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Equations of state for molecular and metallic hydrogen are calculated in an accurate and
comparable manner by using the density-functional method applied to static lattices. By
isolating the electronic energies in this way, attention can be drawn to the relative impor-
tance of the protonic degrees of freedom. From the equation-of-state results it can be con-
cluded that a remnant molecular pairing is preferred in a band-overlap metallic state, com-
plete dissociation occurring only at very high densities (; ~ 1.1). An accurate determina-
tion of the pressure needed to achieve complete dissociation is shown to require a self-
consistent treatment of electron and proton degrees of freedom .

I. INTRODUCTION

In understanding the transition of hydrogen to a
metal at high pressures we face a problem of con-
siderable theoretical difficulty. Even the qualitative
mechanism for the transition has not been fully
determined. There are two likely candidates for a
solid-solid transition.! First, as the hydrogen is
compressed it catastrophically loses its diatomic
(molecular) character at some point and forms a
solid with an odd number of electrons per unit cell.?
The simplest result would be a metallic solid with
one electron per basis site. However, there is a
second mechanism for the transition which may oc-
cur at lower pressure: This is a band-overlap metal-
lization, in which the solid remains diatomically or-
dered.>*

The purpose of this paper is to consider the ener-
getics of both possibilities. We provide a detailed
comparison of the ground-state energies of the
monatomic and diatomic phases primarily within

the static lattice approximation. Estimates are ob-
" tained for the diatomic to monatomic transition
pressure, the equations of state for diatomic (molec-
ular) and monatomic hydrogen at high pressures,
and the interproton spacing and approximate optic-
mode energy. of the “molecular” or diatomically or-
dered phase. We test the sensitivity of our results to
the static lattice approximation by introducing pho-
nons in a reasonable but nevertheless approximate
way. At high pressures our results are generally in-
sensitive to their inclusion, with the important ex-
ception that the transition pressure for complete dis-
sociation of the diatomic phase depends crucially on
the detailed model for the phonons. At low pres-
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sures we verify that inclusion of the phonon degrees
of freedom is essential for a proper understanding of
the equation of state of the molecular solid. An im-
portant conclusion is that the determination of the
equation of state at low pressures and the diatomic-
to-monatomic transition pressure at high pressures
require a calculation in which both the electron and
ion degrees of freedom are included self-
consistently.

Currently, most calculations of the thermo-
dynamic properties of hydrogen at high pressures
treat the monatomic and diatomic phases in quite
different ways. For example, the properties of the
metallic monatomic phase are often obtained by
low-order perturbation theory about the uniform
electron gas. On the other hand, the diatomic phase
is often treated in the pair potential approximation.
As emphasized by Ross and McMahan® such
disparate techniques make comparison between the
consequent equations of state an inherently impre-
cise procedure since the inevitable errors also enter
in quite different ways.

The density-functional theory of Kohn and Sham®
provides the basis for a unified treatment of both
phases. It is now known that with care an applica-
tion of this technique can provide excellent results
for inhomogeneous or localized systems such as
atoms and molecules, and for electronically delocal-
ized systems such as metals and metal surfaces.’
For a periodic system the essence of the technique is
to minimize the energy functional with respect to a
set of single-particle wave functions which satisfy
the standard periodic boundary conditions. Thus a
straightforward but very laborious way to proceed
for crystalline systems is to carry out a self-
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cons1stent band-structure calculation [as a function
of ry = (3 ~mpag )~ "3, where 5 is the mean electron
density and a is the Bohr radius] for all the plausi-
ble crystallographic structures in each phase.

A more practical approach, however, is to
proceed by performing self-consistent band-
structure calculations within a spherical Wigner-
Seitz (WS) cell. Evidently this is quite reasonable
for the monatomic phase where the differences in
crystallographic structure account for exceedingly
small energy differences, of the order of 1 mRy per
proton. By itself a spherical calculation of each
molecule in the diatomic phase would not appear
to make much sense (in fact, however, we shall see
that for an isolated H, molecule this procedure
nevertheless gives ~90% of the ground-state ener-
gy). The hydrogen molecules, though spherical in
their rotational ground states, are certainly not
spherical on the important time scale of electronic
rearrangements.® We therefore proceed here in the
following way: First we solve the diatomic system
by using a spherical Wigner-Seitz cell which en-
closes each molecule. The potential of the
molecule is initally averaged over rotations. Then
we use perturbation theory to restore the molecule
to its original intracellular symmetry. This pertur-
bation theory requires at least the linear and first
nonlinear response functions of the nonuniform but
spherical molecular system calculated above. Tak-
ing the system thus defined to the low-density limit
(rg— oo ) we obtain the isolated H, molecule. Here
our estimates for the vibrational frequency, the in-
terproton spacing, and the dissociation energy
agree closely with experiment and also with de-
tailed theoretical calculations by different methods.
This indicates that the perturbation scheme con-
verges well and can be expected to be physically
meaningful at higher densities, where the electron
density is more nearly uniform.

