Correction of experimental values of the critical exponent β of high-temperature ferromagnets to constant volume

P. C. Riedi*

Department of Physics, University of St. Andrews, St. Andrews, Scotland (Received 11 February 1981)

It is shown that for a high-temperature ferromagnet the critical exponent derived from magnetization or hyperfine-field measurements at constant pressure (β_P) is related to the value at constant volume by the expression: $\beta_P = \beta_V [1 + B_T \gamma_T (\partial T_c / \partial P)]$, where B_T and γ_T are the average values of the isothermal bulk modulus and coefficient of thermal expansion in the critical region, respectively, T_c is the Curie point, and P the pressure. For nickel $\beta_V = 0.966\beta_P$ and the correction is of the same order as the estimated random error in the experimental value of β_P .

Shaham *et al.*¹ (afterwards referred to as I) have recently reported NMR measurements of the hyperfine field in pure iron, nickel, and cobalt in the critical region $T \simeq T_c$, where T_c is the Curie point. According to the theory of critical phenomena the magnetization and, it will be assumed here, the hyperfine field in the critical region, obey a law of the form

$$M_T/M_0 = v_T/v_0 = Bt^{P_V} , \qquad (1)$$

where M_T and v_T are the magnetization and hyperfine field at temperature T and constant volume, $t = (T_c - T)/T_c$ and β_V is the critical exponent. The subscript on β is usually omitted but is introduced here to emphasize that in a theoretical discussion the system is always considered to be at constant volume. In I a fit to Eq. (1) was obtained using hyperfinefield measurements made at constant pressure leading to an exponent we shall call β_P . A thermodynamic calculation was then given which claimed to show that $(\beta_V - \beta_P) \simeq 1 \times 10^{-3}$, an order of magnitude less than the random error in β_P . In the present note we show that this conclusion is incorrect, because it neglects the volume dependence of T_c , and that in particular $(\beta_V - \beta_P) = -0.012$ for nickel which is close to the random error given for $\beta_P(0.354)$ ± 0.014) in I and some six times greater than the random error claimed for the most accurate values of β_P (see Table I of I).

The thermodynamic equation

$$\left(\frac{\partial \ln \nu_T}{\partial T}\right)_{\nu} = \left(\frac{\partial \ln \nu_T}{\partial T}\right)_{P} + B_T \gamma_T \left(\frac{\partial \ln \nu}{\partial P}\right)_{T}, \quad (2)$$

where B_T is the isothermal bulk modulus and γ_T the coefficient of thermal expansion at temperature T, was integrated in I, to correct the hyperfine-field

measurements to constant volume, by ignoring the temperature dependence of B_T and $(\partial \ln \nu / \partial P)_T$ and using the values found from experiments at room temperature. It is true that B_T is only a weak function of temperature, even in the critical region,² but it will be shown that it is not permissible to ignore the temperature dependence of $(\partial \ln \nu / \partial P)_T$.

Provided that at constant volume the temperature dependence of the hyperfine field can be written in the form, $v_T/v_0 = f(T/T_c)$ it is simple to show that

$$\left(\frac{\partial \ln \nu_T}{\partial P}\right)_T = \left(\frac{\partial \ln \nu_0}{\partial P}\right)_T - \left(\frac{\partial \ln T_c}{\partial P}\right) \left(\frac{\partial \ln \nu_T}{\partial \ln T}\right)_V \quad , \qquad (3)$$

and, on replacing ν_T by M_T throughout, a similar equation must hold for the magnetization.³ Equation (3) has in fact been shown⁴ to describe the dependence of the magnetization of <u>Ni</u> Cu alloys on pressure in the temperature range $0-0.8 T/T_c$. We assume that Eq. (3) will continue to hold in the critical region and hence

$$\left(\frac{\partial \ln \nu_T}{\partial P}\right)_T = \left(\frac{\partial \ln \nu_0}{\partial P}\right)_T - \beta_V \left(\frac{\partial \ln T_c}{\partial P}\right) \left(\frac{\partial \ln t}{\partial \ln T}\right)_V \quad , \quad (4)$$

where $\beta_V = (\partial \ln v_T / \partial \ln t)_V$, in agreement with Eq. (1).

