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Surface Debye temperatures have been measured for rhodium (100) and (111)surfaces using a conventional low-

energy-electron-diffraction-Auger-electron-spectroscopy system. The 00 beam intensities were measured with a spot

photometer and the crystal temperature was monitored with a Pt versus Pt—10 at. % Rh thermocouple, From the

intensity versus temperature curve, a Debye temperature was calculated for each beam voltage. The surface Debye

temperatures were then estimated from plots of Debye temperature versus beam voltage. Using three-constant and

five-constant lattice-dynamical models, we have made calculations of the bulk phonon dispersion curves and the

surface Debye temperatures. A comparison is given of the experimental and theoretical results for the surface Debye

temperatures.

I. INTRODUCTION

The experimental technique of low-energy-elec-
tron diffraction (LEED) has proven to be very
useful for the study of surface structures and sur-
face vibrational properties of crystals. In the
present paper we are particularly interested in
the determination of the mean-square displace-
ment (MSD) of a surface atom through LEED.' To
measure the MSD experimentally at solid sur-
faces, one can observe the intensity of elastically
backscattered low-energy electrons as a function
of temperature and energy. The MSD is then ex-
tracted from the Debye-Wailer factors of the
Bragg peaks at the lowest energies.

In this paper, we report both experimental and
theoretical results for the ratio of the surface
MSD to the bulk MSD for the (100) and (ill) sur-
faces of the face-centered-cubic crystal rhodium.
The experimental values were obtained from the
temperature dependence of Bragg peaks in LEED.
The theoretical calculations were carried out using
two lattice-dynamical models involving three
force constants and five force constants, respec-
tively. Changes in the surface force constants
from their bulk value are neglected. Our theo-
retical results are compared with the experimental
results reported in this paper and with those of
Chan et al. ,' who used LEED to determine the
surface Debye temperature of the (111) surface
of rhodium.

II. EXPERIMENTAL

The samples were prepared by orienting a rho-
dium single-crystal rod of & 99.9% purity to within
+ 0.5' and then using spark erosion to cut (111)

and (100) slices 1 mm thick and "l mm in diameter.
After mechanical polishing and etching, the sam-
ples were mounted in a modified Varian LEED-
Auger apparatus incorporating a Varian four-grid
LEED optics which also served as the Auger an-
alyzer. A 2.5-keV grazing-incidence electron
gun was used to stimulate Auger emission. Base
pressures of 5 x10 "Torr were routinely ob-
ta lned.

Cleaning in vacuum was accomplished by a com-
bination of ion bombardment (500-2000 eV), an-
nealing, and O, and H, cycles to remove carbon,
sulfur, phosphorus, and boron. After cleaning,
no carbon, sulfur, or phosphorus could be de-
tected by Auger electron spectroscopy (AES). Bor-
on, a significant bulk impurity (17 ppm), segre-
gated onto both surfaces and could be detected by
its ordered LEED structures and a 180-eV peak
in the AES spectrum. ion bombardment (500 eV)
at 300 K followed by a 675-K anneal in vacuo was
found to be a good method of temporarily removing
boron from both faces. As boron was depleted
from the bulk, it ceased segregating to the sur-
face.

The LEED apparatus was used to determine ex-
perimental values of the Debye temperatures eD
for the (111)and (100) surfaces of rhodium. The
LEED patterns of the clean Rh (111)and (100)
surfaces show the (1 x1) symmetry characteristic
of the unreconstructed clean surfaces. These
LEED patterns have sharp intense spots and low
background intensity. The intensity versus voltage
(I-V) curves for the 00 diffraction beams from
these two surfaces are shown in Fig. 1. The dif-
fraction beam intensities were measured with a
spot photometer. To select the Bragg peaks and
determine the inner potential Vo and topmost
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TABLE I. Selection of the Bragg peaks for Rh(111).
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'Values of V0=10 eV and c=2.19~ were used to de-
termine E,~, from Eq. (2.1).
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FIG. 1. I-V curves for the rhodium (111)and (100)
specular diffraction beams.
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interlayer spacing c, the following equation was
employed, which relates the incident electron
energy E (in eV) to the peak index I and the angle
8 between the incident direction and the normal
to the surface:

