
PHYSICAL REVIEW B VOLUME 24, NUMBER 3 1 AUGUST 1981

London approach to anisotropic type-II superconductors
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The London equations with a phenornenlogical mass tensor are used to analyze the vortex
structure near the lower critical field. The anisotropy results in a transverse magnetic field in

the Abrikosov vortex. This field attenuates exponentially at large distances from the vortex
axis. The strongly anisotropic attenuation length is evaluated. The line energy is found in the
London approximation.

Strongly anisotropic type-II superconductors have,
been studied for some time. Most of the interest has
been in the angular dependence of the upper critical
field 0,2. For anisotropic layered or fiber materials
this dependence is described quite well by the
Ginzburg-Landau (GL) equations with a phenom-
enological mass tensor. ' Owing to the linearity of
the equations near 0,2, a relatively simple solution
can be found in this region. However, close to the
lower critical field H, ~ the GL approach leads to non-
linear equations, ' and it apparently is not possible to
follow the Abrikosov approach to obtain H, ~ in the
anisotropic case. In that situation it is helpful to ap-
ply the London model, which provides a reasonable
approximation at least for large GL parameters K,

Although it has low accuracy, this approach neverthe-
less makes it possible to predict the existence of a
transverse magnetic field in a vortex. This justifies
the use of the London model, despite the fact that
many important aspects (temperature dependencies,
origin of anisotropy, etc.) remain beyond the scope of
the theory.

The simplest way to get the London equations is to
minimize the energy

+ A,o curlh d V 8m

which is the sum of the magnetic (h'/gm) and the
kinetic parts. Here jiito = constMO is the squared
penetration depth and Mo is the mass. The generali-
zation to the anisotropic situation' ' is obvious: the
isotropic mass in Ao should be replaced by the mass
tensor in a way that keeps the kinetic term invariant:

8m'= h'+A. 'm„"curl;h curljh dV

We introduce here X = constM with some mean mass
M; the components Pl,j represent the effective masses
divided by M. The tensor m~j is diagonal if its princi-
pal directions are chosen as coordinate axes
(m =M~/M, m~~=M2/M, m,o=M3/M). It is con-
venient to choose M =M~M2M3, then detmj 1.

Straightforward minimization of the energy (I)
yields the London equations
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The useful relations

m +m„=m~+m3, m m„—m„', =m~m3 (4)

follow from invariancy of m;; and detmj.
Nothing depends on z for a vortex in the z direc-

where e;kt is the Levi-Civita tensor. In the isotropic
case m,j = 5 j and Eq. (2) coincides with the usual
London equations. Alternatively, Eq. (2) can be
derived from the second GL equation

curl;h = (Srre/c) f p;k(t'7g —2eA/e)k

where the order parameter f' =const in the London
domain, q in the phase, A is the vector potential, and

p, ;k is the tensor of the inverse masses. Multiplying
this by M,; and operating by curl one gets Eq. (2)
(Mjijjik gjk) ~

To be more sp-cific, we consider here the impor-
tant case of a layered material: M~ =M2 (M3, where

M3 is the principal value of M„" in the direction zo

normal to the layers. We also use M as the unit of
mass; then Pl ~'Pl3 =1. Bearing in mind that we are
going to deal with an arbitrarily directed vortex, we
rewrite Eq. (2) in the system of coordinates (x,yo, z)
which is rotated with respect to the principal axes
(xo,yo, zo) about the yo direction through the angle II

(for a vortex along z, fj is the angle between the vor-
tex axis and the principal direction zo). The com-
ponents I;, in the new system are

Pl~ = Pl ) cos 0 + Pl 3 sin 0
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tion. The equations (2) now read
(~-=B'/Bx'+ B'/By' )
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The striking feature of these equations is that they
cannot be satisfied by the usual Abrikosov vortex
solution. For such a vortex in the z direction,
hx hy 0; this would mean, as is seen from Eqs.
(Sa) and (Sb), B2h, /By2= B2h, /BxBy =0, which is
nonsense. Thus we conclude that in the anisotropic
case the vortex must have a more complicated struc-
ture than the Abrikosov vortex.

The following simple observation makes a search
for a new structure more plausible. Let us imagine a
current-carrying cylindrical coil with winding loops in-
clined from the plane normal to the coil axis z.
These inclined loops produce not only an h, field, but
some transverse field h„~ as well. If new current
planes are rotated with respect to the xy plane about
the y axis, the transverse field has the symmetry of a
magnetic moment directed along x.

In the case of a vortex in an isotropic material,
inclination of current loops would rise the magnetic
energy, and therefore it does not occur. ' In an an-
isotropic material, however, the increase of the mag-
netic energy can be smaller than a corresponding de-
crease in the kinetic energy, if the current flows in
energetically favorable directions.