The structure of the paper is as follows. Section
II details the density-functional calculation of the
ground-state energy of the monatomic phase within
the static lattice approximation. The third section
describes our calculational procedure for the dia-
tomically ordered phase. The fourth and fifth sec-
tions give the static lattice results for monatomic
and diatomic hydrogen, respectively. Section VI
deals with estimates of the phonon corrections to
the static results and establishes the importance of
phonon energies on the scale of electronic binding
energies in the static lattice calculations. The final
section is devoted to a discussion of the major
results and includes a brief comparison with the

structural expansion approach applied to the same
model.

That band overlap metallization of dense hydro-
gen is a distinct possibility is borne out by our
results. Friedli and Ashcroft* have obtained an esti-
mate of the band overlap transition density as a
function of the molecular interproton spacing, 2d.
Using the results we shall describe below for the
calculated value of the interproton spacing, we find
an estimate of ~2 Mbar for a metal-insulator tran-
sition arising from band overlap. The insulator-
metal transition therefore appears to be manifested
first in a diatomically ordered state of the crystal,
and, as we shall see, only at much higher pressures
is the diatomic order completely lost.

II. THE CONDENSED MONATOMIC STATE

The method we describe is similar to that used by
Tong.” We proceed by first centering a Wigner-Seitz

(WS) sphere of radius #wsao on each site of a close-
packed solid. As noted above this assumes that to a
good approximation the ground-state energy
depends only on the atomic volume and not on the
crystal structure.!” For an external potential v .,(T)
the Kohn-Sham self-consistent scheme can be sum-
marized in the following equations. The energy
functional is

Elp] = Tlp] + Exlpl + [ p(TWex( DT

__erdqfd—w (r) (r I , (21)
where E is now the total energy of all the electrons
in a single cell which contains a stationary proton at
its center. In (2.1) E,[p] is the exchange-
correlation energy functional of the interacting elec-
tron gas. In the local approximation,'! it is given
by

Edpl= [ elp(®p(DdT , 2.2)

where €,.(p(T)) is the exchange and correlation en-
ergy per electron of a uniform electron gas of local
density p(T). All integrations in Eqgs. (2.1) and (2.2)
are limited to the WS cell. The quantity T[p] is
the single-particle kinetic-energy functional of elec-
trons in an effective single-particle potential v
satisfying

{— Ehzm—vz + v T) |P(T) = e PA(T)

(2.3)

r<rws ,
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with the boundary conditions

WA T) = expli 2kagrws cos@) W — 1) | r=rys

(2.4)
and
AWL(T) - o W~ 1)
P —expli2kagrws cos ar rmr
(2.5)

where rys is the Wigner-Seitz radius and
cosf = 7K. In Eq. (2.3)

veff(?’) = vext(ﬂ

+ef —&‘”—d "4 oD

(2.6)
where

d
S . 2.7
Exclp(T)) dp [pexc(p)] 2.7

The self-consistent solution of Egs. (2.3)—(2.6)
now gives the ground-state energy from Eq. (2.1).
The exchange-correlation energy functional of Gun-
narsson and Lundqvist'? has been used in the
present calculation. In the case of hydrogen, a
paramagnetic energy functional then leads to a half
filled band, i.e., a metallic state. The calculation
has also been repeated, however, with a spin-aligned
or “ferromagnetic” energy functional whose form
can also be found in Ref. 12. This leads to an insu-
lating phase which is found to be energetically pre-
ferred (to the paramagnetic phase) at low densities.
The case of a simple isolated hydrogen atom can be
obtained by taking the limit #wg—> oo. This will be
discussed below.

