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Renormaiized perturbation theory for anisotropic spin systems
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A cutoff-dependent formulation of renormalized perturbation theory is extended to study the
crossover of the parallel susceptibility in systems with quadratic symmetry breaking near a bicrit-
ical point, to first order in a=4 —d. In terms of the true temperature variable t = T —T,.(g),
for anisotropy g, and crossover variable x =g/t&, the effective susceptibility exponent ycff(t, x)
is calculated for two $ -field models, one with a sharp momentum cutoff A and the other with a
smooth term A (V Q) . Corrections to the first model due to insertions of composite opera-
tors of canonical dimension six, inside the scaling regime, are explicitly calculated and shown to
yield small but not negligible contributions to crossover behavior. The role ot new, finite renor-
malizations is discussed and it is shown that either a fairly monotonic ycff(t, x ) is obtained or a

displaced maximum may appear depending on the outcome of a higher-order renormalization-

group study, which is not done here.

I ~ INTRODUCTION

Crossover phenomena from high- to low-symmetry
critical behavior in anistropic spin systems' have al-
ready been extensively studied by means of high-
temperature series expansions4' and renorma)-
ization-group (RG) procedures. '6 '4 Besides the in-
trinsic interest in such systems, they are recognized
to be relevant to spin-flop bicritical points that appear
in materials like GdA103 and MnF2. "' The ap-
propriate RG procedures that have been employed
for anisotropic spin systems have also been found
useful for the study, of crossover phenomena in dipo-
lar ferromagnets. "

According to phenomenological crossover scaling
theory, ' the parallel susceptibility near a bicritical
point, (to, g ) = (0, 0), under crossover to a critical
line with exponent j, is assumed to have the form

x(ro, g) =r, 'X(g/ro )

=to'(1-y) &P(y)

~here g is the anisotropy parameter,

&o
= l T —T (0) ]/T, (0) (1.2)

is the reduced critical temperature, in which
T,. (0) = T, (g) at g =0, y and . Q (crossover) being
the exponents associated with the bicritical point and
y =—x/x is a reduced crossover variable to the singu-
larity in the scaling function X(x) at x =x. The
universality of the scaling functions X(x) and P(y),
except for nonuniversal constant amplitudes, has
been verified to some extent, and so has that for the

effective susceptibility exponent'

dlnX '

y.t'r(r) =
d lnt

(1.3)

which is of direct experimental interest, in terms of

r = [ T —T, (g ) ]/T, . (0).
Except for nonuniversal scale factors, one expects the
shape of the curves for y, (rrr) to be universal, and it

is of considerable importance to establish their pre-
cise shape. So far, there is only semiquantitative
agreement, theoretically, that this shape is rather
monotonic.

This has been established by Nelson and
Domany, ' using a RG trajectory-integral pro-
cedure, ' combined with the matching of an
effective-temperature-like parameter, to first order in
6 =4 —d, and also by Horner' and by Amit and
Goldschmidt, '" in renormalized perturbation theory
(RPT), keeping selected terms beyond the first order
in e. Calculations by Bruce and Wallace, " in a
Feynman-diagram expansion matched onto RG
results, to second order in e and, independently,
high-temperature series expansions, yield to a similar
conclusion. '

With the aim of establishing more definite results,
one may look for further contributions to crossover
scaling functions and effective critical exponents due
to "irrelevant" variables or operators of higher
canonical dimension, as well as corrections to the
scaling regime itself due to a finite-lattice spacing.
The precise role of the former has, to our knowledge,
not been determined so far, although the operator
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A '['7'@(x) ]2, of canonical dimension six in $4-field
theory with a momentum cutoff A, has been used
before in works on the Gaussian-to-Heisenberg cross-
over, ""where it yields contributions to crossover
scaling functions within the scaling regime. Finite-
momentum-cutoff corrections to the scaling regime
itself have been obtained by Lawrie, '4 for the same
type of crossover, and further contributions inside
the scaling regime, due to the above operator, seem
to be implicit in there.

With a finite-momentum cutoff, the bare dimen-
sional quartic couplings in RPT remain finite and can
have fixed points which are prevented from going to
infinity. Deviations of the actual flowing quartic cou-
pling from its stable fixed-point value give a measure
of the extent to which the crossover takes place and,
at the same time, provides the corrections to asymp-
totic critical behavior, within the scaling regime. The
finite momentum cutoff can either be absorbed in

nonlinear scaling fields24 or else, in an essentially
equivalent way, one can do without it by working
directly with dimensioniess quartic couplings and mass
variables. ""

The main purpose of the present work is to study
the role of operators of canonical dimension six for
the crossover in anisotropic spin systems, within the
scaling regime. We will not be concerned here with

the corrections to crossover scaling due to a finite-
momentum cutoff, although that is certainly worth-
while studying. The work here is restricted to a very
small anisotropy. "

Our second purpose is to extend a cutoff-
dependent version of RPT, in terms of the "bare"
parameters of the orginial Hamiltonian, " which
has been employed before by Bruce and Wallace, "
and by the author, ' to study the Gaussian-to-
Heisenberg crossover in isotropic spin systems. This
is a RG procedure which, as that of Amit and
Goldschmidt, " involves the flow of the actual tem-
perature variable t = T —T, (g), and the quartic cou-
pling u, which does not involve a matching of these
parameters as in other works, '0 Moreover, it is

simpler to work with than the renormalized theory
with dimensional regularization and generalized
minimal subtraction (GMS), ' and, as will be seen, it

yields directly contributions that amount to finite re-
normalizations in nonlogarithmic terms.

The work in this paper is restricted to one-loop
order, that is, to first order in e. This is sufficient, as
a first step, to treat some new features and to discuss
a certain extent of arbitrariness that one meets in ap-

plying RPT to anisotropic spin systems.
The regularization in RPT with GMS consists in

subtracting the leading singularity in the form of a

logarithm, for infintiely large anisotropy, in addition
to the subtraction of the usual dimensional pole. '

This does not completely specify the argument of the
logarithm, which amounts to a finite renormalization

as discussed by Amit and Goldschmidt. There are
further finite renormalizations behind the logarithms,
with which GMS is not concerned, that can yield an
additional change in the results as we point out in
this work. Possible further finite renomalizations can
be in the form of rational functions of polynomials in
a scaled anisotropy variable which either vanish or
remain finite for very large anisotropy. In order to
have universality, the results should be independent
of the regularization procedure and, it will be shown
here, that this cannot be achieved to one-loop order.
This is the third purpose of the paper.

