherm. This re-

quires us to address the form of the static back-
ground dielectric function e, (q) for a dielectric con-
tinuum representing the ions, as well as the atomic
polarizabilities themselves. The results are discussed
in Sec. IV.

At high compression the effects we are discussing
are quite significant, as will be seen. It should be
noted here that by ignoring core-polarization effects
entirely it is still quite possible to obtain a detailed
quantitative description of the elastic properties of
the alkali metals ' using pseudopotential methods.
We shall see below that the explanation for this
minor paradox is simply the observation that for
modest compressions the correction terms arising
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from core polarization effects can be almost entirely
absorbed into the standard zero pressure fitting pro-
cedure in which the aggregate of all long-wavelength
terms is adjusted to an experimental datum. The
volume dependence of the core-polarization terms
is, however, suAiciently different that under more
extreme circumstances, such as the treatment of
shock Hugoniots and the determination of
Griineisen parameters, this procedure may require
reexamination.

II. GROUND-STATE ENERGY
OF A SIMPLE METAL

(la)

(lb)

(lc)

We shall neglect the energy associated with the
nuclear degrees of freedom: The Hamiltonian for a
simple metal of valence Z and of volume 0 whose
ions are polarizable can then be written'

u, (q)

q~0

u„,(q) „,.
o Qe, (q)

+ —, g [p'(q)p ( —q) —N]
~o Qe, (q)

As described in I the terms here have the following
meaning: Term (la) is the Hamiltonian of an in-
teracting electron gas in a neutralizing dielectric
continuum with dielectric constant e, (q). The
valence-electron density operator is p"( q) =g,.e
the Coulomb interaction is U, (q) = 4ne /q
Term (lb) is a characteristic pseudopotential form
for the interaction between the valence electrons and
the ions, but modified here to incorporate the effects
of the dielectric continuum. The pseudopotential
U~,(q) used in (lb) is assumed local; note that the
ion density operator is p~(q) = g Re'q'R. Term

(lc) is the Coulomb energy of point charges, also in
the dielectric continuum. The terms in (ld) are,
respectively, the sum of all q = 0 terms and the
screened van der Waals interactions. As is well
known, Ep has an inverse volume dependence: If
n„ is the mean valence electron density, it can be
written as

a e

4~r, /3 2ap

where

r,a 0
——(3/4m n„)'~

+ NZEO+ —, g '$L (R —R')
R, R'

(ld) The screened fluctuating dipole interaction between
ions is '

pl (r) = f ao(iu)

'2 '2
8 u(r, iu) 2 Bu(r, iu)

Qr 2
+-

Br

where

d q up (q)
U(r, iu) = e'~'

(p~)3 e«(q, iu)

the quantity e«(q, co) being the wave-number- and
frequency-dependent dielectric function of the in-

teracting electron gas.
Perturbation theory can be applied in a straight-

forward manner to (1). The contributions to the
ground-state energy are then: (a) the corrected ener-

gy of the interacting electron gas, which in Ry per
electron, is

2

X S«(q) le. (q) —1]w 2II «c
(4c)

E~ =A+EM
where

n Z'~'

(5a)

and where S,s(q) is the static structure factor of the
interacting electron gas; (b) the corrected Madelung
energy

E,g ——E,g+ E EM =—
rs

(Sb)

where

2.21

rs

0.916
COIT

rs
(4b)

—g ZU, (q)S;,„(q)[e, '(q) —1]
q+p

(5c)

and 5;,„is the ensemble averaged ionic structure
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factor; (c} the corrected band-structure energy

2

Eas = — Q X"(q)&;„(q),(p) 1 NZ ups(q)

2 0 eq)

where X (q) is the first-order polarizability of the in-

teracting electron gas; and (d) the aggregate of all

q = 0 terms, as given by (2). If these terms are aug-
mented by the screened fluctuating dipole interac-
tions, the total static lattice ground-state energy can
be written

E(r, ) = NZ(E, s + EM + EBs + Ep)

g pl. (R —R'}
R, R'

Here the band-structure energy has been calculated
to second order in the electron-ion pseudopotential.
For monovalent metals (such as potassium) this
neglect of higher-order band-structure energy terms
is satisfactory. ' The corrections associated with

e, (q) are also calculated within a linear response
framework, again a reasonable approximation since
the eA'ects we are incorporating here are, in any
event, fairly small.