III. THE CONDENSED DIATOMIC STATE

The calculation for the molecular solid is not as
straightforward as the procedure just described.
The system cannot be reduced to the single-cell
problem in a particularly simple way. In order to
take advantage of the density-functional theory we
carry out the following steps. First, we isolate the
part of the Hamiltonian which contributes most to
the ground-state energy. Instead of considering
two point charges (protons) separated by a distance
2d and located about a lattice point, we construct a

more symmetric problem by smearing the charges
on a spherical shell of radius d. Put another way,
we consider the spherical average of the interaction
between an electron and two protons.'> The corre-
sponding unscreened interaction seen by an electron
is shown in Fig. 1. Note that d is to be considered
as a variational parameter in what follows and is not
restricted to its normal molecular value of 0.37 A.
This spherically averaged interaction may be written
as

b 2
wh (rd),

(3.1

[We introduce the notation (x,y), as the larger of
the two variables x and y. Similarly (x,y) . will
mean the smaller of the two variables.]

Imagine now replacing the two protons located
about each lattice site by a spherical shell of charge
in the manner described above. From the periodici-
ty of the lattice, the problem can again be reduced
to a charge-neutral single-cell problem containing on
the average two electrons and having no multipole
moments outside the cell. This procedure again ig-
nores structural energies of the order of milliryd-
bergs and is justified by comments similar to those
usually advanced for the monatomic case. The
Kohn-Sham density-functional calculation can now
be repeated with v, replaced by v, in Eq. (3.1),
and with the exchange correlation energy functional
taken to be the paramagnetic form. As we shall see
in detail below, this accounts for about the 90% of
the total ground-state energy at 7, ~ 2.0. We are
now in a position to develop a perturbation theory
in orders of Av = vy — V. If we call E(r) the
energy corresponding to the spherically averaged

? 1 L L
0 d 1 2 3
r(ag)
FIG. 1. Spherically averaged unscreened potential for
electrons in the presence of a pair of protons separated by
2d.
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potential vy, then the total ground-state energy can
be written as

E(d,r) = Eo(d,r;) + AEV(d 1) + AEP(d ry)
+ AE®d,r) + ..., 3.2)
where
EVdr) = [ Au(P)pAD)dT | (3.3)
AEP(d,r) = 5 [dT, [ dT>A0(F)AV(T,)
X XV(T,T) (3.4)
fdrlfdrzfdr3Av (T)AV(T,)Av(T)

X X(z (?I’?21?3) .

AED(d r,)=

(3.5)

In these equations p’(T) in Eq. (3.3) denotes the
spherical density calculated in the zeroth order (i.e.,
with vg,p). The quantities X'V and X'? are the ap-
propriate response functions to be described in detail
below. It is immediately clear that AE‘Y) = 0. The
fact that the unperturbed (or zero-order) Hamiltoni-
an was chosen in such a way that the first-order
perturbation correction vanishes is one of the main
reasons why E accounts for most of the total ener-
gy and in particular most of the electrostatic energy.
We next describe in detail the physical content of
Eqgs. (3.2)—(3.5). First the perturbing potential
Avu(T) is given by

1627
2 2 2e?
AU(?’) = — ¢ = - € — +
|T—d| [T+ d| (r,d),
(r,d).
= —2221_2246 ( d)1+1P1(r d)
(3.6)

where, as noted above, we have two protons situated
at a distance d from the center of the cell. In the
system under consideration the electron gas is inho-
mogeneous and little is known about the screened
density-density response function X'!). Accordingly
we invoke a simple but reasonable nonlocal ansatz
to be used in the spirit of the local-density approxi-
mation. Let X}’ be the commonly used linear
response function of a homogeneous system of elec-
trons responding to an external potential. We then
approximate X'! by

— | > (3.7)

XN(T,T) zX};”(rm >
i.e., the exact X'(T,T;) is replaced by the corre-
sponding function for the homogeneous system but
with a density intermediate between those corre-
sponding to positions r and r, (ri; = |T)} — Ta]).
This should be quite accurate for most of the re-
gions of the configuration space and we justify it a
posteriori by examining the results for molecular hy-
drogen in the low-density limit. An expansion in
Legendre polynomials then gives

]
1 rws ., (rd) ws a (rad d).
AE?(d,r,) = 16e* drp2—1 < e
(d,r) e I=§6,... T fo rirt . ),+1 f 2r2( d )1+1K1(r1,r2) (3.8)

where

re =21 pge
and

@ (T)) + p(T>)
Ki(rir) = [, dqquz(qu)jz(qrz))(z‘}’<q;u> . (3.9

Because of the presence of the oscillating spherical Bessel functions j;(gr), the convergence of Eq. (3.8) is very
rapid and in fact the omission of / > 10 causes negligible error. The response function X}’ is taken as

Xo(g,p)
“)(q,p) 40 - "
1 — Xolg,p) | T + 5 (peye)
o\g,p q2 dp2 PExc

(3.10)

which is the result for a uniform electron gas within Kohn-Sham theory. In Eq. (3.10) X((g,p) is the Lindhard

function corresponding to density p.