Furthermore, in restricting ourselves to one-loop
order, we point out a place where the calculations
done so far in earlier work, may not be completely
justified, and we work out the possible consequences.
This is in solving the flow equation for the quartic
coupling u(p), p being the flow parameter. The
leading term is of O(e) and the next-to-leading one
of O(e~). It has beenfound in Ref. 14 that the full
dependence on anisotropy enters only through
O(e2). It has not been shown, however, that these
terms cannot be modified by contributions from
two-loop order. This is of concern since the solution
for u(p) is in terms of an exponentiated singularity
of the scaling variable of the problem. We study
here what happens if either only the leading terms in

u(p) or the complete form is kept, both in our ver-
sion of RPT. The latter seves to point out the role of
the finite renormalization, referred to above.

Among all the operators of canonical dimension

5„=P (d —2) +q =p+q =6 at d =4, (1 5)
2

where p is the number of fields on which q deriva-
tives act, the operator A '('7'@)' can be used to im-

plement a smooth cutoff when included in the propa-
gator. '" Its role in this sense is compared in this
work, first, against the conventional sharp cutoff. "
It will be seen that it can yield quite different results
before the asymptotic critical region is reached. This
is an interesting result because a smooth cutoff has
been found convenient for higher-order calculations
in e. Then, separately, we consider A '(V'@)' and
the other operators with 5~ =6 as insertions to the
model with a sharp cutoff, to first order in the inser-
tion coupling. Part of the work has been reported
briefly before. "

The outline of the paper is the following. In Sec. II
we discuss the models and their relationship to those
of other authors. The smooth cutoff term is included
there. In Sec. III the RG equations for the bare,
one-particie irreducible (1PI) vertex functions are
derived and their solutions are discussed. The role of
terms that amount to finite renormalizations is point-
ed out here. The explicit results for the effective
susceptibility exponent are obtained in Sec. IV. Also,
the comparison with the results of RPT with GMS is
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done there. The insertion of composite operators of
canonical dimension six and their lowest-order contri-
bution is discussed in Sec. V. %e conclude in Sec.
VI with a further discussion and a summary of our
results.

II. MODELS WITH QUADRATIC ANISOTROPY

The effective Ginzburg-Landau-% ilson Hamiltoni-
an with quadratic spin anisotropy that we consider
first is

X = d'x —(V@)'+ mp—'+ t@'+— uA—'(@')'
l 2

(2.1)

where $ is an n-component field, with m "longitudi-
nal" and (n —m) "transverse" components, $t and

g2, such that @ = Q, + @2 with

and zero otherwise.
With Eq. (2.1) written

T

Xt = d'x —('7$) + 2r—pp'l 1

[(n —m) Pl —m &22]
2n

+—u A'(@2)'+ (-'1

4t
(2.9)

t+ g(n——m) —r, y2,
1

I1

t

(where 6 represents counter terms) the explicit part
becomes the more familiar Hamiltonian of Nelson
and Domany, ' where ro is linear in the temperature
tp of Eq. (1.2) and g is the anisotropy parameter
which favors criticality of the longitudinal com-
ponents if g ) 0, and that of the transverse com-
ponents if g (0. The counter terms are

III N

@2 X @i2(x) y2 X @ (x)
i=1 i =IN+i

(2.2) + m +t — gm —r—p$2
n

(2.10)

-2=
m =—rr(rL =0) (2.3)

IL and IT being the true longitudinal and transverse
inverse susceptibilities, with rI =0 at criticality for
the longitudinal components. The temperature vari-
able is

I = T —T, (g) (2.4)

and the dimensionless quartic coupling u is assumed
to be isotropic. This is justified for n ( n„(d), 'p the
crossover spin dimensionality to cubic anisotropy,
and since n„(d) ) 3, '9 this will cover the crossover
involving three-component Heisenberg fields. Mo-
mentum-space integrations in perturbation expansion
for &l are done with the sharp cutoff A in

pA fA=—(2m) ' d'q =K,t J dq q' '
4 q

(2.5)

21 d d/2[f'( t-d)] 1— (2.6)

This completes the description of the model which,
except for the cutoff, is the counterpart in the bare
theory of the renormalized Hamiltonian of Amit and
Goldschmidt, '" with @, m, u, and t being replaced
there by renormalized quantities, and the role of the
cutoff in the dimensionai @4 coupling being taken by
an arbitrary momentum scale parameter.

The free-field longitudinal and transverse propaga-
tors for this model are

The noncritical bare mass n1, which is a measure of
the anisotropy, to be made more explicit below, is de-
fined as

in which

'I

+ —A '( V2$) '+ uA'( $')— (2.11)2 4l

(2.12)

and with the sharp momentum cutoff removed in

Jt —= (27r) '
J d"q = It„j dq q" ' (2.13)

The smooth cutoff is now ensured by the new free-
field propagators

G2(q)=«+q'+A 'q') '

G2 (q) =(t+m +q'+A q )

(2.14)

(2.15)

for all q.
For the model based on 3C], the longitudinal and

transverse 1PI two-point vertex functions can be
written formally as

f'L" (q;rt, rr) =rt. +q' —[&L(.q rL rr)

—XL(0;rL, rr) ] (2.16)

The second model we wish to consider makes use
of the operator A 2(V'Q)2 to provide for a smooth
momentum cutoff. For that purpose, this is taken
together with the quadratic part of the Hamiltonian
3C], to define the model described by

3C2 = O'X —V' + —m 2+ —t

Gt(q) =(t+q') ' for q ~ A,
Gt (q) =(t+m +q') ' for q ~A2

(2.7)

(2.g)

I''r" (q;rL, r, ) = rr+ q' —[xr(q;rL, rr)

—X ( rr or,L)] (2.17)



24 RENORMALIZED PERTURBATION THEORY FOR ANISOTROPIC. . . 1507

in terms of the self-energy parts, and similarly for
+2. For a fixed anisotropy g & 0, the inverse suscep-
tibilities can be related to the actual critical tempera-
ture by means of

equations

A = P(u, m/A)
dA R

(3.3)

t —= T —T, (g)
-2.=r, +[X,(r, , rr;g) —X, (0,m;g)]

-2
~

-2=rr —m +[Xr(rt trr, g) —Xr(0,m;g)] (2.18)

-2 -2. 2
m =g+XL(0,m;g) —Xr(0, m;g)

Thus, to leading order, 'm =g+0(u).-2
(2.19)

III. RENORMALIZATION-GROUP EQUATIONS

with the self-energy parts at q =0. It also follows
that the noncritical mass squared, m, is related to g
by means of

[y4(u m/A) y3(u, m/A) ] . (3.4)
A dt

t dA„
The independence of the coefficient functions on
t/A is due to the fact that the renormalization is
done for the critical theory and that the combination
of y4(u, m/A) —y3(u, m/A) is the coefficient of L in
the RG equation for I t L'(q„p, ;u, t =O, m, A), the
bare vertex function with N external lines and L Q2

insertions. " The explicit forms of the coefficient
functions, which are model dependent, follow from
perturbation expansions for I . %'ithin the calcula-
tions in this paper, to one-loop order, there is no
contribution to y3 and it is sufficient to consider the
simpler RG equations

First we discuss the nature of the RG equations
and the way in which spin anisotropy enters, as a
necessary background for the calculations that follow.