A brief look at Eqs. (5) makes it quite clear that
h(x, y) is difficult to determine. However, we are in-
terested not only in the distribution h(x, y) itself, but
also in the line energy eL, which determines the
lower critical field. The magnetic part of 8n eL,

namely, Jfh'dx dy, is simply expressed in terms of
Fourier components

h„-„=@ph. k» /d

h -„=—/pe. k„k»/d

h, -„=gp(1+ X„k )/d

d = (1 + h. tk„2+ h. k»2) (1 + h.„k2) —X2 k2k»

(7a)

(7b)

(7c)

(7d)

The last integral diverages at ~ so that one must in-
troduce a cutoff at k,„=I/(, where g is the vortex
core size. Then we have eL = (@p/4n X) lnK for
K )) 1. Despite the impression that the last ine-
quality is the only one needed for the validity of eL,
the comparison with the better GL approach shows
that lnK must also be large. '

The following is also important for our treatment
below. In the region X ' « k « f ' (or g « r« h. ) which exists in materials with ~ && I only,
k'A. ' )) 1 and the kinetic part is the main contribu-
tion to the energy. To get the same result for eL one
can neglect 1 in the integrand (6) and simultaneous-
ly replace 0 in the lower limit by I/h. to obtain

J dk/k h.'. Formally, this replacement is done to

get rid of a negative ln for small k's. Actually, the
lower limit is in any case of no importance because
both field and current are exponentially small at
r»h. (k«X ').

We now proceed along these lines to find ~L in the
anisotropic case from Eqs. (5). First, one must add
the term @p5( r )/h. on the right-hand side of Eq.
(Sc) to take into account the singularity on the vortex
axis. The FT then yields

as

h-„= J h(x, y) exp( —k r )dx dy

h dS = $ Jt ihj-„i dk/4rr

where hereafter we adopt the notation A. ,&
= A.'m&,

A, i = A, mi, A3 = A, m3.2 2

Introducing now the FT of the current componentsj-=ikh- j-=—ikh- j-=i(kh- —kh-)xk 3' zk' yk x zk& zk x yk P xk
(4m/c is omitted), we get for the kinetic part of eL.

where j =x, y, z, and dS =dxdy. The kinetic part is
also quadratic in currents, so that the Fourier
transform (FT) may prove useful in evaluating eL.

Let us see first how to get eL in the isotropic case
without use of the actual field distribution. Applying
the FT to the isotropic London equation h, —A. bh,
= @ps(r) one gets h, -„=Pp/(I + h.'k'), where

)t.,r J j;jidS = Xii&Iji( r )j,-„e' " ' ' dS dk/47r2

= h. ,( Jl ji-„j,'-„d k/4rr'

~e substitute now the h-„'s of Eq. (7) in

327r aL = Jl (h, zh, &+X;Iji zj.,. z ).dk
V
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to obtain after elementary manipulations

1+x„k'
32rr3eL =Qo2)l dk

d

The integral here diverges as k ~ because d is a
polynomial of the 4th order in k [see Eq. (7d)]. The
integration region, therefore, must be cutoff at k's of
the order of I/g. At first sight a somewhat better
result could be achieved by an improved cutoff, if the
integration domain in the k plane is bounded by the
ellipse with semiaxes Qm /g, 4m»»/g in the k„, k»

directions, respectively. This, however, would mean
an attempt to correct the model in the region where
the London theory fails to be correct. At least such
an "improvement" would be by no means reliable.

We have checked the last thesis by straightforward
integration in the elliptical region. The result is
eL =constg(0) In[~f (8) ], where g and f are
angular-dependent functions of order of unity. The
integration over the circle of the radius 1/g gives
eL =constg(8) lnK with the same pre-ln factor. We
see that the results differ from each other only by a
term of order unity added to lnK, but such a term is
beyond the accuracy of the London theory.

A further simplification is achieved by neglecting
the 1's with respect to )t'k2 in the integral (8) and by
changing the lower limit of integration over k from
zero to I/X (as was discussed above). The integral in
Eq. (8), then, is evaluated simply by using polar
coordinates in the k plane and by integrating first
over the polar angle:

eL ——( @o/47rh)'Vm„ 1nK.