The third-order term is more complicated to evaluate and some essential simplification is necessary as will

be explained below. In (3.5) we take a nonlocal approximation for X'*(T,,T5,T3) given by
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(T7) + p(Ty) + p(T3)
P\ P\ P\I3 >’ 3.11)

XP(P, 10 Ts) ~ Xif )(?12,?13,?23; 3
where the right-hand side of Eq. (3.11) is the response function of the homogeneous electron gas of density

p = 5lp(T) + p(Ty) + p(T3)] . (3.12)
We now replace X 7 by the corresponding quantity for the noninteracting electron gas, i.e.,

1 = > QKT+ Ky Ty—i (K 4+ KT,
Xgl(rlz,ru,rz:;):Wfdk]fdkze L 202 ! L
m

X XK1 Ky =k — Ky) (3.13)
where
XP(K K=Ky =Ky =2 [ 2Py, 1 1
(2m) (e —ep.1) (6 —€gu)
1 1
(65 — €p )€ — €5-v,-%,) (g —ex iy ey — €5_T,-T,)

(3.14)

An asymptotic expansion in k space then provides an approximate X (F1aF13723). The neglect of the small-k

region contributes an error of the order of 5% in AE'®’ which in turn is only about 0.1% of the total energy.

The justification for this approximation is that the large-k region dominates the behavior at short distances, and

these are the most relevant regions for the integrand. The previous zero-order calculation obviously ignores the

cusps in the electron density at the proton, and these cusps have their major contribution at large wave vector.
The resulting expansion for X 12 can be carried out very easily and yields

273
m°k 1 1 1 1 1 1
X;})(rlz’r23’r31) = 4 1; — — — — + — — — — + — — — —
4m'n T — 13| |T)— T3 T — 12| [T3— T, T3 — 11| [T)— T3]
(3.15)
The expression for AE®) can then be written as
AE(3) = —96 ‘Q(Iam:n)
Im,n=24.6,.. (21 + 1)(2m -+ 1)
rws (rnd)
X driri——=—
Jodri (r1,d)LH!
Tws (rod )™ Tws (r3,d )"
X dryori—"—=_ dryp?—"=_
fo 22(r2’d),;,+1 fo 33(r3,d)n>+l
(rors)s  (rar)e |1 (3.16)
(o)t )2t R
where
1

- = %ﬂ[n(rl) + n(ry) +n(r;3)] .

rS
Two of the threefold integrations can now be carried out analytically; the remaining one has to be disposed of
numerically. The series is very rapidly convergent and its first 50 terms can actually be summed with little
computing effort. The Q(/,m,n) in (3.16) are given by the following expressions:
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+1
(a) QUmm) = [ | Pix)Pp(x)Py(x)dx =0

2

(b) Q(l,m,n) = m

unless / + m + n = even
andl+m>n, m+n>1l, n+1l>m,

(3.17)

2

F(l+m—n+1)l"(l+n—m+1)1"(m+n—l+1)1"2<————————1+m+” +1>

The energy E (d,r;) can now be obtained by
minimizing E (d,r,) with respect to d at a fixed
value or ;. The minimum gives the interproton
energy as a function of density, and the curvature
around this minimum then gives, in addition, a
first estimate for the longitudinal optic-mode ener-
gy. This minimization is carried out because of a
belief (which we shall see is substantially justified)
that the interproton separation in the molecular
solid at very high pressures can be quite different
from that of the free molecule.

IV. MONATOMIC PHASE:
STATIC LATTICE PROPERTIES

The total ground-state energy of monatomic H
calculated within the static lattice approximation is
shown by the solid line in Fig. 2. We discuss the
results starting from the high-density regime. For
sufficiently high density (small ;) the system is a
paramagnetic metal with a large positive energy, a
consequence of the contribution from the kinetic
energy. At r, = 1.65 we find a minimum in the to-
tal energy whose value is —1.09(6) Ry/proton thus
yielding an approximate cohesive energy of 0.09(6)
Ry/proton. There are two major sources of uncer-
tainty in this estimate. First, estimates for the
correlation energy differ by up to 20% for the
range of densities of interest here. As an example,
if we use the well-known expression of Nozieres
and Pines,'* the cohesive energy is reduced to ap-
proximately 0.07 Ry/proton. Second, there are un-
certainties in the value that should be attached to
the energy in the limiting case of isolated hydrogen
atoms. We have used the exact value of —1 Ry
since this emerges from a self-interaction-corrected
spin-density-functional calculation.

m +1>r2(m+”—"+l>m+m+n+1)

X :
I,2<l-+—m+n +1>F2<l+n—
2 2

2

otherwise .

