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Extending earlier work by Domany et al. , this paper provides a group-theoretical classification

of continuous phase transitions of systems of arbitrary d = 2 space-group symmetry with a scalar

ordering density. Based on the Lifshitz condition„ the classification finds the symmetries for
which continuous phase transitions are possible and identifies the corresponding universality

classes according to the associated Landau-Ginzburg-Wilson Hamiltonians. Tentatively uniden-

tified universality classes appear, associated with the space groups p4gm, p3, p31m, and p6. Ap-

plications to atomic and molecular adsorption and to surface reconstruction are given.

I. INTRODUCTION

Consider a statistical mechanical system, character-
ized by an ordering density (p( r ) ), whose Hamil-
tonian is invariant under a group Go of symmetry
operations. Typically there is a high-temperature,
symmetric phase in which (p( r ) ) is invariant under
all of the operations in Go. There may also be a
low-temperature, broken-symmetry phase in which

(p( r ) ) is invariant only under the operations of a
subgroup G C Go. The transition between these two
phases may be either first order (discontinuous) or
second order (continuous). Mukamel and Krinsky'
have argued how, on the basis of symmetry con-
siderations alone, to make nonrigorous but apparent-
ly reliable predictions of (a) which transitions may be
second order2 and (b) for those that are, to which
universality classes they belong. A summary of the
logic of the analysis' is given in the following para-
graph. This theory was recently applied by Domany
et al. ' to study structural order-disorder transitions
of adsorbed atomic monolayers, Substrate arrays
consisting of Bravais, honeycomb, and kagome lat-
tices were studied in detail. This paper treats the
general situation where (p( r ) ) is a real scalar densi-

ty (usually a mass, charge, spin, or number density)
and where Go is any one of the 17 two-dimensional
space groups, thus extending the work of Domany
et al."' The analysis here applies to many situations
besides atomic monolayer adsorption. Examples are
given in Sec. VI.

Within the context of mean-field theory there is a
set of rules due to Landau and Lifshitz which deter-
mines on the basis of symmetry considerations alone
whether a particular transition is allowed to be second
order. ~ These Landau-Lifshitz rules are not rigorous-
ly valid beyond mean-field theory; however, with
proper interpretation they remain a useful guide for
predicting when second-order behavior may be ex-

pected. ' In particular it is observed empirically ' that
the large fluctuations which occur in two dimensions
render one of the Landau-Lifshitz rules (the second,
see Sec. II) inoperative. For each symmetry-allowed
transition it is possible to construct (again, on the
basis of symmetry considerations alone) the corre-
sponding Landau-Ginzburg-Wilson (LGW) model.
The "smoothness postulate" leads one to expect
that, when second-order behavior occurs, it belongs
to the universality class of the corresponding LGW
model.

The layout of this paper is as follows: In Sec. II
the three Landau-Lifshitz rules are stated and briefly
interpreted. Since a transition is labeled by a
representation R as well as a group Go, the theory of
representations of space groups is discussed in Sec.
III. The procedure of constructing LGW Hamiltoni-
ans is outlined in Sec. IV. In Sec. V the transitions
(Go,R) which may be continuous are presented and
the previously identified universality classes which
arise are briefly described. A simple explanation of
how to determine Go and R for a given continuous
transition is also included. Applications to atomic
and molecular adsorption and surface reconstruction
are given in Sec. VI. Section VII suggests directions
for future extensions of this work. In the Appendix
we give a microscopic model for one of the tentative-
ly unidentified universality classes and also give ex-
amples of transitions in atomic adsorption which be-
long to this class.

II. RULES OF LANDAU AND LIFSHITZ

The first rule of the Landau-Lifshitz theory"
results from assuming that the transition is an ordi-
nary critical point, i.e.„not a multicritical point. It
states that the order parameter characterizing a con-
tinuous transition must transform as a single "real ir-
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reducible" representation R of the symmetry group
Gp. For irreducible representations R which are real,
R —=R; for those which are complex, R —=R + (R )'.
The unit representation is specifically excluded.
Higher-order invariants in the free energy can induce
contributions from other representations. This mix-
ing of different representations must be considered
when one determines possible physical states of the
ordered phase but is irrelevant sufficiently near T,
and will be ignored in our classification scheme.