The RG equations for the bare 1PI vertex func-
tions are derived from the requirement that, at each
finite order in perturbation theory, the renormalized
vertex functions be asymptotically independent of the
cutoff 20, 21, 26

A I,',~'(q, ;utt, tR, mR, p, ) =0
dA R

(3.1)

with the renormalized parameters uR, mR, and the ar-
bitrary mass parameter p, being held fixed. This is an
approximate statement from which we find, in stan-
dard way, that

A +pu, — —y4u, ——y3u t
Pl 9 ffl Pl 9

QA 'A 9u 'A A, 9t

Ny3 u, —I' '—(q, ;u, t, m, A) =0, (3.2)
i

for the bare vertex function I't~l(q, ;u, t, m, A), and
the approximation consists in neglecting terms that
will be smaller by an order t/A' and q2/A2, up to
powers of In(t/A2) and ln(q/A), in an expansion in
powers of u and e, for fixed but arbitrary m/A.
Although corrections to scaling due to a finite-mo-
mentum cutoff are excluded thereby, this is in accor-
dance with the usual approximation that defines the
critical region, and it is all we need for the purpose of
our work. The explicit dependence on m/A in the
coefficient functions p(u, m/A), y3(u, m/A), and

y4(u, m/A) is necessary to ensure the crossover in

the parameters u and t that satisfy the characteristic

A +P(u, m/A)
8 - 8

8A Bu

—y4(u, m/A) t r't(q, u—, t, m, A) =0 (3.5)
t

for the two- and four-point vertex functions at q =0.
The integration of Eqs. (3.5), from which the physi-

cally interesting quantities are obtained, is done intro-
ducing first a scale parameter A =In(A/Ao) that ac-
counts for a change in the cutoff, from an initial Ap,
with h. (0.""Then u and t become u(X) and
t(A), where u =u(0) and t = t(0), in terms of
which

= p(u ( Z), m /Ao e')
dX

dt(z)
t() ) dx

= —y4(u ( X),m /Aoe")

to one-loop order. Equation (3.5) becomes then

(3.6)

(3.7)

d r ' ( uo( ))t( )),tm(, )), Aoe') =0, (3.8)

~here

m(X) —= m/Aoe" (3.9)

The vertex function in the critical region for arbitrary
u is then obtained, as usual, calculating the right-
hand side, with an appropriately chosen A. out of the
critical region so that a perturbation expansion can be
used.

In the subsections that follow and in Sec. IV a

and this yields, of course,

r ' (0;u, t, m, A, ) =r'"(0;u(~), t(l ),m(~), Aoe")

(3.10)
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single-vertex function will be used in two different
ranges of the parameters. One is to determine the
coefficient functions within the validity of the ap-
proximate RG equations, discussed in connection
with Eqs. (3.1) and (3.2). The other is to provide an
expression for the right-hand side of Eq. (3.10).

A RG equations for model &

The first line of Eq. (2.18) yields, with the usual
subtraction of' the self-energy parts at criticality, and

-2
noting that rl- = m + f, to leading order,

I L"'(0;u, t, m, A) =r, =t I — uA' Jt q' q'+t

Also, to one-loop order,

tt —m) A, ,

I' I +O( 2)
6 "q (q'+m )(q'+m +t)

I

(3.11)

1

I t (0;u, t m, A) =uA' 1 — uA'/(t) — uA'/(m +t) +O(u2) (3.12)

where

pA

/(m2) =- " q (q'+ m')' (3.13)

I

On the other hand, for vanishing p, ',

limfi(p, ', r) = I,nr
~Q2

(3.21)

Explicit calculation then gives

rLl2'(0;u, t, m, A) = t {1+—,
'

u [(m +2) lnr

+(n —m) ft(p, ', r)] }

+O(u, u t) (3.14)

I L (0;u t m, A) = u A'(1+ —u [(m +8)(lnr+ I)

+(n —m)f, (p', r)] }

+O( , ueu)

lim f2(p', r) =Inr+ I.
2 ~Q

(3.22)

In this case one recovers the vertex functions f'or an
isotropic system with O(n ) symmetry. As p,

'
from Eqs. (3.18) and (3.19) it can be seen that
fi(p', r) and J'2(p, ', r) 0, and one is left with the
vertex functions for the isotropic case of O(m) sym-
metry. The full r-dependent f'i(p, ', r) and f2(p, ', r)
are needed for the right-hand side of Eq. (3.10),
which is to be calculated with a r of O(1). Indeed, X

will be chosen so that

p,
' =—m /A',-2 (3.16) r(Z) =—t(Z)/A, 'e"= I (3.23)

the integrations being done at d =4 with a factor of
—, K4, defined in Eq. (2.6), adsorbed in u, while

r =—t/A' « I (3.17)

Contributions that vanish as t 0 are neglected in

the first terms in square brackets behind ln7, in con-
sistency with the validity of Eq. (3.2), as in previous
works with 0 (n ) symmetry. 3a The functions

and this eliminates the terms in lnv. In calculating
the coefficient functions, however, it turns out that
only the limiting forms Eq. (3.20) contribute, provid-
ing a check on their independence of T. Indeed, the
RG Eqs. (3.5) yield

/3(u, p, ) = au+ —m+8+— u
1 ll /71

3 (I + p, ')'
t

Ji(p~, r) = ——[(p,'+r) In(1+ p, ) —p, In(l + p. ') +O(u', u e) (3.24)

+ p, 'lnp, ' —(p, '+ r) ln(p, '+ r) ]

(3.18)
1 n —m

y4(u, p, ) =—m+2+
(I + p, ')

p, +'T
f2(p, ', r) =In, +

1+p2 1+p,'
(3.19)

+0( , Eu)u (3.25)

f, (p', 0) =In
1+p,

'

f2(p, 0) = In +p 1

1+p, 1+p2

(3.20)

are finite functions of ~, for nonzero p, ', with limiting

forms The first one follows from I'Lt4' in Eq. (3.15) and the
second from I L"' in Eq. (3.14). Note that, in the
limits p,

' 0 and ~ one recovers the known results,
to one-loop order, for a system with O(n) and O(m)
symmetry, respectively.