III. ZERO-TEMPERATURE ISOTHERM

In the opposite limit (q & 2~/d, where d is an ionic
diameter) we make a local-density approximation,
taking the large wave-vector limit of the Lindhard
result'

e 4
2kF'

e, (q) = 1+ 1

3mkF'ao

Here kF is a characteristic Fermi wave vector corre-
sponding to a locally uniform core-electron density

n, Let x .= (q/2kF); then for Z = 1, a simple in-

terpolation between (8) and (9) is

If F is the Helmholtz free energy of a system of
N particles at temperature T, then the pressure is

p = —(BF/BQ)r ~. At T = 0, F = E, which is
given by (7). The various contributions to E require
the averaged core-dielectric function e, (q), the
frequency-dependent valence-electron dielectric
function e(q,co), the frequency-dependent ionic po-
larizability a(co), and the valence-electron static
response functions.

Provided the background dielectric constant
e, (q = 0) is reasonably close to unity, as is the case
here, we may neglect local-field corrections and
write, as earlier

e, (q) = 1~4mn;a(0) (q~0) . (8)

e, (q) = 1+.4mn;a(0) 1+ 4
n,

a(0)
(k )4 4

ao
(10)

where a(0) = a(co = 0) and kI = 3n n„(u refers to the valence dectrons). This form for e, (q) is similar to
the wave-vector-dependent dielectric functions used in semiconductors and other narrow-gap insulators. " It is
plotted in Fig. 1 for the choice' a(0) = 0.9 A and'3 n, = gn„

To evaluate the correction to the standard electron-gas energy, we note that the second term of (4) can be
identified as one-body and two-body contributions, that is,

1 2 1 1g u~, (q) —120- o
~'

u, (q) e, (q)

+ g [S,s(q) —1]u~,(q}20 's ~'
u, q e, qq

(12)

(13)

For an empty-core pseudopotential' with core radius r, and the interpolation form (10), the first of these can
be evaluated in closed form and the result is (in rydbergs)

—(kzao)(G/2a )[1 + e (cosv'2as + sinv'2as)]

with

G = (n, /n„)(3k F)ao

a = G [1 + 4n;a(0)]/4mn;a(0)

s = 2kFrc

To determine (12) it is sufficiently accurate to take
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(a) r, =4.86

(b) rs = 4. IO

where

X = g/2kF

Since e, (x) is already close to unity, it is reasonable
to ignore further corrections to the correlation ener-

gy arising form the modification of the effective
electron-electron interaction because of core-
polarization effects.

We turn now to the energy of the screened van
der Waals interactions: Its determination requires
the frequency-dependent atomic and electron-gas
polarizabilities. Again, since this contribution is not
a major one, we may make reasonable approxima-
tions in both quantities. For the atomic polarizabili-

ty we take the usual Lorentz form

a(co) = a(0)[1 —(co/cop) ]

0.00
0 I 2

x =q/2kF

FIG. 1. Interpolated form for e,(q) for potassium.
The dotted curves show the high- and low-q limits of
e, {q). The solid curve is from Eq. (10), {a) r, = 4.S6
(/&0 = 1.0)' (b) r = 4.10 (nyn, = 0.6).

the Hartree-Fock result' for the electron-gas struc-
ture factor S,s(q), i.e.,

S,s(q) = —,x ——,x (x & 1)

(14)

S,s(q} = 1 (x & 1)

where cop is a characteristic frequency (estimated to
be the equivalent of 47 eV for potassium' }. The
wave-vector- and frequency-dependent dielectric
function for the valence electrons is taken to have
the simple form'

e(q, co) = 1+kTF/(q —kTFco /co~), (16)

where kTF is the Thomas-Fermi wave vector. No-
tice that this leads to the familiar q ~0 (for co = 0)
and co~ 0 (for q = 0) limits. The point is that the
use of (15) and (16) in conjunction with (3) gives

