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Volume change on melting for systems with inverse-power-law interactions
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We consider the change in volume on melting for systems interacting with a repulsive r "po-
tential. Using the scaling property for inverse-power-law systems and the Clausius-Clapeyron

equation, we show that the change in volume on melting must go to zero as n D, the dimen-

sionality of the system. For n ~ D finite excess thermodynamic properties can be defined by

using a uniform neutralizing background. We produce a system with a uniform background as

the limit of a classical two-component system and again find no change in volume on melting.
Possible implications of these results for simulation studies of two-dimensional melting are dis-

cussed.

I. INTRODUCTION

Generally at the first-order melting transition there
is a nonzero change hv = vt —v, in the molar volume
of the coexisting fluid and solid phases, as well as the
change As in molar entropy which manifests itself in
the latent heat of melting. ' However a nonzero 4v is

by no means required for a first-order transition.
The Clausius-Clapeyron equation' describes the rate
of change of the melting temperature with pressure
as

d~m Av
dI' As

If Av =0, Eq. (I) shows that the melting curve has a

maximum. Melting-point maxima have been ob-
served experimentally for Cs (Ref. 2) and Rb (Ref.
3) and the Gaussian core model4 offers a well-

defined theoretical system which also has a melting-
point maximum. In the latter system the potential of
mean force becomes "softer" as the pressure or den-
sity is increased, and it seems likely that such an ef-
fect is operative also in the alkali metals. '

In this note we point out that the change in
volume on melting also tends to zero for a system
with a repulsive inverse-power-law pair potential r
in the limit n D with D the dimensionality of the
system. Unlike the previous examples, this is a

consequence of the divergence of the pressure P be-
cause of the increasingly long-ranged nature of the
potential in this limit. For n ~ D finite excess pres-
sure and other thermodynamic properties can be de-
fined by considering a "uniform neutralizing back-
ground" (explained below). However the change in
volume on melting again is zero if proper account of
the background pressure is taken. Our treatment of
the background may also help clarify some apparently
anomalous properties of the frequently studied
"one-component plasma" (OCP).6

For D =2 it is possible that melting proceeds by
two second-order transitions' with 4s as well as
hv =0. We can shed no light on this interesting pos-
sibility but point out that even if the transition is first
order with finite 4s, the change in volume must be
zero for the above systems. This has some implica-
tions for computer simulations of two-dimensional
(2D) melting which will be discussed at the end of
this paper. Finally we note that any fundamental
theory of first-order. melting must also be capable of
explaining the above examples of melting with no
change in volume.

II. SCALING AND THE CLAUSIUS-
CLAPEYRON EQUATION

Inverse-power-law systems have a useful scaling
property' which arises because there is no temper-
ature-independent characteristic length in the poten-
tial. The temperature T —=p ' (for notational simpli-
city we suppress the printing of Boltzmann's constant
ks) combines with the pair potential u(r) in the par-
tition function only in the combination

pu(r) =pe(a/r)" . (2)

Here r is the distance between a pair of particles and

e has dimensions of energy and cr length. In general
for a two-parameter potential, the dimensionless ex-

cess thermodynamic properties (i.e. , those which arise

because of the interaction potential in excess of the
ideal-gas contributions) are functions of two indepen-
dent dimensionless state variables, the dimensionless
reduced density po- and the reduced inverse tem-
perature Pe. Here the number density p =/V/& = v '

with N the number of particles, t the volume, and v

the molar volume. However, for the inverse-power-
law potential, Eq. (2), we can define a.~ = (pe)'~"a.
and Eq. (2) becomes pu(r) =(a~/r)". The tem-
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p Tl+D/ng ( ) (4)

for some function y. Along the melting curve p~ and

f (p~) are constant and hence Eq. (4) can describe
the variation of pressure with temperature along the
melting curve. In particular, we have

dP
dT p,

1+—T "f(p) = 1+—pP . (5)D D D
n n

Substituting Eq. (5) into Eq. (1) we find our basic
result

1+ D PP1+ (6)

where the terms grouped together by parentheses are
all functions of the scaling variable. The change in

molar entropy 4s is thus given by the product of the

perature no longer appears explicitly and hence the
dimensionless excess thermodynamic properties
depend only on the single remaining variable"

p. p—=oP=po (pe) '"

(We now take o and e as units of length and energy
so they will not appear explicitly in the rest of this
paper. ) Thus a single isotherm is sufficient to deter-
mine the entire equation of state. The melting curve
in the entire T, p plane is described by some constant
value of p+ and anywhere along the melting curve the
dimensionless excess thermodynamic properties have
the same value. '

We can exploit this scaling property in a novel way

by considering its implications along with the
Clausius-Clapeyron equation, Eq. (1). From scaling
we know that the dimensionless compressibility factor
pP/p (the ideal-gas value can be added on trivially)
is a function only of. p+. This must also be true for
p, (PP/p) =P'+D "P, using Eq. (3), and hence

compressibility factor at melting times the fractional
change in density times a factor (1+D/n) which
varies slowly with D and n. For D =3 the compu-
ter-simulation data of Hoover et al. for inverse-
power-law systems with n '=4, 6, 9, 12, and ~ are
consistent with Eq. (6) to within their estimated er-
ror, as can be seen from Table I.