At this point, some comments are in order. First„
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note that Eqs. (3.14) and (3.18) yield a longitudinal
susceptibility, defined in Eq. (3.11), which is formally
the same as the form derived by Amit and Gold-
schmidt for the renormalized theory with GMS, in

terms of the renormalization constant Z&2 that makes
finite the two-point function I'Lt'", with one @ inser-
tion. ~' Our y4 in Eq. (3.25) is, accordingly, the same
as their y '&2. On the other hand, we cannot
compare our four-point function with the form
derived in Ref. l. 4, since the latter involves only VL '

at criticality. We expect, however, that if calculated
for nonzero 7, I L"' in RPT with the GMS defined in
that work will yield a result different from Eqs.
(3.15) and (3.19). Indeed, our P(u, p, ) differs from
theirs in the quadratic dependence on (1+p, ') '. It
can easily be seen that if the constant terms behind
the logarithms in Eqs. (3.15) and (3.19) would not be
there, P(u, p, ) would turn out to depend linearly on
(1+p2) ', in agreement with GMS. In our form of
RPT, ho~ever, we have no reason to neglect such
terms. The approximation that is made in the RG
statement of Eq. (3.1) is only the neglect of terms
that are smaller by a po~er of ~ —or a power times a
logarithm —and the presence of the constant terms is
needed to derive the appropriate coefficent functions.
This can be verified within the work of Bruce and
Wallace" for the Gaussian-to-Heisenberg crossover.

According to Eq. (3.3), P(u, p) serves to deter-
mine the flow equation for u(p) which may, there-
fore, be expected to be different from that in the re-
normalized theory with GMS, for any finite p, 2.

Everything else being the same in the two-point ver-
tex I L ', the two theories could apparently yield dif-
ferent results for y, rr(t) Note, however, th. at the
difference between a linear and a quadratic depen-
dence on (1+p, ') ', in the renormalized theory with

GMS, can be accounted for by a finite renormaliza-
tion in the terms of O(e') in the expansion of the
bare quartic coupling u() in terms of the renormalized
u. This has not been discussed by Amit and
Goldschmidt and it is clearly a limitation of GMS.
The only requirement on a finite renormalization is
that it vanishes in the limit of the scaled variable
p,

' = m2/k2 ~. To verify the independence of the
results of RPT on such a finite renormalization, in

order to confirm universality, one may have to carry

P(u', p, ) =0
are u'=0 and the nontrivial

(3.26)

n —mm+8+ (3.27)

The flow of u(h. ) under crossover, however, is
described by Eq. (3.6) with p, being replaced by

p, (Z) —= m(Z) = m/A()e" (3.28)

and this becomes very large for large negative P,
even with a small initial anisotropy p, = m/Ap, so that
ultimately the true fixed point of the O(m) isotropic
system,

u,„'=3m/(m +8) (3.29)

is reached. Of course, if p, is strictly zero, the true
nontrivial fixed point is just the

u„'=3m/(n +8) (3.30)

for an isotropic system with O(n) symmetry.
To obtain the flow of the coupling u (h. ) that goes

into Eq. (3.10) we integrate Eq. (3.6) in standard
way' ' and find

u '(p) = p'u '+ (1 —p')m+8
36

where

2 X
—ej2+1

p Jx
(x+m /A')

(3.31)

(3.32)

According to the discussion following Eq. (3.24), this
differs essentially from the u '(p) in Ref. 14 in the
form of the last term. For small, but finite e, this
yields

out a systematic calculation to O(a').
As a summary to these comments, we conclude

that the bare theory of the present work corresponds
to a renormalized theory in which the two-point func-
tion is made finite by GMS while the four-point
function has an added finite renormalization. There is
nothing in the renormalized theory that excludes
such an unsymmetric renormalization.

The zeros of the P function,

2/ 2 2n+8 n —m pip +l (I+ 2/ 2) +, t n+8+n —m p +l
3e 6 1+ '/ ' 3e 6 1+

for p, ~ p « 1, p,
' being given by p, '= m /A', while

(3.33)

„ i( )
m+8

3E'

+ n —m p
36 p,

2 2 +8
1+2/~ " '" '" 3. 6 I+„'+In(1+ '/ ') + ' u ' — + +In(1+ ')

2
' ~/2

n —m p
6 p,

'
i

(3.34)
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for p~p. .
The function u '(p) is continuous and the two

forms match at p, = p into a single expression, The
next-to-leading terms in u '(p) are of O(1), which
means of O(e ) in u(p). It will be seen further
down that when these terms are included a fairly
monotonic y, ff is obtained, as was the case in Ref.
14. Note, however, that in distinction to that work,
we have additional nonlogarithmic terms which one
does not have in GMS.

In the limit of small ~, we obtain a single expres-
sion for all nonzero p,

+(n —m)gt(p, ', q. )] }

+O(u, ue) (3.39)

[I+—,
' t~[(~n+8)(ln. +2)

+ ( l1 l)1 )g2(p, , )r] }

+ 0 (u', u'e) (3.40)

d =4 in a calculation to one-loop order, we find

I'L" (0;urm, A) = r (I + —u [(m +2)(lnr+ I)

u '(p) = p'u '+ (I —p')
3E

+in( '+ ')n p, p

with p, and r defined as in Eqs. (3.16) and (3.17),
and again neglecting contributions that vanish as
v 0 in the first terms in square brackets. Now

gt(p', r) = — ln, + L [4(p,'+ r) ]
p, +v

47 p,

2

+ ' + ln(1 + 2)
1+

(3.35) —L (4p, ') (3.41)

This is a result in expansion in e, with a leading term at(p, ', r)=, , [I ——,
'

L [4(p,'+ r)1},
I —4(p, '+ r')

u '(p) =p'u '+ + (I —p')
3E'

(3.36) (3.42)

and Eqs. (3.33) and (3.34) should be viewed rather
as appropriate forms for extrapolation to e =1, Un-

less a two-loop-order calculation shows that the
next-to-leading terms in Eq. (3.35) are not modified,
Eq. (3.36) will give the only genuine contribution to
one-loop order. Clearly, this does not account fully

for the anisotropy, and the way one has to drive the
crossover is by choosing u = u„', the fixed-point value
of the initial n-component system and let p vary in

the interval (1,0). The consequences of using Eq.
(3.36) against (3.33) and (3.34) will be worked out
further down.