NZE~s ———, g PL (R)
R+p

where

with

2
e 3)rccop 1 ap a p

$1(R) =-
2ap 4(e /2ap) [1+ (co&/cop) ] ap

~p 1 a lu

(e /2ap) 2~ ap

6

(17)

F)(R,iu) = [1+ (u/co&) ] cosh4Qr, e
6 '5 '4 '3

X 6 + 12Qap + 10(Qap)' + 4(Qap)' + (Qap)'

Here the quantity Q is defined by

Q = k TF [1 ~ (u /cop ) ]

The sum in (17) can be evaluated with relatively lit-

tle computational effort. Finally, we determine the
parameter a in Ep by the zero-pressure condition

I
which leads to

9
r p(0.916 + Z aM ) + 0.031rsp

BE'—r, p
—4.42 r,p

Br,
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where E' refers to the sum of the energy contribu-
tions other than those having their origin in
electron-gas and electrostatic terms. In the case of
potassium the zero-pressure electron spacing param-
eter' is r, o = 4.860.

The total energy of bcc potassium can now be ob-
tained by adding the contributions given by Eqs.
(4)—(6) and (17) with a chosen to give the correct
zero-pressure density, and subsequently held fixed.
The various contributions to the energy and pressure
are listed in Table I for a sequence of volume
compressions. The T = 0 equation of state is
shown in Fig. 2 and compared there with the low-
temperature experimental results of Monfort and
Swenson. ' Above 20 kbar the comparison is made
to an extrapolation achieved using'

PT=O(Q) = 370[(Qo/0) —1]/3 85 (19)

in units of kbar. It is clear from Fig. 2 that the
agreement between theory and experiment is satis-
factory.

The importance of core-polarization contributions
can be judged by comparing these results with core
effects neglected altogether. In practice this is
(unintentionally) carried out by the fitting procedure
in which all q = 0 terms are assumed incorporated
in the aggregate Eo. Since the actual zero pressure
density is determined by a/I contributions to the en-

ergy, the explicit neglect of core polarization is
equivalent to assuming their implicit incorporation
in Eo (and assigning them thereby an inverse

volume dependence). Figure 3 and Table II sum-

marize the results of such a procedure. A direct
comparison of these two sets of results show that
though there is a qualitative similarity (and quantita-
tive to within 30%) the effects of core polarization
are not small in potassium. The comparison also
shows that to the extent that the difference in ener-

gies computed by the two different methods can be
assumed inversely volume dependent, much of the
difference can be absorbed in Eo.

IV DISCUSSION

As might have been anticipated from the fact that
the potassium ion is quite polarizable, we find that
core-polarization effects in postassium metal contri-
bute noticeably to its thermodynamic functions, par-
ticularly at high pressures. We now examine the
degree to which this conclusion may depend on the
approximations and numerical procedures adopted.
First, the interpolation form used for e, (q) is plausi-
ble on physical grounds, is convenient for numerical
reasons, but is nevertheless still approximate. On
the other hand, much of the contribution from these
terms originates with the small-q contribution where
the background dielectric constant is best known.
In the same long-wavelength limit the dipole ap-
proximation used throughout is expected to be valid
and so is the standard procedure for evaluating
local-field effects. When wavelengths become
comparable to the spatial extent of the core-electron

TABLE I. Computed energy and pressure for potassium as a function of volume with core-polarization effects taken
into account. The various quantities are defined in the text, . Qo is the zero-pressure volume.

