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e provide here the numerical solutions for the quasiparticle chemical potential and for the

order parameters of the singlet-superconducting, the charge-ordered, and the mixed phases in

an extended Hubbard model with strong intra-atomic attraction, based on the analysis of our

previous paper.

The conventional Hubbard model' has been modi-
fied along various directions. Due to the coupling
between electrons and intramolecular vibrations or
electronic excited states, ' ' or between electrons in
different bands in a chemical complex, many authors
have considered the Hubbard model with intra-
atomic attractive interaction. A detail reference on
such work was given in our recent paper. 7 After the
interpretation of Anderson, ' Street and Mott, and
Adler and Yoffa' on the electrical, magnetic, and op-
tical properties of amorphous materials in term of the
intra-atomic attraction, the Hubbard Hamiltonian
with attractive intra-atomic correlation has emerged
as a model not too unrealistic. Very lately Baraff
et al. " studied the electron paramagnetic resonance"
and the deep-level transient spectroscopy" with the
conclusion that the vacancy in silicon is an
attractive-correlation center.

Recently we have derived the phase diagram of the
extended Hubbard model with intra-atomic attrac-
tion7 (referred to as I). In that paper we could not
obtain the analytical solutions for the order parame-
ters and the chemical potential, even though these
quantities are essential for the understanding of the
physical properties. In this short paper, we will pro-
vide the numerical results and so make the investiga-
tion complete.

We first briefly summarize the analysis in I. Con-
sider an extended Hubbard Hamiltonian

0 XrlJc' cJ 2 (U( $n;~n;

+ —X wJn; n +g(E, —P)n;
ijocr

with an intra-atomic attraction energy —
~
U

~
and a

spin-independent interatomic interaction N,j. Since
the Hartree-band theory and the intra-atomic attrac-

tion do not yield any magnetic ordering, the ground
state of the Hamiltonian must be nonmagnetic. In
particular, we have the nonferromagnetic condition

(2)

where o-; is the n =+, —,z component of the spin
operator a-; for an electron at the lattice site R;, and
N is the total number of sites.

We assume two interpenetrating sublattices 3 and
B, and define a Q such that exp(iQ ~ R) = —1 for any
translation R which transforms one sublattice into the
other. Let us construct a canonical transformation

c't exp(iQ R;) b, t, c;t = b;t

c't exp( —iQ R;) b;t, c, t
= b, )

and apply it to the charge operators to obtain

p,+=(p; )t=c;tc;tt =exp(iQ R;)o.;

p,'= (n;t+n, t
—1)/2 = o.,*,

where

(4)

+0.; =b;)b, ) o,*= (n;t —n, t)/2

with

n; =b; b~ (6)

It is easy to show that p;+, p;, and p obey the same
commutation rules as the spin operators. Therefore,
within a phase factor exp(+i Q R;) the spin opera-
tors o-; in the new representation play the roles of
the charge operators p; in the old representation, and
vice versa.

We will retain only the nearest-neighbor interaction
H and assume a constant one-site energy E; = E.
Then the canonical transformation transforms (1)
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and (2) into

H = x' tltb;~bi~+ 2 ( U( Xn;~n;

+2 W $o.;o.i +2 X(E—
p, ) o;

—
—,
'

i Ui Xn,.-(t-.- —,
' iUi+ZW/2)W,

X(o,*) =n —1
N

where

p, = p, +) U(/2 —ZW (10)

where J =2t /I Ul E =J +2 W, and 8 = p, —E = p,

and Z is the coordination number. Therefore, the
extended Hubbard Hamiltonian of arbitrary electron
density n with intra-atomic attraction and spin-
independent interatomic interaction has been
transformed into an extended Hubbard Hamiltonian
of one electron per atom with intra-atomic repulsion
and Ising-type interatomic exchange interaction in the
effective external magnetic field (E —p, ) along the z

direction. The magnetization of the transformed sys-
tem along the z direction has a fixed value given by
(g).

From Eqs. (3)—(5) it is obvious that the magnetic
order in the xy plane in the transformed Hamiltonian
corresponds to the singlet-superconducting (SS) order
in the original Hamiltonian. The nonuniform mag-
netic order along the z axis in the transformed Harnil-
tonian corresponds to the charge order (CO) in the
original Hamiltonian. The intermediate state between
these two magnetic orderings in the transformed
Hamiltonian corresponds to the mixed (M) phase in

the original Hamiltonian. Finally, the para- or the
ferromagnetic state in the transformed Hamiltonian
corresponds to the nonordered (NO) phase in the
original Hamiltonian. %e then only need to solve for
the magnetic phase diagram of (7) in order to derive
the phase diagram of (1).

Since the transformed Hamiltonian (7) describes a

system of exactly one quasiparticle per atom, the de-
generate perturbation theory can be applied at the
strong coupling limit

~
U~ )) tt& For simplicity bu. t

without losing generality, we'keep only the nearest-
neighbor hopping t. An effective Hamiltonian to the
second order in ~t/U~ can be easily derived, and after
transforming to the e; -operator representation via
(3) has the form

H = —J X'(p,"p"+ p; p ) +K $ p,*pj
ij ij

—8 X(2p'+1)

+
~
U ~/2 —ZW —E This effective Hamiltonian is

subject to the condition corresponding to (8) as

N, '
2

(12)

We should mention that in deriving (ll), we have
dropped some constant-energy terms. p; can be
treated as pseudospins because they obey the same
commutation rules as the spin operators. Conse-
quently, we call (11) the effective pseudospin Hamil-
tonian.