Finally, Eq. (3.7) may be integrated to yield

with

p, '(x) —= m /x' (3.38)

and Ao = I (this will be done in all that follows). One
does not need t(p)/t to be given more explicitly than

in Eq. (3.37) to get y,«(t)

1

ln[r(p)/t] = —' —(m+2) + " u(x)
x I + p, '(x)

t

(3.37)

g(p') =at(p, ', 0)=g2(p, ', 0)

, [ I —,
'

L (4p, ')]—
1 —4', 2

(3.44)

contributes but, as before, the general expressions
will be kept for the integrated vertex functions. For
this purpose, both forms of Eq. (3.43) are relevant,
even if one starts with a weak initial anisotropy,
p,

2 « 1. Finally, it can be verified that, for vanish-

ing p, ', g~(0, r) and g2(0, r) have the appropriate
forms which lead to the vertex functions for the iso-
tropic system with O(n) symmetry.

The coefficient functions that are obtained by using
Eqs. (3.39) and (3.40) in the RG Eqs. (3.5) are now

p(u, p) = —au+ —,
' [m+8+(n —m)@(p,')]u'

are finite functions of v for nonzero p, ', in which

L (x) = ( I —x) '" ln [ [I + ( I —«) '"]
x [I —(I —x)'~ ] ' },

=2(x —I) ' tan '[(x —I)'~2], x ) I . (3.43)

In the calculation of the coefficient functions only

the limiting form

+ O(M, LI e) (3.45)
B. RG equations for model 3C2

With the free-field propagators being now given by

Eqs. (2.14) and (2.15), and the integrations done at

y4(u, p) = —,'
[m +2+(n —m)P(p, ')]u+0(u', ue)

(3.46)
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where

P(p, ') =(I —4p, ') '[8p, '+I —6p'L.(4p, ')] . (3.47)

It can easily be verified that the correct limiting
forms are obtained for both p,

' 0 and ~.
Unfortunately, $(p, ') is too complicated to make

feasible the detailed calculation of u (p) in the way
we could do for model 3C&. However, we may replace
@(p.') by an effective form (1+p, ') ' that leads to a
u '(p) which does not differ appreciably from
u '(p) obtained from the limiting forms of Eq.
(3.47) for small and large p, 2. The full anisotropy
dependence of this effective form is that of the
next-to-leading terms in Eqs. (3.33) and (3.34). It
will be shown further down that this yields an ap-
proximately, rather monotonic y, tt(t) for model X2.
In contrast, we also work out the results keeping only
the leading terms in the form given by Eq. (3.36).
These are, clearly, also the leading terms for model
3C2, which may again be the only ones that should be
kept to one-loop order.

Integration of Eq. (3.7) yields for model Xq

ln[t(p)/t] = —,
'

JI —"[(m +2)

+ (n —m ) 4 (p, '(x)) ]u (x)

IV. EFFECTIVE CRITICAL EXPONENT

The inverse longitudinal susceptibility,

X (tg) =r&'I(O;u, t, m(g), 1)

can now be written, by means of Eq. (3.10) as

(4.1)

(3.48)

Both here and in Eq. (3.37), p can be replaced to
leading order by t'

The flow equations derived in this section will now
be used in the next one to calculate the effective crit-
ical exponent y, ff( t ).

XL'(t g) = t(p) (1+ 6 u(p) [(m +2) +(n —m) ft(p2, r) }„,] }+0(u2,ua) for model Xt

xt. '(t g) = t(p) (I +-'u(p) [(m +2) +(n —m)gt(p, , r)}„,.] }+O(u,u )afor model X2

(4.2)

(4.3)

ft(p") I.—,=fi(p' r) (4.4)

with t(p) given by Eqs. (3.37) and (3.48), u(p) by

Eqs. (3.33) and (3.34) or Eq. (3.36), while

r
Eqs. (3.18) and (3.41) out of the critical region, with

r(h. ) = 1 as in Eq. (3.23).
The effective susceptibililty exponent,

2 2

p(X) m m

p

d lnx, '(t, g)
yeff t x

d lnt
(4.6)

(4.5)

are the functions ft(p, ', r) and g~(p, , r), given by

will depend on the crossover variable x =g/t~ = m /t
= p'/p', and is given, to first order in e, by

e 'I

y,tt(tx) = I +
6

u(t' ) m+2+ " +(n —m) [ ft(p r)I — ] for model X,1+x d lnt

noting that Eq. (3.37) yields

dint(p) ),t, d 't't' d»
2

n —m
( )

d lnt dt't "t x I + p2(x)

(4.7)

(4.8)

and that du (t't')/d Int = O(a').
Also, d[ ft(p~, r) }, , ]/d lnt turns out to depend only on the scaling variable x. Then we find, for model X~,

y,tt(tx) =1+—u(t ) (m +2) +(n —m) —+x In +„t I x I
6 1+x 1+x 1+x (4.9)

where u (t't2) is u (p) for p = t't2, to leading order.
To start with the right primary critical behavior when Eq. (3.36) is employed, but actually not necessary if instead

we take Eqs. (3.33) and (3.34), for the full u(p), the choice u = u„' is made. It can easily be seen then that

y, tt(t x) ~, t =y,tt(l, x) = y(n) as x =0
=1+(n +2) /( a+8n) +O(a2) (4.10)
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F&G. ]. Effective susceptibility exponent f'or models& (full curve) and approximate exponent —see text for model X~ (dotted

line) when the flowing quartic coupling with next-to-leading terms is used for n =2, in =1, and anisotropy if' =10, when a=1.

while for small but fixed m and vanishingly small t,

y ff(r x) y ff(O ~) Y(m)

=1+(m +2)e/(m +8) +0(e2), (4.11)

the susceptibility exponent for the secondary critical

behavior.
The behavior of y,«(t,x) throughout the crossover

region, for model 3Ci, is shown in Figs. 1 and 2, the
first making use of the full u (p) given by Eqs.
(3.33) and (3.34), while the latter uses the leading
form in Eq. (3.36). Note that if e is not too large

0.22 0.22

0.2I— —0.2 I

0.20 " 0.20

O.I9—
I

O.I8—

O. I9

O.I8

O. I7 0.17

0.16 O. I6

I

4
I

-2
t

-50.15
-IO

I I O.I5-9 -6 -I 0
logtO&

FIG. 2. Effective susceptibility exponent for model& (full curves) when only the leading term in e for the flowing quartic
coupling is kept for n =2, m =1, anisotropy m =10, and a=1 (a), 0.5 (b), and 0.2 (c). The result for model:C& taken from
Fig. 3, is shown for comparison (dashed line) when e= l.
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(e (0.5), the latter reflects rather closely the
monotonic crossover displayed in Fig. 1, but other-
wise there could be a marked difference which results
in a displaced maximum near the primary critical
behavior. Without the results of a two-loop-order
calculation at hand to ensure that the next-to-
leading-order terms in Eqs. (3.33) and (3.34) remain
unchanged, we cannot rule out the possibility that the
maximum in y, [I. is really there, at least in a calcula-

tion to one-loop order.
On the other hand, when the curve of Fig. 1 is

compared with the result shown in Ref. 14, one notes
that they do not quite agree with each other. This is
not surprising, in view of the role of nonlogarithmic
terms, discussed in Sec. III.