It is seen that ~L depends on the vortex orientation
in the material through m„(H) given by Eq. (3)." At
8 =0 the line energy

., (0) =(y21n. )/16 ') 'm,

[m„(0) =m3, m3'~' =m, ']
In this case all currents flow in the layers plane and
the GL theory can be applied to get '

eoL(0) = (Po/16m h. m()(ln~m) +0.5)

(recall that A and K are defined here in terms of M).
As one would expect, our eL(0) coincides with

KoL(0) if a constant addition to lnK is neglected.
Let us return now to h( r ) in real space; in princi-

ple, it can be reconstructed by the inverse FT of h-„
given by Eqs. (7). Actual integration, however,
hardly seems to be possible. The investigation of the
asymptotic behavior of h ( r ) at r &) h. is somewhat
simplified by the possibility of factorizing the denom-
inator d in the h-„expressions

d = (1+)„k„'+~,k»') (1+Z, k');

one can check this making use of Eq. (4). Then the
integration over k„ in

' 1/2
Porn 2m

4m'. r ~
sin'y(a„e '~~+ p„e '), (10)
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where (r, p) are polar coordinates in the plane (x,y)
in the usual way connected to axes (x,y, z);

a„=—(m„A/m~3. )'~ [m„(m3 —m~)sin @+m3

x (m„—m~)cos'g] '

pg p» m/ [m3 m~ —(m3 —m„)cos @]

a» = (m~m3)' a„

n, =sin $(m„—m3) m„(m, /m3) a„

p, = (m„—m, )p„

The two different exponential terms in Eqs.
(10)—(12) have an origin in two different poles of
the denominator d(k„,k») in each of half planes of
the complex variable k„. The attenuation length

A=A~(m /m, )'~ [(m„/m, )sin f+cos $] '~

is nearly always greater than At = A Jm~ because
m~ ~ m„~ m3. In other words, the term exp( —r/A)
is the leading one except in some special situations.
The terms ~exp( —r/At) should be kept if one is in-
terested in the transition to the isotropic limit
( m3 m ~ 1, A A, h.o); otherwise these terms
can be neglected in h„~. Also, the second term in h,
is important if (a) 0=0 (i.e., m„= m3) and a, =0,
and (b) for t) & 0, a, is small in a vicinity of @=0.

In the limiting cases 8=0, m/2, the components
/t„,» =0. The field A, (x,y) can be found here by

h-„exp i k r dk„dk~ 4m

is straightforward, for the poles of the integrand in
the complex plane k„are simply found. Further, the
integral over k~ can be evaluated for r ~ by the
steepest descent method.

Being cumbersome, asymptotic expressions are
nevertheless relevant, for just at r && A. the London
approach gives an exact result (i.e., the same as that
of the GL theory)



BRIEF REPORTS 1575

direct integration of Eq. (Sc) because at these limits
m =0:

h, (8=0) = (@p/2mAf)Ep(r/At)

h, (8 = m/2) = (@p/2m X2+mtm3) It'p(r/A(m/2))

where Eo is the modified Bessel function, and
A(m/2) is the A of Eq. (13) at 8= rr/2. One can
check that Eq. (12) gives the correct asymptotic
behavior in these limits.

It is worth noting that the anisotropy affects very
strongly the asymptotics (10)—(12) because it enters
the attenuation length A itself.

To get an estimate of the transverse field in the in-

termediate region g « r « A., we evaluate the mag-
netic part ~„of the line energy due to the transverse
field h„~. This can be done because

gee„=„(h +h )dS =$ h.
' k k dki4m d

where Eqs. (7a) and (7b) have been used. The main
contribution to this energy comes from the domain

g « r « X (X ' « k « f '), and we can treat
the last integral as was done in the evaluation of the
line energy:

e„=(cpm /gmz)'(m3m„)''

and e„/e,„=0.25 if a vortex is directed at 45' to the
layers. %e see that the transverse field is not neces-
sarily small with respect to the usual axial field h, . If
the vortex direction approaches 8 =0 or rr/2, p„0
due to the factor

m' =(m, —m, )'sin'8cos'8

Finally, we point out that the transverse field must
have a rather strong influence on the vortex-vortex
interaction, which at low inductions is determined by
the asymptotic behavior of the field. As we saw, the
latter is strongly anisotropic even for a moderate
value of the ratio m3/mt. One can expect, therefore,
that the triangular equilateral array is unlikely to oc-
cur in an arbitrarily directed vortex lattice in an an-

isotropic type-II superconductor. The presence of the
transverse field should be seen in neutron diffraction
experiments. Also, the distribution of ~h (x,y) ~

which is more complicated in our case with respect to
the isotropic one, is expected to be revealed in NMR
experiments.

Note added in proof. K. Takanaka [Phys. Status
Solidi (b) 68, 623 (1975)] considered the transverse
field in the vortex lattice near 0,2', his discussion of
the low-field situation is restricted to 8 =0, n/2 cases
where h„,~ =0.

e„/e, =m„~/m (m +m3) (14)

gives the relative value of the mean squares of the
transverse and axial fields in a vortex. For the lay-

ered crystal NbSe2, e.g. , m&/m3 =0.09,"at 4.2 K

Doing the same for the magnetic energy ~,„associat-
ed with the h„one gets

e,„=(gp/gn k) m ' (m„+ m3) m3

Now, the ratio
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