E
Energy (Ry/electron)

EMc EBS Evdw Etot

1.0
0.9
0.8
0.7
0.6

—0.1610
—0.1620
—0.1628
—0.1633
—0.1633

—0.3687
—0.3819
—0.3972
—0.4152
—0.4371

0.2793
0.3104
0.3492
0.3991
0.4656

—0.1003
—0.1085
—0.1184
—0.1302
-1448

—0.0149
—0.0171
—0.0199
—0.0237
—0.0287

—0.0557
—0.0609
—0.0673
—0.0751
—0.0852

—0.0012
—0.0015
—0.0019
—0.0024
—0.0032

—0.4225
—0.4215
—0.4183
—0.4108
—0.3967

0/&o ~(Eeg + EM + Eo) ~(Evdw)
Pressure (kbar)
I' (EM, ) P(E,.) a

~expt

1.0
0.9
0.8
0.7
0.6

44.6
59.3
80.7

113.0
164.5

—0.7
—1.0
—1.3
—2.0
—3.0

—23.3
—27.5
—32.8
—40.0
—49.8

—6.0
—7.6
—9.9

—13.1
—18.1

—14.5
—17.5
—21.5
—27.0
—35.2

0.0
5.7

15.3
30.9
58,5

0.0
4.8

13, 1

(28.3)
(59.1)

'Reference 19. Numbers in parentheses are obtained by extrapolation.
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40

20

0
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Q/QO

FIG. 2. Comparison of computed equation of state of
potassium (core-polarization effects included) with the ex-

perimentally determined function. The dotted portion of
the experimental curve is obtained by extrapolation 'of

Eq. (32) (Ref. 19).

charge distribution, however, the description in
terms of translationally invariant core-electron
response functions is not strictly justified. For such
wavelengths it is the case that the dielectric function
approaches unity quite closely so that though the in-

terpolation form we use [Eq. (10)) lacks the expect-
ed symmetry, the error thereby introduced is cer-
tainly small.

It is also worth noting that the parameters u(0) and

coo can be expected to be weak functions of densi-

ty. ' Furthermore, it is well known that a nonlocal
pseudopotential is required for a correct decription
of band structure of potassium (there are empty d-

symmetry bands lying above the Fermi energy ' ).
Of the terms most affected by such considerations,
the band-structure energy is foremost. Nevertheless,
once such nonlocal contributions are averaged, as in

the construction of the total energy, the resulting
uncertainties in the equation of state are not great.
The reason is that the contributions to the equation

of state from Ess are —6 kbar at Q/Qo ——1, and
—18 kbar at Q/Qo ———0.6. If EBs were complete-

ly omitted, then at p = 0, Eo would acquire (by vir-

tue of the fitting procedure) an additional term to
cancel the —6 kbar. Since Eo is assigned an inverse

volume dependence, it would yield —17 kbar at
Q/Qo ——0.6, thus leading to a total error of only 1

kbar. At very high pressures, the d bands which are

the major source of this nonlocality, might actually
intersect the Fermi surface, a phenomenon ob-

served in Cs at around 42.5 kbar. The nearly-

free-electron approach, on which our calculations

have been based, will then be invalidated. We note
that in the experimentally determined equation of
state (at room temperature) no such transition of
this nature has so far been observed for pressure up
to 50 kbar. ' All of these eff'ects may need ulti-

TABLE II. Computed energy and pressure for potassium as a function of volume (core po-

larization effects neglected).

0/Qp Eeg+ EM +Ep
Energy (Ry/electron)

EBS
(2)

Etot

1.0
0.9
0.8
0.7
0.6

—0.3702
—0.3667
—0.3607
—0.3507
—0.3346

—0.0166
—0.0195
—0.0233
—0.0283
—0.0348

—0.3868
—0.3862
—0.3840
—0.3790
—0.3694

Q/Qp

Pressure (kbar)
I (E.g+ EM + EP) s (z,",') a

~expt

1.0
0.9
0.8
0.7
0.6

7.9
14.1
23.4
38.2
62.7

—7.9
—10.2
—13.3
—17.4
—22.8

0.0
3.9

10.2
20.8
39.9

0.0
4.8

13.1
(28.3)
(59.1).

'Reference 19. Numbers'in parentheses are obtained by extrapolation.
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mately further consideration, but within a few kbar
will not alter the principal conclusion, namely that
at high pressure core-polarization effects in potassi-
um appreciably modify its equation of state.
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