The effective susceptibility exponent for model 3C2
that follows from Eq. (4.3) is given, to first order in

e, by

y,«(tx) =1+—u(t' ) m+2+(n —m)@(x)+(n —m) -[pt(p, , r)~, , ]
d lnt

t

(4.12)

in which @(x) with the argument p,
' replaced by the

crossover variable x = m /t is given by Eq. (3.47),
while

d lnt

= ——&(y) —— [1 ——yL (y) j, (4.13)
1 1 I

6 ] y 2

where L ( y) is given by Eq. (3.43) with y =4x, and

X(y) —= [3+y(3+y) ' 'tan '(3+y)' ']
y+3

(4.14)

Setting u = u„' and using either Eq. (3.36) or the pair
(3.33) and (3.34), if P(x) is replaced by an ef'fective
(1+x) ', one can easily verify the limiting forms in

[

Eqs. (4.10) and (4.11).
The behavior of y, tt(t) for model 3C2 is shown in

Figs. 1 and 3, the former with terms beyond the lead-
ing part in u(p) and the latter with the use of Eq.
(3.36). Figure 1 shows a rather close agreement
between the results for a sharp and a smooth cutoff,
for the case where the one-loop calculation does not
become modified by a higher-order contribution.
The two cutoff results are also compared in Fig. 2 for
a leading u(p), and they are rather similar. Howev-
er, this is not always the case as illustrated in Fig. 4,
where a rather pronounced dip is shown to appear
with a decrease in anisotropy. Nothing similar occurs
in the case of a sharp cutoff, as shown in the same
figure, and this may be an indication that the opera-
tor A '(V'@)' when included in the usual propagator
becomes a "dangerous irrelevant variable" for very
weak anisotropy. It will be seen in Sec. V that the

0.22 i 0.22

—0.2 I

0.20— 0.20

O. I9—
I

0.l8—

O, I9

0.I8

0.I7— O. I7

O. I6 0.I6

O. I5
IO

I I

-6 -5
I'.Ogl O

1

I

4
I

-2 0.15

FIG. 3. Effective susceptibility exponent for model &2 when only the leading term in e for the flowing quartic coupling is

kept for n =2, ~n =1, anisotropy m =10, and e =1 (a), 0.5 (b), and 0.2 (c).
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0.16— —0.16

0.15— —0.15

0.14 ' t

-8
I
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1091

'0.14

FIG, 4. Result of decreasing the anisotropy to o~ =10 in model K2 (b), as compared to model Xt {a), when the leading

term in the flowing quartic coupling is used, for» =2, in =1, and a=1.

situation is different as long as that operator is

viewed as an insertion of higher canonical dimension
into the effective Hamiltonian of model 3Ci.

It is not the first time that a maximum in y, (rtr) is

found. Indeed, it has already been reported by Amit
and Goldschmit' that the use of a single expression

for u '(p), in the limit of small e, i.e. , the analog of
our Eq. (3.35) in the renormalized theory, is respon-
sible for a rather pronounced maximum in y„,(r)
when the results are extrapolated to e =1. However,
there again next-to-leading terms are included and it
should be interesting to see what comes out if instead

0.22 —0.22

0.20— 0.20

0.19-
I

0.18—

0.19

0.18

0.17 0.17

0.16— —0.16

0.15 I

-10 -9
I

4
I 0.15-6 -7 -6 -5 -2 0

Og T)0
FIG. 5. Result of using the leading part in e for the flowing quartic coupling in the renormalized theory with Eq. (4.15), for

» = 2, in = 1, renormalized anisotropy in& = 10, and e = 1 (a), 0.5 (b), and 0.2 (c).
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only the form in Eq. (3.36) is kept. When this is

used in their
A 'g && 1, and where

(5.2)
y, tt(t, z) =1+—, u(r)1

1

x t m +2+ (n —m ) [I —z ln(1+1/z) j )

(4.15)

in which

z —= mR2/r (4.16)

is the crossover variable in the normalized theory, to
leading order in e, mR is the square of the noncritical
mass, and ~ is the normalized reduced temperature,
the curves shown in Fig. 5 are obtained for mq
=10 '. Although the precise relationship between
bare and renormalized noncritical mass is not known,
the curves are rather close to our previous results
and, moreover, in all of them the height of the max-
imum is much smaller than in Ref. 14, for a =1.

Both here, and in the other results discussed
above, for the sharp cutoff, there is rather close qual-
itative agreement with the renormalized theory, for
small e. It should be noted that the results of both
theories have been obtained only, so far, as expan-
sions in e. Therefore, one should be cautious with
expressions like Eq. (3.34), particularly when extend-
ed to a =1—a similar one appears in the renormal-
ized theory —containing an exponentiated form of the
scaling variable x = p2/p' in the last two terms. It is

here where a further RG analysis is needed, or at
least a calculation to two-loop order, together with a
check that the other anisotropy-dependent terms
remain unchanged.