150.4 V
4c' cos'L9 cos'8

the Rh(111) surface the separation is straightfor-
ward because the I-V profile is nearly kinematical.
The I-V profile from the Rh(100) surface has
several large multiple scattering peaks below
125 eV, making the Bragg peak assignment more
difficult in this region. Either the V'7- or 91-eV
peaks could be taken as the l = 3 Bragg peak. On
the basis of the OD calculations the 77-eV peak
was taken as the Bragg peak. This will be dis-
cussed below in further detail. After the Bragg
assignments have been made, experimental values
for c and Vo are calculated from the slope and
intercept of the straight line drawn through the
E pt vs l' data points. The results obtained from
the data in Tables I and II are summarized in
Table III. The slight contraction of the surface
layer is smaller than the experimental error;
therefore, within the accuracy of these calculations
the rhodium (111)and (100) surfaces are unre-
laxed. Multiple scattering calculations have shown
that ac is between -3% and 0% and V, ranges be-
tween 10.V and 11.5 eV on the rhodium (111),
(100), and (110) surfaces. '~ Thus the kinematical
and multiple scattering calculations are in very
good agreement.

A determination of e~ was made for each of the
Bragg peaks listed in Tables I and II. An intensity
versus temperature profile at 8=5 for the specu-
lar I =' Bragg peak from the Rh(111) surface is
shown in Fig. 2. The other Bragg peaks had sim-
ilar profiles. These profiles were obtained by

TABLE II. Selection of the Bragg peaks for Rh(100).

E..I. (eV)' E.,„(eV)
First, the energies at which the Bragg peaks are
expected to occur are determined using the bulk
interlayer spacing and V, = 10 eV, typical values
for most metals. These calculated energies are
then matched to the experimental energies as
shown in Tables I and II. Bragg peaks are gener-
ally the major peaks in an I-V profile and this
fact can be used as a guide in separating the Bragg
peaks from the multiple scattering peaks. For

1
4
9

16
25
36

32
84

158
252
368

22
77

145
256
375

'Values of V0=10 eV and c=1.90 A were used to de-
termine Ecalc from Eq. (2.1).
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TABLE III. Calculation of the topmost interlayer spacing and inner potential for Rh(111) and

m(100).

Crystal
face Slope

&expt Co&ilk ~Pt &bulk

~bulk Intercept
Vp

(eV)

Hh(111)
Hh(100)

8.23
10.9

2.15
1.86

2.19
1.90

—2' —10
-11

10
11

monitoring the intensity of a given Bragg peak
with a spot photometer as the crystal cooled from
800 C to 50 C. The crystal was then rotated back
to 8= 0 and the background intensity was mea-
sured in the same manner. The intensities were
monitored during cooling instead of heating to
avoid distortions from the heating currents. The
values of I«(Bragg peak intensity), I»,~(back-
ground intensity), IOO=IOO-I„„,q, and lnI,*, for the
curves in Fig. 2 have been tabulated in Table IV.
The plot of lnI,*, versus temperature of these val-
ues shown in Fig. .3 yields a straight line with a
slope of -5.14 x 10 '. Using this slope the Debye
temperature was calculated using the equation

0.153E
(2.2)

where E is the electron energy including the inner
potential, M is the atomic mass, T is the absolute
temperature, and b is the natural logarithm of the
atomic structure factor. The result is OD= 340 K.
The values of GD for the other Bragg peaks were
calculated in a similar manner. The results of
these calculations are shown in Fig. 4. These
values are the average of several experiments.
Since only the 00 beam was used, the Debye tem-
peratures refer to the component of displacement
normal to the surface. The estimated errors in

e~ arose from noise in the intensity measurements
and difficulty in making an accurate measurement
of the beam voltage. A value of OD was also cal-
culated for the 91-eV peak on Rh(100), but this

TABLE IV. Intensity values (arbitrary units) for the
curves shown in Fig. 2.

Temperature
(K) Ioo Ibkgd Ioo lnIoo

value deviated significantly from the curve shown
in Fig. 4. For this reason the 77-eV peak was
selected as the l = 3 Bragg peak for the Rh(100)
surface.