This effective pseudospin Hamiltonian is solved
with the mean-field approximation following the Bo-
goliubov variational principle. '4 The reader is re-
ferred to Sec. III of I for details, while here we only
present the final results obtained by solving numeri-
cally the coupled Eqs. (3.9), (3.10a), (3.10b), and
(3.11) of I. Since the direction of pseudospin in the
xy plane is not specified, it is sufficient to consider
the possible magnetic ordering in the xz plane. If we
define Xq = (pq ), Xs = (ps), Zq = (p& ), and
Zs = (p$) for the two sublattices A and 8, then the
order parameters are X& +L&, L& —X~, and Z& —Z~
which specify the various phases as follow. NO
phase: Xz +Xq =0, Xz -Xq =0, Z& —Z~ =0. SS
phase: Lg+Xg &0, Xg —Xg =0, Zg —Zg =0. CO
phase: Xz+Xq =0, Lz —X~=0, Zz —Z~ AO. M
phase: Lq+Lg AO, Xg —Xg WO, Zg —Zg AO.

While solving the coupled equations numerically,
we found four possible cases: (1) Only the NO solu-
tion exists; (2) either the NO and the SS solutions
exist, or the NO and the CO solutions exist; (3) ei-
ther the NO, the SS, and the M solutions exist, or
the NO, the SS, and the CO solutions exist; and (4)
for H'=0 and n =1 only, all the NO, SS, M, and CO
solutions exist. %hen there are solutions for more
than one phase, we compute the free energies for dif-
ferent phases in order to determine which one is
stable. It is discovered that as long as the CO (or the
M) phase has solution, it is always the stable one.
However, for 8'=0 and n =1, all the three SS, M,
and CO phases are degenerate. %e should mention
that the so-obtained phase boundary agrees with the
one derived in I via the Landau expansion.

%e have proved in I that for H & 0 as well as for
H' =0 and n & 1, the only transition is from the SS
phase to the NO phase. It is also proved there that
the SS NO transition temperature does not depend
on the value of W. Hence, the SS order parameter
XA+Xs shown in Fig. 1 (in all figures r =ksT/ZJ) is
for any value of K/J. Since at W =0 and n =1 the
three SS, M, and CO phases are degenerate, the
curve for n = 1 also represents the CO order parame-
ter Zg —Zg.

For E/J )0, the CO and the M phases begin to
appear in the phase diagram. In Fig. 2 we show the
order parameters Z„—Zs (heavy solid curves),
X~ +Xs (heavy dashed curve), and Xs —X~ (heavy



158&gR&EF REPPR

XA+XB

lk

1-
I
I

I

I
I
I

I
I
I
I

0'.5

,
'0.9

---., ;'04 O.S

I —T /
ssI

I

(I
I I
I I

I

~

l otential for
'

le chemica Pouasipartic e~ Normalized qFIG 3
K/J='

)n-1l

SS phase «rf the pureFly. 1. Order Param
lue of K/

n the Plane o
n

f 7 ands) pt'p]ect 8 "
xistjng 5

hase existing
d the pure S p

SS phase
d curve, an

. 1n the Pure
thin dptte

d curve. nbe}pw t e thin dptte

ameterthe SS prder p
Fig

t p}pt the
en in Fig.

regipn.
'

the same a
arameters

+ g'B s
' f tures pf th

secpnd pr-

ince it '
e prder paThe characte

that all transit'

A

ristic ea
'

ipns areempnstrate t aclearly dern

Hamiltpnitially an1 n effective
de&

„(ll) is essentia &

f'eld g3 = p

Eguat' "
'

in a magnet'
d termined

an f« "
~ E which s"

l2) Hence,

eudPsPins &n

puld he de e~+lU
ti h&pnsis«nt & h

ORDER Pm~™

O.5-

0.6

=1~:5 heavy solideters f'or K/J = ' '

X +XB, a&d

. Order param
hed curves f

FIG. 2.
Z heavy das eB'curves fo ~

fpr XBheavy dotte d curves o

) n-1)

~

l otentjal for
~ '

le chemica puasipartic e~ Normalized qFIG 4
K/J="



15S2 BRIEF REPORTS

I

I
I

I

I

I

I

I

I

)n-1I

FIG. 5. Normalized quasiparticle chemical potential for
E/J =1.5.

FIG. 6. Normalized quasiparticle chemical potential for
Z/J =2.

the chemical potential can be computed. The nor-
malized chemical potentials P, = (p, —E)/ZJ are given
as heavy solid curves in Fig. 3 for K/J =1 ( 14' =0),
in Fig. 4 for E/J = 1.1, in Fig. S for E/J = 1.5, and
in Fig. 6 for IC/J =2. Since the stable phase has the
largest chemical potential, we can also determine the
phase diagram from such analysis of the p, . The so-
derived phase boundaries, sho~n as heavy dashed
curves in the plane of T and

~
n —1 ~, agree exactly

with those given in I.
%e would like to emphasize a few points concern-

ing to the chemical potential. All the JM, curves are

continuous as should be for systems exhibiting
second-order phase transition. For the pure SS
phase, p, is temperature independent and linear in

~n
—1~. For given value of n, chemical potentials for

different phases meet at the phase boundary in the
form of a downward cusp. However, it is not so
along the CO-M phase boundary where the cusp
points upward. This is because the solution for the
CO phase and the solution for the M phase do not
coexist, and so the upward cusp does not violate the
rule of largest chemical potential for stable phase.
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