Let us now consider the n dependence of the vari-
ous terms in Eq. (6). Computer-simulation data for
D =3 (see Table 1) are in agreement with the intui-
tive expectation that b s is a weak (and, if anything,
decreasing) function of n '

Sin. ce As measures the
difference in order in the two phases and can be for-
mally represented using only the singlet and pair dis-
tribution functions, 'p it must remain well defined and
finite even in the limit n D where the potential be-
comes long ranged. A proof of this physically obvi-
ous fact is given in the Appendix.

On the other hand pP/p' at melting is a rapidly in-

creasing function of n '. This arises from two

causes. First, if n is decreased at constant density,
the melting temperature T decreases. This can be
rationalized from Lindemann's law, since the softer
potential permits larger vibrations at lower tempera-
tures. From the data in Table I for D = 3 this seems
to be the major effect until n =4. Second, as the po-
tential becomes longer ranged, more and more neigh-
bors contribute positive terms to the pressure. The
increase in I' with decreasing n at constant density is

also evident from the data in Table I. The resulting
large increase in PP/p' requires a rapid decrease in

the fractional change in density on melting b, p/p'
since their product times the slowly varying factor
(1+D/n) equals the more or less constant hs. Al-

ready for n =4 there is a fractional change in density
on melting of only 0.5%.

The decrease in Ap/p'must continue even more
dramatically as n D where the long-ranged nature
of the potential becomes dominant. Indeed from the

TABLE I. Data from Hoover et al. (Ref. 8) for D =3 and various values of n. The last three
columns give the pressure and temperature (calculated by scaling) where the soft-sphere system
melts at the same density pp =1.0408 that the hard sphere (n = ~) system melts, and the value of
the scaling parameter p~+. Note that pg must remain finite as n D as long as there is a nonzero

melting temperature for some fixed density.

Pm(p =pp) T (p'=pp) py

12
9
6
4

1.16
0.90
0.84
0.75
0.80b

0.103
0.038
0.030
0.013
0.005

11 ~ 28
18.96
22.66
39.10

108.12

a
6.78
8.58
9.08

12.04

. a
0.578
0.435
0.223
0.107

1.04
1.19
1 ~ 37
2.20
5.56

'Hard-sphere melting is independent of temperature so T and P~ separately are not well defined.
Hoover et al. estimate an error of +0.2 in bs for this value of n.
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virial equation"

=1 —
Jj d r ru'(r)g(r)P p t'

p 2D

we see on approximating the radial distribution func-
tion g (r ) by unity for large r that as n approaches D,
PP/p diverges as (n —D) . Since As remains finite
as this limit is taken, it follows from Eq. (6) that
hp/p' must tend to zero.

infinite for r ( 28~. Otherwise the potential is

uu(r) =e;e)/r" . (g)

jV&e; + N2e2 = p~e~ + p2e2 =0

The total pressure is given by the two-component
version of Eq. (7) '9

%e require always that the system is electrically neu-
tral:

III. LONG-RANGED FORCES AND THE UNIFORM
NEUTRALIZING BACKGROUND

For n ~ D the pressure from Eq. (7) is infinite and
we must proceed more carefully. The usual pro-
cedure " " is to introduce a "uniform neutralizing
background. " As indicated below, the excess ther-
rnodynamic properties are then finite and obey scal-

ing relations. However anomalous features appear
unless proper attention is paid to the background.
For example for D = 3 the OCP with n = 1 has nega-
tive pressure and isothermal compressibility at rela-

tively low density if no account of the background
pressure is taken. ' " Some workers have suggest-
ed the possibility of a phase transition because of
these negative values. '" ' Others' ' have treated
the background as a degenerate (quantum) electron
gas in order to describe a physical model appropriate
for dense stellar interiors. Pollock and Hansen"
pointed out that the change in volume on melting for
the OCP depends explicitly on the nature of the back-
ground. Assuming a degenerate electron gas they es-
tirnated from their computer-simulation work for the
D =3 OCP an extremely small fractional change in

volume on melting of 0.03%."
While this treatment of the background is appropri-

ate for the physical application made by Pollock and
Hansen, "we believe the simplest and most con-
sistent way of introducing a uniform background in a
classical treatment is to consider it as a well-defined
limit (to be described below) of classical two-

component system. Using this classical background,
the total pressure and compressibility are always
non-negative, and there can be no change in volume
on melting, in agreement with the limiting value as
n D from above.

