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Finite-size calculations for the kinetic ising model
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Using a Hamiltonian formulation of the master equation, we carry out finite-size calculations

for the dynamical critical exponent z of the kinetic Ising model in one and two dimensions. In

one dimension, different appropriately normalized transition probabilities give different values

for z; this result is based on both exact and finite-size calculations. We show that this

"nonuniversal" behavior is due to the fact that the critical temperature for the one-dimensional

Ising model is zero. In two dimensions we combine our finite-size calculations with finite-size

scaling theory to calculate z. Even in this case we find that z depends on the form of the transi-

tion probability —a result that contradicts the universality hypothesis for dynamical critical

behavior. We discuss the possible reasons for this contradiction.

In this paper we study the critical dynamics of the
d-dimensional (d = I, 2) Ising model (IM) (a chain
or a square lattice with periodic boundary conditions).
This problem has been studied by many authors.
Here we wish to show the following: (I) For d = I,
universality does not hold in the usual sense, "be-
cause of certain pathological behavior associated with
the zero critical temperature of the IM (we shall
make this precise later); and (2) for d =2, finite-size
Hamiltonian methods, which have given excellent
results for static critical exponents, '4 do not lead to

conclusive results for dynamical critical exponents.
The Hamiltonian for the IM is

where K is the exchange coupling (divided by the
temperature, T) between spins, o;, on nearest-
neighbor lattice sites (ij ). We take the Boltzmann
constant to be one. The dynamics of the IM is
described by the master equation, '6

(2)

where P(a.t, . . . , o~, t) is the probability that the
system has the spin configuration ( a-i, . . . , a ~) at
time r, and w, (o 1, . . . , o„.. . , o~) is the transition
probability per unit time for the spin flip cr; —o, f,
is an operator defined by fg (o.;) = g ( cr;) for an —ar-

bitrary function, g, of cr;. %e only consider w s that
do not conserve the magnetization or any other ther-
modynamic quantity, and depend only on cr; and its
nearest neighbors. The w s must satisfy the condi-
tion of detailed balance, but this does not specify
their form completely. '

At the critical temperature, T„ofthe IM, the
longest relaxation time, ~, diverges. According to the
dynamical scaling hypothesis, '7 r —P as T T, ; z is

the dynamical critical exponent, and g is the correla-
tion length for the IM. For d =1, g

—e2" as

T T, =os for d )1,$ —~T —T, (
"as T T

where v is the usual static critical exponent. Accord-
ing to the dynamical universality hypothesis, as long
as there are no special conserved quantities, z should
not depend on the form of the w s.

For d =1, the most general form of w; which satis-
fies the condition of detailed balance, and depends
only on cr; and its nearest neighbors may be written
as

where y =tanh(2 K). rt and 5 are, for the time be-

ing, unspecified functions of y. From (2) it follows

that q sets the time scale.
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For the a s given by (3), z has been calculated ex-
actly in the following cases: (1) ri= 1, 8 =0(z =2);
(Glauber; Ref. 5); (2) q= 1, S=y/(2 —y);(z =4)
(Ref. 9); (3) rt= e~"cosh(2 K) +1,8 = y/(2 —y);
(z =2) (Ref. 10). The third choice of ri leads to a
singular time scale as T 0. In cases (1) and (2),
however, the time scale remains finite for all T. It is

easy to see that the difference between cases (2) and
(3) stems from the singular behavior of Yi [for case
(3)] at T =0. This difference can be eliminated trivi-
ally by normalizing rt (i.e., «, ) so that as T 0,

const, . %hen we normalize q, we get z =4
even for case (3). We see, then, that it is possible to
obtain at least two different values of z, namely, 2
and 4, analytically. In what follows we use q's that
are appropriately normalized (in the above sense).
%e show that it is possible to get any value of
z(~2) for d =1. This result is based on numerical
calculations which we now describe.

The master equation (1) can be cast into a Hamil-
tonian form. " The gap (the difference between the
two lowest eigenvalues), G, of the resulting Hamil-
tonian, H, is proportional to (1/r), which implies
that G —

g
' 0 as T T, . The condition of de-

tailed balance implies that the lowest eigenvalue of 0
is zero for all T. '

%e calculate G for IM's of finite sizes —chains of
N spins for d = I and N x N squares for d =2. Since
N is finite, H is a finite dimensional matrix (2n &2"
for d =1). We find its low-lying eigenvalues, and
hence G, by using the Lanczos method.