V. INSERTION OF COMPOSITE OPERATORS
OF CANONICAL DIMENSION SIX

3C(4) =3Co(4) + A 'g&4 &4, (5.1)

g being the dimensionless coupling of the insertions,

The operator A 2(V2$)2 is included in the unper-
turbed part of the Hamiltonian BC2 only for the pur-
pose of simulating a smooth cutoff. That is not what
is usually referred to as an insertion of a composite
operator of higher canonical dimension. Indeed, if
G2L (q) of Eq. (2.14) is expanded in powers of A 'q4,

so that A '(V'$)' can be viewed as a perturbation to
model 3C, , the first-order term is —A 'q4/(t +qz)2
and this already has the wrong sign, as will be seen
next. Therefore, the propagator G2L(q) cannot
be taken as a resummation of the insertions of
A

—2( ~2y) 2

Given a Hamiltonian. 3Co(@) in terms of the fields
and their gradients and the set of all operators 5& of
canonical dimension 5&, the new Hamiltonian to first
order in the insertions is20, 2

is the (positive) degree of the composite operators
5&. It will be assumed in what follows that g =1,
since no attempt will be made of including insertions
to higher order. From Eq. (1.5) we have 8=2 at
d =4. The bare 1PI vertex functions for the Hamil-
tonian 3C can then be written, to first order in the
insertions,

I sc ( p), Ptt', q
'

~~ )

= I'X, '( p). ptt)+A 'y-41'4 '(p) pN', q),
(5.3)

I ' being the vertex functions for 3CO and I ~ the

vertex functions with insertions of operators 6&, cal-
culated for 3C=DCO. The momentum of the insertion
is q.

The set of all operators of canonical dimension six,
denoted by 6, 6, is

ty I

6
)4')'

(~2@)@3 ~2@4

(~2@)2 y~4y ~2(@~2y) ~4y2 (5 4)

As far as the operator ('72$)2 is concerned, this
yields a contribution of A 'q4/(t+q')' to the two-

point vertex, in distinction to the first term in the ex-
pansion of the propagator G2 (q), referred to above.

In what follows we take 3Co(@) to be the Hamil-
tonian of model X~ and we are primarily interested in

the two-point vertex function I~' under crossover.
The RG equation for I &~', which has been used in

the literature to determine the anomalous dimensions
of composite operators of canonical dimension six,
will not be needed here. ' " To lowest order in the
insertion, I &" can be calculated with the couplings of
model X~, the flow of which have already been
determined in Sec. III. It is only to second order in

the insertions that the couplings have to be recalcu-
lated to first order and that a RG equation for I & ',
N =2 and 4, is needed.

Not all the operators in Eq. (5.4) contribute to
one-loop order to

I"&'(0;q; 6„)~-, = I's'c '(0) + A X„I „(0;q ) ~

(5.5)

the quantity we are interested in, when all the exter-
nal momenta, including the insertion, are set to zero.
First, $ does not contribute to one-loop order. 22t'

Next, the operators in the second line of Eq. (5.4)
contribute only to I &', which is necessary to find the
first-order (in A ') change in u(p). This contributes
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to r&' only to second order in the insertion, and
need not be considered here, The remaining four
operators can contribute to I ~', to first order. How-

ever, they produce additional factors qt'q2, qt +q2,
q2(q( + q2 ), and q to a pair of propagators or to a
propagator-insertion pair, as shown in Fig. 6. In
here, q; are the momenta of the propagators and q is

the momentum of the insertion. None of these
graphs will contribute, with the restriction of zero
rnomenta. The only nonzero contribution to one-
loop order comes from the insertions to internal pro-
pagators, as shown in Fig. 7. Since the external mo-
menta have to be zero, there is no distinction in this
case between the last four operators in Eq. (5.4). Fi-
nally, the point of insertion carries a factor of A '.

The additional contributions to the longitudinal
self-energy parts, to one-loop order, with insertions
of internal longitudinal and transverse propagators, is
proportional to the integrals

q=O

FIG. 7. One-loop contribution to the longitudinal suscep-
tibility with one insertion of canonical dimlension six at zero
momentum. The only nonzero contribution is due to inser-
tions at the momentum of the internal propagators, which
can be either longitudinal or transverse.

pA 4

1„(r)=
A' " ~ (q'+r)'

l„(m +r) =2 1
' q'

~ (q'+m +r)'

(5.6a)

(5.6b)

A'
A X,, rt (0;q)~- = — t[(In +4)J(0, )

+(n —m) J(p, ', r)]

In the usual subtraction at t =0, the approximation
t

,1
'

4 1 1 2 I' q'
2 q ( q

2 + r ) 2
q

4 A 2 J q q
2 ( q

2 + r ) 2
4 = —---t

g
t

(5.7)

plJ(p'r) =—
2K. ,4)l dq q'-

+p, q +p, +T)

(5.9)

is made in (5.6a), and similarly, in (5.6b). The addi-
tional contributions to 1 L"(0;u, t, m, A), Eq. (3.11),

in which the factor A, associated with the insertion,
has been absorbed, while p,

' and 7 are defined as in

Eqs. (3.16) and (3.17). Explicitly,

c[
2

j=

(a)

q4+q4
I
(b)

r

J(0, r) = K4 1+
1+V

—2r ln = K„, (5.10)1+~

plus terms that vanish as 7 0, whereas for finite p.
'

the full form

J(p, ', r)

1 2 3 1 + p, + ~ 6 1 + p.=K4 1+—, ( p+2)r'1 -n, ——p, ln
7-' p, +'T p,

(c) (d)

FIG. 6. Insertions of the last four operators of canonical
dimension six in Eq. (5.4) to the leading part of I & . The+1
wiggly line indicates the insertion point. Factors of q&q2,
indicated by dashes, go with (a), qt +q2 with (b),
q (qt +q2 ) with (c), and q with (d), when q, are the mo-

menta of the propagators and q is the momentum of the
insertion, These graphs do not contribute when all momen-
ta are zero.

21( 2 )2 1+p, +r
p, +~

1

1+p, +7

(5.11)

must be kept to avoid terms that diverge in the limit
of small v when 1+p, +~=1+p, '. The rest of the
calculation proceeds as in Sec. III. This requires first
the form in Eq. (5.8), out of the critical region,
which yields the additional contribution to y, (r,xr)r.
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Noting that du (t' ')/d lnt = 0 (e'), we find

y, tt(t, x) = y,„r(t,x) inc, + Sy, tt(t, x) (5.12)

the first term on the right-hand side being given by

Eq. (4.7), while

propagators that enter into the one-loop contribution,
as compared to the main part y, «(t, x) inc. This leads

1

us to expect smaller contributions from further inser-
tions of composite operators of canonical dimension
six, or of first-order insertions of higher-dimensional
operators.