To describe a system with n ~D let us first imag-
ine a two-component system made up W2 "back-
ground particles, " each with charge e2, and the physi-
cally relevant component of %~ "ions, "each with

charge e~. To avoid collapse in this classical system
as oppositely charged particles approach close to one
another, the ions have a hard core of radius 8 ~

(which will later tend to zero). ' The interaction po-
tential u~q(r) is thus infinite if r (Rt while u~~(r) is

PP=p) p, —— g p;p, J d r ru;,'(r)g;, (r)
ij -11,2

(10)

The first terms on the right are the ideal-gas contri-
butions to the pressure and g;, (r) is the radial distri-
bution function between species i and j.

%e now take the "dense-point limit" of Waisman
and Lebowitz, ' with p~ ~, e2 0 such that the
charge density p2e2 remains constant, satisfying Eq.
(9). Having sufficiently delocalized the background
charge distribution by first taking the dense-point
limit we can now let the hard-core radius R

~
0

without fear of collapse. Correlations involving the
background particles should vanish since e2 is infini-
tesimal and we expect

for all r )0. As is appropriate for a uniform back-
ground, there are no correlations involving the back-
ground particles. " Thus a density fluctuation 5p&(k)
for a nonzero wave vector is unaffected by the back-
ground. However a k =0 fluctuation, i.e., a finite
change in charge density 5p&e~ requires a correspond-
ing change in background charge density 5(p2e2) so
that the neutrality condition, Eq. (9), continues to
hold.

The above assertion about the behavior of the
gj(r) as the various limits are taken holds true exact-
ly for the mean spherical model solved by aisman
and Lebowitz' and seems physically very plausible in

general. We assume in the following that Eq. (11) is

satisfied; indeed this could be taken as a necessary
requirement for a uniform background in a two-

component system. " However, it is only in the
dense-point limit that such correlation functions
could arise physically as the limit of a classical two-

component system.
Using Eq. (8), Eq. (10) can be written explicitly as

PP =
p~ + pq+ g p;e; p, e, J~~ d r r "g;,(r) . (12)Pn

2D,

ln the dense-point limit, using Eqs. (11) and (9), we

find from Eq. (12)

PP = p, +p2+ (p, e, )' Jtd r r "[g(r) —li, (13)
2D
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P 1 l + P2 I + /3pex (P 1 l ) = P 1 s +P2s +P~ex (Pl s ) (14)

where P,„ is the excess pressure in Eq. (13). Charge
neutrality in each phase requires from Eq. (9)

el ~pl + e2~p2

where Apt = p~, —p~~. Multiplying Eq. (14) by e2 we
find on taking the dense-point limit with e2 0 that
all terms vanish except those involving p2 explicitly
and we have, using Eq. (15),

0 = Qp2e2 ——Qp(e)

Thus Ap~ =0 as stated above.
. Having established that the background permits no

change in volume on melting we can for most practi-

where g(r) —=gtt(r). Thus the standard "back-
ground subtraction" with g(r) in Eq. (7) replaced by
[g(r) —1] in Eq. (13) arises naturally from the ap-
propriate limit of the two-component formula, Eq.
(10).

The excess pressure in Eq. (13) can be either posi-
tive or' negative. However the total pressure includes
the ideal-gas contribution p2 from the background
which becomes arbitrarily large in the dense-point
limit. Similarly the excess compressibility can be
negative but the total compressibility kr = —(1/V)
x (8 V/BP) r is zero because of the diverging back-
ground pressure. Most discussions of the OCP have
not considered these background contributions.

Since the ions are coupled to the background by
neutrality only for a k =0 fluctuation one can define
an "effective compressibility" relevant for small (but
nonzero) wave-vector density fluctuations 5pt (k ) by
calculating (BP/8 V) r from Eq. (13) but ignoring the
background contribution. It is this "effective
compressibility" that is frequently discussed in the
OCP literature" "and this can indeed be negative.
However, as pointed out by Viellefosse and Hansen"
this does not imply an instability in the OCP, A den-
sity fluctuation Sp~(k)(k %0) creates a local charge
fluctuation etgp~(k) which is not screened by the
static background. The resulting cost in energy from-
Poisson's equation is proportional to k 2, so small k
density fluctuations are strongly suppressed. " As we
have argued above, the same is true for a k =0 den-
sity changb if one takes proper account of the back-
ground pressure.

A system with this classical background can sup-
port no change in volume on melting. Indeed if we

require equal pressures from neutral systems with
fluid densities p~~ and p2~ and solid densities p~, and

p2, we have from Eq. (13)

cal purposes ignore it. It is easy to show that the ex-
cess thermodynamic properties again obey scaling
with p» = p~PD~" just as in Eq. (3). In computer
simulations of melting, the background has no effect
on the dynamics and anywhere along an isochore the
background contribution to PP has the same constant
(but formally infinite) value. Indications of melting
will show up in the excess thermodynamic properties
as well as from the usual structural and dynamic indi-
cators.