Considering first the data for the (100) surface
in Fig. 4, we see that the apparent Debye temper-
ature decreases monotonically with decreasing
beam voltage. Extrapolation of the data to zero
beam voltage yields the "zero-penetration" sur-
face Debye temperature of -200 K. Turning now
to the (111)surface, we observe that the apparent
Debye temperature decreases with decreasing
beam voltage until a minimum is reached at about
100 eV, after which it increases with further de-
crease in the beam voltage. This behavior is an-
omalous and may be an artifact of the particular
experimental arrangement used. If the minimum
is ignored and the curve is extrapolated linearly
to zero beam voltage, a zero-penetration surface
Debye temperature of -210 K is obtained, which is
in reasonable agreement with the value of 197 K
obtained by Chan et al.'

The values of 6 at the highest beam voltage on

each surface are very close to the bulk OD of 350
K determined from specific-heat data' at 298 K.
Using this value together with the values of the
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FIG. 2. Intensity vs temperature curves for the specu-
lar 1=7 Bragg peak from rhodium (111), Ipo, and the
background intensity from rhodium (111), Ibk d.

353
394
432
468
503
537
582
625
667
708
749
800
850
899
947

1041

3.63
3.13
2.79
2.46
2.22
2.02
1.79
1.61
1.47
1.35
1.27
1.19
1.13
1.09
1.07
1.03

0.74
0.78
0.81
0.82
0.84
0.85
0.87
0.88
0.89
0.89
0.90
0.90
0.91
0.91
0.92
0.93

2.89
2.35
1.98
1.64
1.38
1.17
0.92
0.73
0.58
0.46
0.37
0.29
0.22
0.18
0.15
0.10

1.06
0.85
0.68
0.49
0.32
0.16

—0.08
-0.31
—0.54
-0.78
-0.99
—1.24
—1.51
—1.71
-1.90
—2.30
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FIG. 4. Values of eD vs beam voltage for the specular
Bragg peaks from rhodium (111) and (100) surfaces.
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FIG. 3. A plot of 10.10~0 vs temperature for the specular
l = 7 Bragg peak from the rhodium (111)surface.

surface Debye temperatures, we can calculate the
ratio of the normal components of the surface and
bulk mean-square displacements. The results for
(u'),„„/(u')„~ are 3.33 and 3.06 for the (111)and
(100) surfaces, respectively.

III. LATTICE-DYNAMICAL MODELS

We employ two rotationally invariant lattice-dyn-
amical models. In the first model, we assume
central forces between nearest neighbors and
next-nearest neighbors and, in addition, angle-
bending interactions involving triplets of nearest
neighbors. This model contains three force con-
stants and will be referred to as the "three-con-

stant model. " In the second model, we assume
central potentials of interaction between nearest
neighbors and next-nearest neighbors as well as
the angle-beriding interactions. This model con-
tains five force constants and will be referred to as
the "five-constant model. " Since the three-con-
stant model can be regarded as a special case of
the five-constant model, we shaQ present the
latter in detail and then show how the former is
obtained from the latter.

Let us designate the interaction potentials for
nearest neighbors and next-nearest neighbors by
y, (x) and y, (r}, respectively, and the position
vector of a lattice site by

R(1m') = (a,/2)(tx+my+u~), (S.l)

where l, m, and n are integers such that l+m+n
is even, ao is the fundamental cube edge, and x,
y, and z are unit vectors in the x, y, and z direc-
tions, respectively. The equation of motion cor-
responding to the x component of force can be
written as

+@gnIn= &y +g+)t, nI+~ n
—+rnIn + +l+& nI n+v +lntn + +2 ~~Vl+)t, nI+p n+ ~I ~t+g nI n+v

X, y =~l I, v=y& )I. lS =+1 )I, y vM&
'" ")

(M, .„„.„-u,„„)+(),Q (u„., „„-u,„„)+)), Q (u, „., „-u, )+Q (u, . „—u, )}
XM2 Q MB VM2