It is interesting to compare our results with those
of the structural expansion method. Hammerberg
and Ashcroft'® calculated the total energy to fourth
order in the electron-proton interaction, and the
correlation energy of the electron gas was given by
the Nozieres-Pines interpolation formula. Exchange
and correlation effects were not included, however,
in the various response functions appearing in their
theory. The minimum ground-state energy was

E (Ry/proton)

1o 20 30 40

fs
FIG. 2. Total ground-state energy of a static lattice,
paramagnetic monatomic phase of metallic hydrogen as a
function of r; (solid line). The dashed curve represents
the corresponding energy for a spin-polarized system.
The dotted line is the solid curve augmented by phonon
zero-point energy (see text).
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found to be — 1.044 Ry/proton. But note now that
if we use Eq. (3.10) to introduce exchange and
correlation into the response function of the
second-order term, and assume that the third- and
fourth-order terms are similarly affected, we obtain
a minimum energy of —1.054 Ry/proton. When
our own static lattice results are changed to reflect
the Nozieres-Pines correlation energy, and the bcc
Madelung energy is used (instead of the ion-sphere
result), we find a value of — 1.06(9) Ry/proton.
Though the absolute energies obtained by these
very different methods are thus in quite close agree-
ment, there remain variations of up to 30% in the
predicted cohesive energies, the uncertainties resid-
ing mostly in the choice of the correlation energy
functional. Though systematic errors (between dia-
tomic and monatomic phase calculations) can be re-
duced, it seems unlikely that absolute errors at the
1% level can be further reduced using self-
consistent field theories. Higher accuracy may well

be possible, however, through the use of fully corre-

lated many-body wave functions in a Jastrow-
function method. ‘

The system undergoes a transition from
paramagnetic to ferromagnetic order at r; ~ 2.8.
Within a self-consistent band-structure approach,
the paramagnetic phase has two half-filled spin
bands and is a metallic state. On the other hand,
the ferromagnetic phase has a single spin filled
band. The other spin band lies above the normal
Fermi energy, and hence the ferromagnetic phase
represents an insulating state. We thus find a
metal-insulator transition when the protons are
constrained to lie on a monatomic lattice (see Fig.
2). This point has been emphasized previously.'>
In a more complete calculation Rose et al.'® found
that there are two transitions near »; = 2.8. The
first is at r; = 2.74, where there is a second-order
transition involving the change of the paramagnetic
metal to a spin-ordered metal. The second report-
ed transition is a first order metal-insulator transi-
tion at r; = 2.84. There the transition is from a
spin-ordered metal to a ferromagnetic insulator.

The low-density limit of monatomic hydrogen is
the isolated H atom. For large values of 7, we find
the energy reaches an asymptotic value of —0.982
Ry. This is just the value which one finds for H
within spin-density functional theory.!” The devia-
tion of this value from — 1 Ry typifies the limita-
tions of density-functional theory in calculating to-
tal energies. However, relative energy differences
are generally calculated much more accurately.
This will become evident when we discuss the cal-

culation for the H, molecule, which is the low-
density limit of our model of the diatomic phase.

Aside from the total energy, the pressure-density
curve is the most interesting result for the mona-
tomic phase. For r; > 1.65 the pressure is negative,
indicating that the solid wishes to relax to the ener-
gy minimum. The results for r; < 1.65 are shown
by the solid line in Fig. 3.

V. DIATOMIC PHASE:
STATIC LATTICE RESULTS
A. Total energy and equation of state

The static lattice results for the ground-state ener-
gy (3.2) of the molecular phase are shown as the
full curve in Fig. 4. The salient features are as fol-
lows: (i) there is a sharp rise in energy at high den-
sities (or small ry), (ii) there is a minimum at
rs ="2.1 with a value E ;, = — 1.173 Ry/proton,
and (iii) there is an asymptotic value for the energy
in the limit that », becomes large. This limit is
E = —1.158 Ry/proton. We analyze the low-
density results first for two reasons: First, to estab-
lish the convergence of our perturbation expansion
for the static lattice cases, and second, to show by
comparison with experiment that the static lattice
approximation cannot describe the equation of state
for low-pressure hydrogen in a reasonable way.