Equation (4) is now substituted into Eq. (2). The constant volume of the system is defined to be that at the experimental value of T_c under a pressure of 1 atm and the equation is integrated over the range of temperature T_1 to T_2 for which the measurements were taken to be in the critical region at constant pressure. Since at constant volume $(T_1 - T_2) = T_c(t_2 - t_1)$ the equation becomes

<u>24</u>

1593

©1981 The American Physical Society

COMMENTS

$$\ln\left(\frac{\nu_2}{\nu_1}\right)_{\nu} = \ln\left(\frac{\nu_2}{\nu_1}\right)_{P} - B_T \gamma_T T_c(t_2 - t_1) \left[\left(\frac{\partial \ln \nu_0}{\partial P}\right) - \beta_{\nu} \left(\frac{\partial \ln T_c}{\partial P}\right)\right] - \beta_{\nu} B_T \gamma_T \left(\frac{\partial T_c}{\partial P}\right) \ln\left(\frac{t_2}{t_1}\right)$$
(5)

(for simplicity we ignore the weak-temperature dependence^{2,5} of both B_T and γ_T for a ferromagnet of high T_c). On dividing throughout Eq. (5) by $\ln(t_2/t_1)$ the left-hand side is simply β_V and the first term on the right-hand side is equal to the experimental value of β_P found in I by ignoring the pressure dependence of T_c . Taking the range 2×10^{-3} $\leq t \leq 10^{-1}$ used in I for nickel the second term on the right-hand side is found to be $\simeq 10^{-4}$ in agreement with the conclusion in I that the direct effect of thermal expansion is negligible⁶ but the third term gives

$$\beta_P = \beta_V \left[1 + B_T \gamma_T \left(\frac{\partial T_c}{\partial P} \right) \right]$$
 (6)

The experimental values for B_T and γ_T of nickel in the critical region are^{2,5} 1.75 × 10³ kbar and 5.5 × 10⁻⁵ K⁻¹, respectively, and the value of $\partial T_c/\partial P$ is⁷ (0.35 ± 0.02) K kbar⁻¹ so $\beta_V = 0.966\beta_P$.

The correction from β_P to β_V for nickel is therefore not $\sim 10^{-3}$ as suggested in I but $\sim 3 \times 10^{-2}$

- *Address until January 1, 1982: Department of Physics, Colorado State University, Fort Collins, Colo. 80523.
- ¹M. Shaham, J. Barak, U. El-Hanany, and W. W. Warren, Jr., Phys. Rev. B <u>22</u>, 5400 (1980).
- ²G. A. Alers, J. R. Neighbours, and H. Sato, J. Phys. Chem. Solids <u>13</u>, 40 (1960).
- ³Equation (2) was given in P. C. Riedi, Phys. Rev. B 20, 2203 (1979), for the temperature dependence of the pressure derivative of the hyperfine field of nickel; see also D. Bloch and A. S. Pavlovic, in *Advances in High Pressure Research*, edited by R. S. Bradley (Academic, New York, 1969), Vol. 3, for the magnetization.

which is of the same order as the estimated random error for β_P given in I. The correction for iron, however, is very small because $(\partial T_c/\partial P) \approx 0 \pm 0.1$ K kbar⁻¹ and is not known for cobalt since Patrick was only able to estimate a value of 0 ± 1 K kbar⁻¹ for $(\partial T_c/\partial P)$.

It is clear that Eq. (6) can also be derived for the magnetization and hence the values of β_P and β_V found from magnetization and hyperfine-field measurements should be identical provided that bulk values of B_T and γ_T are appropriate to the hyperfine-field correction. This point is certainly open to question when the hyperfine field of an impurity in a ferromagnet is measured to find β_P although experiments⁸ seem to support the view that the value found is independent of the impurity. One interesting example of an impurity for which β_P might be quite different from that of the host is Au in iron for which the hyperfine field has a most unusual temperature dependence at low temperature⁹ that may be due to a local lattice mode at the Au site.

- ⁴H. Fujiwara, T. Iwasaki, T. Tokunaga, E. Tatsumoto, J. Phys. Soc. Jpn. <u>21</u>, 2729 (1966).
- ⁵T. G. Kollie, Phys. Rev. B <u>16</u>, 4872 (1977).
- ⁶The correction of β_P to constant volume for lowtemperature magnetism was considered by P. Heller, Phys. Rev. <u>146</u>, 403 (1966), but Eq. (6) for the hightemperature case does not seem to have been published before.
- ⁷L. Patrick, Phys. Rev. <u>93</u>, 384 (1954).
- ⁸C. Hohenemser, T. Kachnowski, and T. K. Bergstesser, Phys. Rev. B <u>13</u>, 3154 (1976).
- ⁹G. D. Webber and P. C. Riedi, J. Phys. F <u>11</u>, L29 (1981).

1594