X, g, v=+1
t
3( 3/
& (u (+)), )))+)), n +u ) +)), ))), n+u +u ), )))+)),))+v u )mn )+ & ( ~p ~ ) ++ )))+)),)) + ~~ )+)), m, ))+p) 1 ) (3.2)

c(,= ,'[q ')' (r,) ——(1/r,)q ', (~,)],
Q3- Q~ —Q2

p, = y'2 (ao),

P, = (1/ao)9)', (ao),

(s.sb)

(s.sc)

(3.3d)

(3.3e)

where ~ is the atomic mass, g, , v, „, and m,
are the x, y, and z components of displacement of
the atom at the lattice site (lmn),

()(, = 2[y", (~.) + (1/~.)y', (~,)], (3.3a)

y is the force constant associated with angle-bend-
ing interactions, and ro is the nearest-neighbor
equilibrium distance. Two other equations of mo-
tion are obtained by cyclically permuting u, v, m

and X, p, , p.
There seem to be no phonon dispersion curves

for rhodium determined by inelastic neutron scat-
tering. We must therefore use other experimental
data to determine the force constants. The data
which we have been able to locate are the bulk
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Debye temperature from specific-heat data, ' eo
=350 K, the bulk modulus, ' X=2.71 &&10~ dyn/cm',
and the speed of shear sound waves, ' c, =3.005
x 10' cm/sec. This gives us three pieces of infor-
mation, but there are five independent force con-
stants to be determined, so we need two more re-
lationships. One of these is provided by the con-
dition for static equilibrium of the lattice with re-
spect to homogeneous expansions or contractions.
This yields @max —&gep- (3.10)

setting y = 0 and use Eq. (3.5), we obtain Cauchy's
relation, c»=c4,. Since the latter is not well
obeyed, the angular interactions must be impor-
tant.

The fifth equation needed to specify the force
constants concerns the Debye temperature which
is ordinarily related to the maximum phonon fre-
quency of the crystal by the equation

2"'y', (r,)+q ',(a,) = 0,
which, using Eqs. (3.3), becomes

Q~ @2+p2 0 ~

(3.4)
In actual fact, this relationship is not valid for
many materials. For platinum, whose maximum
frequency is at the Brillouin-zone boundary in
the [111]direction, "one finds that

To get the last relationship needed, we argue that
rhodium is very similar in its properties to plati-
num and palladium. If we examine the elastic
constants of these two materials, ""we find that
the values of the ratio c»/c» are 0.72 and 0.78,
respectively. We take this ratio for rhodium to be
the average of these two values —namely, 0.75.

The elastic constants can now be determined
using the relation cy2 0 75c]y and the relations

k~9~ = 0.8291(u,„(111). (3.11)

ksea = 0.836K(u,„(100). (3.12)

If we assume such a relation for rhodium, we do
not get consistent results for the force constants.
However, satisfactory results are obtained if we
use the maximum frequency in the [100] direction
and employ the same relation that is valid for
platinum —namely,

8 = (c„+2c„)/3,
2

Cg4 = PC( p

(3.6)

(3.7)

It will be seen below that

M(u', „(100)= 16n, + 48y, (3.13)

where p is the density having the value" 12.4 g/
cm'. The results are, in dyn/em',

c„=3.25x 10"
2.44x 10"

c~4=1.12x12 '

(3.8a)

(3.8b)

(3.8c)

c„=(4n, + 4p, + 12y)/a, ,

c„=(6n, —4n, —4p, —6y)/a, ,

c„=(4n, —2n, +4p, + 12y)/a, .
(3.9b)

(3.9c)

Note that if we ignore the angular interactions by

By passing to the continuum limit of the equations
of motion and comparing the result with the equa-
tions of elasticity theory, one can obtain the re-
lations between the force constants and the elastic
constants. They are

so substitution of Eg. (3.13) into Eg. (3.12) yields

M(ksOD/h)' = 0.699(16n, + 48y) . (3:14)

M(k~oD/8)' = 0.69(16n + 4p + 48y) . (3.15)

Solving for the force constants yields (in units of
10' dyn/em) n= 3.80, p =1.23, and y= —0.279.