P (Mbar)

107"

10‘2 P S T N S T S S S
10 1.2 14 16 18 20 22

FIG. 3. Equation of state (T = 0) for monatomic
paramagnetic metallic hydrogen (full line). The dashed
curve includes contributions from proton dynamics.
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E (Ry/proton)

-I.2 1 1 1 1
10 15 20 25 30

T
FIG. 4. Total ground-state energy of diatomically or-
dered solid molecular hydrogen: dashed line E,, full line
Eo+ AE™® 4+ AE™. The dotted curve is the full curve

augmented by phonon zero-point energies (see text).

The low-density limit of our calculation corre-
sponds physically to a collection of isolated H,
molecules. The calculation in this limit is a rather
severe check on the convergence of our perturba-
tion expansion, since we start with bare electrons
and protons and do not parametrize the molecular
data in any way. By comparing our calculated en-
ergy for the molecule with that of the hydrogen
atom computed in the Kohn-Sham scheme, we find
a dissociation energy of 0.348 Ry. This falls within
0.3% of the dissocation energy as determined both
by experiment and also by quite detailed variational
calculations.'® Results to the same accuracy are
found for the optic mode vibrational frequency and
the interproton spacing (see Table I). In some

TABLE 1. Relative semiproton-spacing, d, and optic
mode energy as a function of density, r,.

r (T = 0) (d/agrws) +#iwqy (Ry/proton)
1.00 0.417 0.018
1.10 0.404 0.0167
1.20 0.391 0.0150
1.30 0.377 0.0137
1.50 0.349 0.0119
1.65 0.329 0.0110
1.85 0.301 0.0104
2.00 0.282 0.0099
2.15 0.264 0.0099
2.35 0.242 0.0098
2.50 0.227 0.0097
2.75 0.205 0.0099
3.10 0.182 0.0099

respects, the molecular limit is the extreme of inho-
mogeneity in the present calculation. The conver-
gence of the perturbation expansion should become
increasingly better at higher densities since the elec-
tronic density becomes correspondingly more uni-
form. Table II shows the results to third order for
a sequence of different densities.

An additional comment may be made regarding
the accuracy of these static lattice results. Our cal-
culation is based on a spherical WS cell. For the
monatomic phase it has been shown that this ap-
proximation leads to structural corrections on the
order of 1 mRy which are negligible for our pur-
poses. These corrections are also negligible for the
diatomic phase as we can see as follows.

Consider a multipole expansion of the electrostat-
ic potential associated with a single cell, which we
take to have cubic symmetry. The cell is neutral
and the crystal on average has inversion symmetry.
As a consequence the dipole contribution to the po-
tential vanishes. In addition we have cubic sym-
metry and so the quadrupole contribution will also
vanish. (For a noncubic crystal the term will also

TABLE II. Energies in the diatomic phase, to third order (the energies quoted here are ob-
tained from a minimization with respect to inteproton separation). The units are

Ry/proton.
rs (T =0) E°/2 (E°+ AE®)2 (E°+ AE® 4+ AE®)/2
1.5 —1.037 —1.123 —1.135
2.0 —1.076 —1.161 —1.173
2.5 —1.070 —1.154 ~ —1.167
3.1 —1.065 —1.147 —1.160
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vanish if an average over molecular axis directions is
carried out as appropriate to a vibrational state.)
The next contribution also vanishes, again as a
consequence of inversion symmetry. Thus the con-
tribution of a given cell to the potential decreases
very rapidly at large distances from the cell (at least
as fast as r —°). But note also that the interactions
are screened, and because of this the exact deter-
mination of AE'™, which requires lattice summation
rather than single-cell integrations, can be expected
to be smaller than the equivalent error that is
introduced, for instance, by calculating the
Madelung energy from the familiar ion-sphere in-
tegrations (rather than lattice summation). For close
packed structures such errors are a fraction of a
percent and the errors in AE'?, AE®®), etc. arising
from cell-cell corrections are correspondingly small.

From Fig. 4 it is quite apparent, however, that
the static lattice results are not in good agreement
with the results for the equation of state of molecu-
lar hydrogen in low pressures and densities. For
example, we find an equilibrium density for the
molecular solid corresponding to r, = 2.1. By com-
parison the experimental value of 7, is 3.1 and the
equilibrium density is therefore found to be about a
factor of 3 too dense in the static lattice approxima-
tion. A corresponding discrepancy occurs for the
cohesive energy where the calculation yields an esti-
mate which is apparently 2 orders of magnitude too
large. It must be emphasized, however, that in
terms of a typical electronic energy this cohesive en-
ergy is an exceedingly small quantity.