IV. FINAL REMARKS

Although we have considered only repulsive r "
potentials we expect that the same qualitative
features will hold for most other smooth repulsive
potentials which give a positive change in volume on
melting. An effective exponent n, ff can be defined in
a number of ways, e.g. ,

d lnu(r)
d lnr

(17)

evaluated at the nearest-neighbor distance. [Equation
(17) gives the exponent n for any r for an inverse-
power-law potential. ] We expect hp/p' to be a de-
creasing function of n, ff. In the limit that the poten-
tial becomes long ranged with PP/p diverging, Ap
must again be zero. Most realistic potentials have at-
tractive as well as repulsive regions. The effect of- at-
tractions can often be accurately treated by a simple
mean-field theory. This approach predicts a larger
change in volume than that arising from the repulsive
interactions alone.

Currently there is much debate about the interpre-
tation of computer-simulation data for the melting of
a 2D Lennard-Jones solid. 24 Along an isochore there
are two breaks at temperatures T~ and T2 in the ther-
modynamic and other properties, but it is difficult to
tell whether these signify two second-order transi-
tions with an'intermediate hexatic phase as suggested
by Halperin and Nelson' (HN), or an ordinary first-
order transition with a two-phase region between T~

and T
The results of this paper suggest that it might be

profitable to study inverse-power-law potentials for
small values of n. If the transition is first order then
the two-phase region will be of very narrow or van-
ishing width. Ho~ever, if melting proceeds by two
second-order transitions, none of the arguments in

this paper constrain the width of the hexatic phase in
any way. The finding of a wide intermediate region
would strongly favor the HN theory.

Indeed it seems plausible that the softer interac-
tions for small n might enhance the possibility of a
second-order melting transition. The system is far
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from the very anharmonic hard-disk limit where
geometric-packing considerations dominate (and the
melting transition is believed to be first order"'6).
The basic HN picture of phonons interacting with
bound dislocation pairs seems more appropriate for
these soft potentials. There have been several simu-
lations of the n =1 OCP" and we have begun a study
of a cutoff version of the n =3 system. ' These sys-
tems may offer a favorable testing ground for the
possibility of a second-order melting transition in two
dimensions.
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APPENDIX

It is perhaps worthwhile to indicate more explicitly
why hs must remain finite as n D. It is trivial to
show that the entropy of any classical system is less
than the (finite) ideal-gas entropy. Equation (6)
shows that s' & s' so the only way to obtain an infin-
ite hs is for s' —~. Since the third law does not
apply to classical systems this cannot be immediately
ruled out. However we can make use of the varia-
tional principle' for the excess Helmholtz free ener-

gy (/3A, „/N) to show that s' is finite.
The excess free energy must be less than that of a

constrained "single-occupancy" system where each
particle is confined to its T =0 Wigner-Seitz cell.
This in turn is less than the free energy obtained by

approximating the N-particle distribution by a product
of single-particle distribution functions. We have, as
discussed in detail by Hill,

jv'" —lnp+1 ~ g J „pu(rj)p( r, )g( r&)d r ~d r, —J g( r ) in&( r )d r
l

(Al)

where the first term gives the approximate energy
and the second the entropy. The integrations are re-
stricted to Wigner-Seitz cells of volume v = p

' and
the center of the ith cell is chosen as the origin for
r;. Here @( r ) is a trial single-particle distribution

function, which we can choose arbitrarily and still ob-
tain an upper bound to the true free energy. To ob-

(A2)

tain a lower bound to the entropy at melting
PE,„PA,„

CX

we substitute into Eq. (A2) a lower bound pQ„/N to
the energy, where E,„ is the T =0 potential energy,
and an upper bound to PA, „/N obtained from Eq.
(Al). Combining the energy terms we have

N

s,'„~lnp —1+ X J J~ Phu(r~, )$( r ~)@( r, )d r ~d r, + „~$( r ) in/( r )d r
"1 j

(A3)

We have noted that Q( r ) is normalized and defined

au (r,)) =—u (r,', ) —u (r,~)

where u(r~&) is the (constant) value of the pair po-

tential energy when both particles are on their T =0
lattice sites with separation r~j. Since Au rather than

u appears in Eq. (A3) we obtain a finite result even if
n D as long as we choose a $( r ) which prevents
particles in nearest-neighbor cells from approaching
arbitrarily close to one another and themselves pro-
ducing an infinite energy. For example the constant
probability @( r ) = 1/v,

' for r contained with a

smaller cell of volume v,
' ( u [and $( r ) =0 other-

wise] gives a finite lower bound to s,'„.
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