For a finite system there is no phase transition and

g remains finite at all temperatures. This implies that
GN, the gap for a system of linear size N, does not

Transition probability:
(1 —5) for T 0

1 [Glauber (Ref. 5)]
6

5

4e 2K [Exponential (Ref. 14)]
6p-2K

4( p
—2K)2 4p 4K

8(p-2K) 2.5 8p-SK

4( p-2K)3 4p 6K

2

2

3
3
4
45
5

vanish at any temperature. Both z and v can be
determined, ho~ever, by using finite-size scal-
ing. ""%e use this tactic for d =2.

It turns out that we cannot use finite-size scaling
for d =1 because G~ =0 at T =0 for all values of N.
This can be shown analytically for the Galuber and
the "exponential"' form of ~j. For other forms of
w; we find Gn 0 (to machine accuracy) as T 0.
In particular, GN —(e~") n 0 as T 0 with zn in

dependent of N.
Our results for d =1, based on calculations for

N =7, are summarized in Table I. Our transition
probabilities are appropriately normalized (in the
sense discussed above) and therefore the value of rt

TABLE I. The dynamical critical exponent, z, for various
transition probabilities, wj, for the d =1 kinetic Ising model.
We do not display the complete form of w; but only the
T 0 form of (1 —5) [see Eq. (3)].

TABLE II. The critical coupling, K„determined from our finite-size calculations, the static ex-

ponent, v, and the dynamical critical exponents z and 5 for different transition probabilities for the
d =2 kinetic Ising model. For comparison, the exact values of K, and v are 0.441 and 1, respec-
tively (Ref. 8). The currently accepted value for z is 2.13+0..1 (Refs. 16—18). o.;J denotes a spin

on the lattice site i,j.

Transition probability

exp[ —Ko.jj(o.j+]J+oj ] J+ojj+]+o.j,j ])]
WIJ coshK(o j+] J + o ] J + crjj+] + cr J ])
[d =2 Glauber (Ref. 18)]

0.43 0.95 2.09 1.99

e»[ K fr;j(o j+],j+ o j-],J+ o;j+] + o j,j-])]
wjj =

COShK(rrj+] j+crj ] J)COShK(o.jJ+]+ojj ])
(Ref. 19)

wjj =exp[ —KO-j J(Oj+] J+Oj ] J+Oi,j+1 +crjj ])]
[d =2, exponential (Ref. 14)]

0.41

0.48 0.65

1.63

3.17

1.79

2.16
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(which does not affect the value of z) is not given in
Table I. The first column of Table I gives the value
of (I —5) as T 0 and the second column gives the
calculated value of z. The factor (1 —5) appears in

w; for a.; t
= —o.;+~ [see Eq. (3)]. This means that

any state made up of clusters of two or more parallel
spins relaxes infinitely slowly at T =0. If (1 —g) W 0
at T =0 (e.g. , Glauber's case) only the ferromagnetic
ground state gets frozen. Comparing the two
columns we see that the value of (I —8) as T 0 is
related to z. If 5 is chosen such that (I —g)
—(e '«)r $-1'as T 0 (note that g

—e'" holds
only for d =1 as T 0, the critical temperature for
d = I ), then our results indicate that z = 2 +p, where

p is real and positive. ' lt is clear that this
nonuniversality is a consequence of the pathology of
the d =1 IM, namely that T, =O. We do not expect
nonuniversal z's for d & 1 where T, )0.

Our results, based on calculations performed on
lattices of sizes 2 & 2, 3 & 3, and 4 & 4, are summa-
rized in Table II; in the first column we give the tran-
sition probability, in the second column we give the
calculated value of the critical coupling, Ef, and in
the third and fourth columns we give the values of v

and z, respectively, which we obtained by using
finite-size scaling. In the fifth column we give the
value of b, = vz. The results for the Glauber transi-
tion probability are in excellent agreement with the
currently accepted value of z' ' and the exact
result, v =1. For the Glauber transition probability,
Yalabik and Gunton' have obtained similar results
from finite-size calculations for d =2. Our results for

the second transition probability are not very good.
For the exponential transition probability" the results
are quite bad. Recently, Nightingale and Blote have
reported preliminary results for z (1.92 to 1.99) using
finite-size calculations and yet another transition pro-
bability. ' It is interesting to note, that 5 =2.0+0.2
for all three transition probabilities, which is the
result obtained by most other methods. On the
basis of universality we expect both 4 and z to be the
same for all the three cases studied. We do fairly
well in this regard for 5, but not for z. As we do not
expect nonuniversal z's for d ) 1, we are forced to
conclude that finite-size scaling sets in at different
linear sizes for different transition probabilities. Any
good results that might be obtained from finite-size
calculations on lattices of small sizes (such as our
results for the Glauber transition probability, or the
results obtained in Ref. 21) are, therefore, quite for-
tuitous.
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