Both of these discrepancies indicate, as we shall
see, that the static lattice approximation is inade-
quate for the low-pressure equation of state and
serve to emphasize the critical role which phonons
play in this regime. In Sec. VI, we give a crude es-
timate of the phonon contribution to the low-density
ground-state properties - which shows that the pho-
non zero-point energy is in fact of the right magni-
tude to account for these discrepancies. The con-
clusion to be drawn is that in order to obtain good
results for the molecular equation of state in the
low-pressure region both electrons and protons must
be treated self-consistently at the same time.

For small r, the energy curve rises rapidly as we
move to higher densities where the kinetic energy
becomes increasingly dominant. Because of this
dominance and the rapid change of the energy
(compared to the phonon energies), we expect that
the equation of state should be given fairly accurate-
ly by the static lattice results. (This expectation is in
fact borne out explicitly when we include phonon

contributions.) Figure 5 shows the equation of state
of molecular hydrogen at T = 0. The dashed curve
shows the changes that are expected when proton
dynamics are included. Also shown for comparison
is the high-density point recently measured by Mao
and Bell."”

B. Interpolation spacing and optic mode energy

To recapitulate briefly, for each value of ryg we
determine the total energy as a function of the inter-
proton spacing, 2d. We then minimize the energy
with respect to d in order to establish the equilibri-
um spacing and the ground-state energy. In the
low-density limit (isolated H, molecules) we find an
interproton spacing of 1.422 a, which agrees with
experiment to within 1.5%. Table I gives the inter-
proton spacing in terms of the radius of the WS
sphere and in terms of the Bohr orbit. Reporting
the results in these units emphasizes the fact that at
low densities d is determined by the molecular bind-
ing energy and is independent of the WS radius.

On the other hand the interproton spacing and the
WS radius become comparable at high pressure
which foretells the eventual shift to a monatomic
basis.

Figure 6 shows the total energy as a function of
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FIG. 5. Equation of state (T = 0) for diatomically or-
dered solid molecular hydrogen (full line). The dashed
curve includes contributions from proton dynamics. The
short bar summarizes, with uncertainties, the recent mea-
surement of Mao and Bell (Ref. 19).
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FIG. 6. Energy per proton for the molecular phase as
a function of the interproton spacing, but at fixed density
(ry = 2).

the interproton spacing for r; = 2. Within the Ein-
stein approximation we can estimate the optic

mode energy of the molecular solid from the curva-
ture of E(d) at the minimum. For the low-density
limit we find 7w, = 0.0199 Ry/proton, which
again agrees within 0.6% with the experimental
result for the isolated molecule. For higher densi-
ties the optic mode energies calculated in this way
are given in Table I. The energies calculated by
this purely harmonic approach rise steadily with
density. They do not rise as fast as an estimate of
the zero-point energy would suggest. Nor do they
include anharmonic corrections, which are expect-
ed to be of increasing importance at higher densi-
ties.

VI. PHONONS

For molecules of mass 2m, and density p/2, we
note that at sufficiently high density the basic fre-
quencies will scale near 7, ~ 2 as
[41r(p/2)(2e)2/2mp]]/ 2, which is merely the plasma
frequency w, for unpaired protons at density p. If
m is the mass of an electron then

fiw, =~ 2V'3r, ¥ (m /m,)? Ry

or, per proton, 0.014 Ry at 7, = 2.0 and 0.012 Ry
at r; = 3. The variation in acoustic energies alone
over this range of r; will therefore be comparable to
the static binding energy. A more quantitative esti-
mate’®?! can be obtained by calculating

73 3 f(k)

A k Ezone

where, for A designating acoustic modes we set

wk(lz) ~ wp/el/z(k), €(k) being the wave-number-
dependent dielectric function. We take the acous-
tic modes to be degenerate and integrate over a De-
bye sphere for the diatomic solid. To the result we
add the longitudinal-optic-mode energy calculated
as described above. Finally we add transverse-
optic-mode energies estimated from zone-boundary
acoustic-phonon frequencies. (These energies,
though approximate, are in fact quite comparable
to the results obtained by Caron.?0) Figure 4
shows the result of adding the approximate proton
energies to the static energies: the important point
is that the binding energy has dropped even further
to ~0.007 Ry/proton.?? From this we arrive at
the conclusion stated earlier that a correct deter-
mination of the low-density equation of state of
condensed molecular hydrogen must necessarily re-
quire a self-consistent treatment of electron and
proton degrees of freedom together.”* In addition,
any representation of the energy of high-density
solid molecular hydrogen that neglects the internal
structure of the molecule (and in particular the
change in optic mode frequency at high pressures)
must ultimately be in error.