&y.«(t x) = —,(n —m) u(t' ')x

3(1 —x ) ln —(7+x —x )
2+x 2 1+x
1 +x (2+x)~

1

1+x 1

1 +x (5.13)

TABLE I. Syeff(t, x), defined in Eq. (5.12) due to the

insertion of composite operators of canonical dimension six
into model Xi'. (I) when the complete u(p) is used and

(II) with the leading terms only.

log&ot

—0.6990
-1.0000
-1.6990
—2.0000
-2.6990
—3.0000
-3.6990

0.00000
0.000 15

-0.000 65
0.001 00
0.001 70
0.001 20
0.000 00

0.000 07
0.000 17
0.00068
0.000 88
0.001 92
0.003 10
0,000 00

x being the scaling variable p, '/p' = m'/t The r.esult
has been calculated with either the complete forms
for u '(p) in Eqs. (3.33) and (3.34) or the leading
expression in Eq. (3.36) and Sy,ff(t,x) is given in

-2 -3Table I, for n =2, m =1, and m =10 ' when a=1.
Clearly, it is rather small in the crossover region and
smaller by several orders of magnitude near the fixed
points. The sharp decrease near the latter is at least
in qualitative accordance with the fact that the
anomalous dimensions of the inserted operators is
two integers larger than the correction-to-scaling ex-
ponent cu for u(p) & u', or u„'. It should be noted
that the anomalous dimensions of composite opera-
tors are, however, defined and calculated at the fixed
points and that gives no idea of the amount by which
an effective critical exponent can be modified in the
crossover region. As we show here, the effect is

clearly -small, perhaps too small to be of practical im-

portance for the time being, but not completely negli-

gible.

Note that that smallness of Sy,ff is not due to the
A at the insertion point, as can be seen from Eqs.
(5.7) and (5.9), but rather to the larger number of

VI. DISCUSSION AND SUMMARY OF RESULTS

We have shown here how the cutoff-dependent
version of RPT that has been used before to study
the Gaussian-to-Heisenberg crossover in isotropic
systems can be extended to a problem with quadratic
spin anisotropy. This, as that of Amit and Gold-
schmidt, is a proper RG procedure in terms of the ac-
tual temperature variable t = T —T,. (g) and the flow-
ing coupling u(p), which does not involve a match-
ing of those parameters, as done in some previous
works, ' a point that does not seem to have been in-
vestigated in detail. Our main results are the follow-
ing.

First, we have shown that there is an important
difference, already at the one-loop level, between a
cutoff-dependent version of RPT and the renormal-
ized theory with GMS, in that the former yields other
than logarithmic terms in the 1PI vertex functions,
which corresponds to finite renormalizations in the
renormalized theory. The relevance of this can best
be seen in the case of a sharp cutoff. We found
there that the added nonlogarithmic terms in the
four-point vertex function yield a coefficient function
P(u, p, ) that is formally different from that in the re-
normalized theory, while y4(u, p, ) is formally the
same. The former implies a flowing u(p) with other
than logarithmic terms in the scaling variable
p, '/p' = m'/t, even when the full forms in Eqs. (3.33)
and (3.34) are kept. This is the only formal differ-
ence with GMS, for the sharp-cutoff model, and a
different result from that of Amit and Goldschmidt'
is obtained. Although the difference is not very
large, clearly the detailed shape of y, tt(t, x) is not the
same and this is relevant to the problem of universal-
ity. It is worth noting that the reason why our two-

point function I L, for mode13Ci, is formally the
same as that of the renormalized theory with GMS, is
that the coefficients of the nonlogarithmic terms are
accidentally zero.

The further significance of finite renormalizations,
in order to understand our resutls, can be seen as fol-
lows. Given a specific regularization in a bare theory

. one can construct RG equations that are equivalent
to those of a wide class of renormalized theories. In
this sense, RPT with GMS is just one special renor-
malized theory, with purely logarithmic terms, of the
class that corresponds to a bare theory with a sharp
cutoff. Although the finite renormalizations that are
equivalent to the latter are not expected to make a
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difference at fixed-point values, we see no reason for
neglecting them under crossover.

So far, this refers to the results of our work com-
pared to those of the renormalized theory. In com-
paring our results between models Xi and 3C2, it
should be noted that further finite-renormalization
terms can follow from a change in regularization, and
that is precisely what happens in our case. The
difference in the results between the two models is

large enough to give them further thought. A calcu-
lation to two-loop order may give some further clue
about the relevance of a change of regularization.

Second, in view of the exponentiated singularity of
the scaling variable that enters in our full form of
u '(p), or in that of previous work, '4 and in the ab-
sence of a two-loop-order calculation that demon-
strates that these terms, and the other nonleading
contributions to u (p), are not modified, we calcu-
lated the effect of the leading terms in expansion in

e, both for a sharp and a smooth cutoff. We find a
displaced maximum for y,«(t, x) when 0.5 ( e ( l.
A similar result has been obtained before using, how-
ever, nonleading terms in e. ' Furthermore, we show
that, in the case of a smooth cutoff, a rather pro-
nounced dip may appear in the crossover region for
sufficiently small anisotropy. This is due to the par-
ticular nonlogarithmic terms in the vertex functions
for this type of cutoff. We do not find the same
behavior to occur with a sharp cutoff, and the result
may just indicate that the large momentum cutoff,
A 'q, becomes a dangerous irrelevant variable under
crossover. This part of our work suggests that a sys-
tematic second-order calculation in e becomes neces-
sary in order to see which of the various situations
discussed here hold through.

The third main result of this work concerns the
correction to the leading effective singular behavior
due to composite operators of canonical dimension
six, to one-loop order and to first order in the inser-
tions. Although the effect is quite small, it is not
completely negligible away from primary and secon-
dary critical behavior. A calculation of this effect has
not been done before, and the extension to include

operators of canonical dimension higher than six can
be carried out along the same lines. More urgent,
however, may be an extension to two-loop order and
second order in the insertions, for operators of
canonical dimension six, since only then the complete
set of operators plays a role, as discussed in this pa-
per. This, and other extensions referred to above,
will be considered in future work. The asymptotic
behavior of a crossover scaling function has been re-
ported before, '8 to one-loop order, and a more com-
plete form would be desirable. However, since the
same complications as for y,«(t, x) discussed here
also arise there, further progress will depend on the
results of work to two-loop order.

As far as the universality of y,«(t, x) is concerned,
we hope to have shown that this is not a settled (or
almost so) problem, to one-loop order. We have
shown that eventually a fairly monotonic y,«(t, x)
can be obtained even to that order. In this case we
cannot ensure, however, that partial contributions to
higher order have not been included in the calcula-
tions. This is not an uncommon problem in RG
studies of crossover phenomena. " For anisotropic
spin systems, already, Horner" noted that higher-
order contributions in e entered in an unsystematic
fashion into his calculations to lowest order. In this
case, however, if certain leading terms in expansion
in e turn out to be the only genuine terms to first
order, a rather nonmonotonic y,«(t, x) should be ex-
pected, as we have sho~n here, for e ——1.
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