Equations (3.5), (3.9), and (3.14) can now be solved
for the force constants. The results are (in units
of 10' dyn/cm) n, =4.06, n, =3.80, p, = -0.14,
p, = —0.26, and y= —0.279.

The three-constant model arises if we set +y
=~,=~, p, =p, and p, =0. The central force con-
stants ~ and p together with the angle-bending
force constant y are the three independent force
constants. They are determined from Egs. (3.9b),
(3.9e), and (3.11). Again borrowing from results
to follow, we find that Eq. (3.11) becomes

IV. PHONON DISPERSION CURVES

The phonon dispersion curves are readily determined by substituting plane-wave solutions into the equa-
tions of motion. I.et

(u, v, w), „„=(U, V, W)exp[i(lq, ~ my, + n(p, ) —i(ut], (4.1)

where U, p, and g are constant amplitudes, the y,. are dimensionless components of the wave vector, and
u is the frequency. If we substitute Eq. (4.1) into the equations of motion as typified by Etl. (3.2) and set
the determinant of the coefficients of U, V, and 5 equal to zero, we obtain the secular equation
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where

D;; = 4az(2 —C+ C&C&)+ 4(n~ —u2)(1 -C&Cz)+ 2p &(1 -C l)+ 2p 2(2 -C& —Cz)+ 12y(3 -C) —Me

D„=(4m~+ 6y)S;S;. , i ' ei,

(4.2)

(4.3a)

(4.3b)

C,. =cosy„S, =sincp,-, C, =cos2y;, C=C,C, +C,C, +C,C„ i=1, 2, or 3, and j and 0 are the values in the
triad (1, 2, 3) which are not equal to i.

The secular equation can be solved analytically for phonons propagating along principal directions in
wave-vector space. The following results are obtained for the squared phonon frequencies:

(a) [100] direction, q, =y, 'y, =y, =0:

(o~(cp, 0, 0) = (I/M)[(16o, , +48 y)sin'(q/2) +4p, sin'y],

ver (y, 0, 0) = (1/M) [(16n, —8z, + 48 y)sin'(y/2) + 4p, sin'y] .
(b) [110]direction, y, =y, =y, y, =0:

uP~ (q, q&, 0) = (1/M) [(16n, —8a, + 48 y)sin'(y/2) + (4o, + 4o, + 4p, + 4p, + 18 y) sin'y ],
cur (q, y, 0) = (1/M)[(16n~ —8zz+ 48y)sin (cp/2) + (4&~ —4o2+ 4p~+ 4p2+6y)sin y],
~r (y, p, 0) = (I/M)[(16o!&+48 y)sin (y/2)+ (4z& —4&2 +Spy+ 12y)sin y] .

(c) [111]direction, y, =q, =y~=y:

~&(q, q&, y) = (I/M) (12a, + 4a, + 4p, + 8p, + 48 y) sin'q&,

~r(p, p, p) = (1/M)(12o. , —8n, +4p, +Sp, +30y)sin'y .

(4.4a)

(4.4b)

(4.5a)

(4.5b)

(4.5c)

(4.6a)

(4.6b)

The phonon dispersion curves calculated from the
three-constant and five-constant models are shown
in Fig. 5. 'The two models give qualitatively simi-
lar results. An interesting difference, however,
is the relative order of the maximum frequencies
in the [100]and [111]directions. For the five-

constant model, it is the [100]direction which has
the higher maximum frequency, whereas for the
three-constant model, it is the [111]direction.
The latter is the situation which obtains for plati-
num, "although the difference between the two fre-
quencies is very small.
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O
40
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0.00 0.25 0.50 075 I.OO 0.75 0.50 0.25 0.00 0.25 0.50

FIG. 5. Theoretical bulk phonon dispersion curves for rhodium. The solid line is the five-constant model and the
dashed line is the three-constant model.
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V. MEAN-SQUARE DISPLACEMENTS

The mean-square displacements are calculated
by applying the method of continued fractions
developed by Haydock, Heine, and Kelly' for elec-
tronic problems and modified for lattice-dynami-
cal problems by Black, Laks, and Mills. " We
shall only summarize the method and refer the
reader to Black et g). for details.