The determination of the pressure for complete
dissociation requires the addition of the phonon en-
ergies for the monatomic phase. These are also cal-
culated from

33 3 tiw,/e k)

A Kk Ezone

as discussed above and the result is shown in Fig. 2.
What now becomes evident is that the results of a
common tangent construction (see Fig. 7) are
exceedingly sensitive to the region where monatomic
and diatomic curves cross. The point is made more
clearly by direct reference to Fig. 7 where the
ground-state energy (now as a function of 7 is
plotted for static monatomic (SM) and static dia-
tomic (SD) phases. (Also indicated there is the den-
sity at which band overlap has been calculated to
occur.?)

VIL DISCUSSION AND CONCLUSIONS

We may conclude that the density-functional ap-
proach to the electronic energies of dense hydrogen
shows rather clearly the necessity for a more com-
plete treatment of proton motion and its coupling to
electrons. The results already lead to some interest-
ing predictions for the interproton spacing and cor-
responding optic mode frequency as a function of
density. This dynamical effect is just the most
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FIG. 7. Comparison of the equation of state, at
T = 0, of static monatomic (SM) and static diatomic (SD)
phases of hydrogen. Note that the abscissa is now pro-
portional to volume: the inset shows the slope corre-
sponding to 1Mbar. The dashed vertical line indicates
the onset of band overlap according to the results of Ref.
4.

prominent of several such effects that cannot be
present in a pair-potential or multicenter description
of molecular hydrogen. The results that we have
obtained on the band overlap transition in hydrogen
support a physical picture very similar to the
description given for the behavior of diatomic
molecular iodine under pressure.’* The presumed
second-order transitions are very similar.

It is interesting to note that the proposition of di-
atomic ordering in a metallic state of hydrogen is
supported by elementary calculations based on the -
structural expansion method as applied to a rota-
tionally averaged diatomic system. At each site R
of a fcc Bravais lattice we have two protons at posi-
tions d—> and — dﬂ as measured from the site.

The corresponding proton density has Fourier
transform

—

pp(K) =23 e Reosk - dyg (7.1)
i

so that if p(k) is the corresponding electron density
operator, the electron-proton coupling can be writ-
ten

47re

H, = ?li S pl—Kp, ()7 (7.2)

K50

Accordingly, to lowest order the electron response
energy (or band-structure energy) calculated adiabat-
ically is

- 4ge?

1 bad
— 3 (p(—k))p,(k)—— , (7.3)
20 £, Pk

where {p(— K)) is given by linear response theory.
If the crystal has N sites, then the energy per elec-

tron, after averaging over all directions d g is?
1 ek)—1,1 = o\ 4me’
spp(k)p,(—k ,
T 2NG kéo ek PR (—kD T
(7.4)
where
o sin2kd sin’kd
5P,k —X)) = -2
(5pp(k)p, ) =N |1+ 2kd PERp
sin’Kd
+2N28f’§> K42 (7.5)

Here €(k) is the dielectric function of the interacting
electron gas and the {K] are the reciprocaliattice
vectors. Notice that the term ( pp(—’ Jpp(—k)) also
appears in the Madelung energy. Thus for a given
density (or r) the total energy per proton can be
obtained by carrying out a K sum and a straightfor-
ward numerical integral over K. For the chosen I

-0.7

E (Rys proton)

FIG. 8. Energy per proton by the structural expan-
sion method (second order): The dashed curve is the
result for a static fcc lattice. The solid curve is the result
for a diatomic basis, rotationally averaged (as described in
the text) and minimized with respect to variations in in-
terproton separation.



24 THEORY OF DENSE HYDROGEN

the result is minimized with respect to d. The
minimized energy corresponding to the Hubbard-
Geldart-Vosko®® form of e(k) is shown in Fig. 8.
There the energies for a monatomic fcc structure
and a rotationally averaged diatomic structure are
compared. The point to be made is that although
the absolute energy for the diatomic phase lies above
the density-functional calculation (as expected from
the low-order approximation), it is nevertheless
lower than the corresponding monatomic calcula-
tion in the low-density regime. The linear response
method approximates the charge density near the
protons quite poorly, a feature that is largely

1635

corrected by the density-functional approach. The
tendency toward pairing, though more noticeable in
the density-functional calculations, is thus already
apparent in the structural expansion method, and is
not restricted, of course, to cubic Bravais lattices.?’
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