The mean-square-displacement component
(u'„(I)) of an atom at lattice site 1 can be ex-
pressed in terms of the eigenvector components
e&„'~(l) of the dynamical matrix by'

(u' (1))= —Q ~

e'„'(1)
~

'
1Vl (d~

(5.1)

where ~, is the frequency of the gth normal mode
of vibration, &(&d, ) is the mean phonon energy
given by

e (&dz ) = k&d~[B(&ds) + 2] ~ (5.2)

and n(&d, ) is the mean phonon occupation number

1
n(&d, )- „ (5.3)

(,(-)) ke Tg I e „"'(1) I

'
M, (d2

Introducing the Green's function

(5.6)

(5.7)

(5.8)

we see that

(u.'(I)) = —(k, T/I) V„„(17;0). (5.9)

In the procedure of Haydock et al."the Green's
function V„„(1%;z)as specified by Eq. (5.7) is ex-
panded in the continued fraction

V„„(II;z)= (5.10)

The construction of the coefficients A.; and B; and
the evaluation of the continued fraction are dis-

For a monatomic lattice, the elements of the dy-
namical matrix D„z(1,1') are given by

D„,(1, 1 ) =C „,(I,T )/1If, (5.4)

where 4 „8(T,T') is the matrix of force constants in
Eq. (3.2). In the high-temperature limit, keT
» hx„

rs((u, ) —k~T/k&d, ,

and Eq. (5.1) becomes

cussed by Black et al."
The method just described has been used to cal-

culate the mean- square-displacement components
of atoms at the (100) and (111)surfaces and in the
bulk of rhodium. From the ratio of the surface
and bulk components, one can calculate the ratio
of the squares of the surface and bulk Debye tem-
peratures using the relation'

& «g) eD~
(+B) ODS

(5.11)

The results shown in Table V for the three-
constant and five-constant models are qualitatively
rather similar. The perpendicular-surface Debye
temperature is about 245 K for both models for the
(100) surface and slightly greater for the (ill)
surface. The parallel-surface Debye temperature
is about 300 K or more for both models for both
surfaces. Thus, the anisotropy of the mean-
square displacements at each surface is clearly
evident.

Experimental data are available only for the
perpendicular component ratios. We see from
Table V that the theoretical values for both sur-
faces exceed the experimental values by 20%%u& or
more. This discrepancy suggests that the force
constants coupling a surface atom to its neighbors
are significantly smaller than the corresponding
force constants in the bulk. The use of the high-
temperature limit in our calculations cannot be

TABLE V. Theoretical and experimental values for
the surface Debye temperatures at the (100) and (111)
surfaces of rhodium,

(100) surface (111) surface

Three-constant
model

Five-constant
model

Experiment
Exper iment "

247
200

307 247

261
210
197

296

~This work.
b Reference 2.

which is valid in the high-temperature limit.
Knowing the bulk Debye temperature, one can
then calculate the surface Debye temperature.
The theoretical results for the surface Debye
temperatures associated w ith displacements both
parallel and perpendicular to the surface are pre-
sented in Table V for the (100) and (ill) surfaces
of rhodium. The experimental values from this
work and from that of Chan et al. ' are also pre-
sented.

VI. DISCUSSION
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responsible for the discrepancy between theory
and experiment, since the surface-to-bulk mean-
square-displacement ratio decreases rather than
increases as the temperature is lowered.

Our experimental result for the surface Debye
temperature of the (111)surface is in reasonable
agreement with that of Chan et al. ' The difference
between the results may be due to the fact that the
experiments were done at different azimuthal an-
gles.

In a recent paper, Ernst and Bloch" have made
an estimate of the surface Debye temperature of
rhodium based on an analysis of field emission
studies. Since an emitter tip is composed of sev-
eral different crystallographic surfaces, the re-
sults may represent an average over a number of
surfaces or may not even refer to a surface at all,
but to an edge or a corner. Ernst and Bloch ob-

tain values for the surface Debye temperature in
the range of 80-120 K, which are significantly
smaller than either the experimental values ob-
tained from LEED or the theoretical values. This
suggests that Ernst and Bloch may be dealing with
an edge or corner with a high curvature.
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