The second Landau-Lifshitz rule asserts that there
can be no cubic terms in the free energy, if a con-
tinuous transition is to occur. If such terms exist,
then the minimization of the free energy with respect
to an overall scale of the order-parameter com-
ponents yields a first-order transition. 7 This rule is
satisfied when no third-order invariants can be con-
structed from R. ' In two dimensions it is known
that this rule is violated by the three- and four-state
Potts model. " Since mean-field theory neglects fluc-
tuations, and since fluctuations are more dominant in
two dimensions than in three dimensions, it is not
surprising that this rule does not necessarily apply in
two dimensions. We shall not require this rule to be
satisfied in our classification (Sec. V).

The third Landau-Lifshitz rule results from the
minimization of the free energy in k space. " It
states that the coefficient of any term which antisym-
metric and quadratic in the order-parameter com-
ponents and linear in a spatial derivative must be
zero at the critical point, if a continuous transition is
to occur. This vanishing is guaranteed by symmetry"
when the so-called "Lifshitz condition" is satisfied,
i.e., when the antisymmetric square of R and the vec-
tor representation have no representation in common.

III. REPRESENTATION THEORY

In the representation theory of space groups'
the irreducible representation of a given space group
Gp is labeled by a wave vector k and an additional la-

bel A which depends on both k and Gp. Roughly
speaking, one can say that k characterizes transla-
tions of the unit cells into each other while A charac-
terizes the "rotations" within a unit cell. The "small
representation" R, is identified by A. To understand
R„ it is best to first introduce the concepts of the
group of k and the star of k.

The group of k is the point group consisting of all

different nontranslational parts of the elements of the
space group Gp, which leave the vector k unchanged
or transform k into an equivalent vector k (i.e., k
differs from k by a reciprocal-lattice vector). The
star of k is the set of all different inequivalent k vec-
tors which are formed by acting on k with all dif-
ferent nontranslational parts of the elements of Gp.
For two-dimensional space groups which do not in-

(a) (b) (c) (e)

(m)

FIG. 1. Selected stars of two-dimensional space groups.
The real irreducible representations which satisfy the Lifshitz
condition are associated with one of these stars.

IV. CONSTRUCTING THE LGW HAMILTONIANS

For each real irreducible representation R we can
construct the Landau-Ginzburg-Wilson (LGW) Ham-

iltonian which is associated with R." The number of
order-parameter components' associated with R is
given by m =rsl. Here s is the number of (inequi-
valent) vectors in the star of k and l is the dimension
of the small representation R,. r =2 if (a) R, is not
real or (b) k and —k are not equivalent and no

elude glide lines, i.e., symmorphic space groups, the
small representations R, are just the irreducible
representations of the group of k. For nonsym-
morphic space groups R, is defined in a slighty more
complicated way. '

To actually find which real irreducible representa-
tions R satisfy the Lifshitz condition, we have made
use of several of the results found in Lyubarskii. '

We begin with a group Gp and a wave vector k and
proceed to find both the star of k and the group of
k. After we find the characters of one of the small
representations R„we determine whether the corre-
sponding irreducible representation R is real, using
these characters. Then, we calculate the characters of
the vector representation of the group of k. Using
these characters and the properties of Gp, we can
then determine if the Lifshitz condition is satisfied. '

For future convenience we introduce the "real
small representation" R,: if the small representation
R, is not real, then R, —=R, +(R,)', otherwise
R, —=R, . In labeling a real irreducible representation
R, we choose to use the star of k instead of k itself
and R, instead of R,. We will write R = I (z), A j,
where (z) labels a star (such as in Fig. l) and A la-

bels the row of the character table which is associated
with R,.
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operation in Go transforms k into —k; otherwise,
r =1. The easiest way to represent the space group
Go is first to associate the "pattern" from Ref. 19
with Go and then to assign a number to each position
of the pattern, thus forming basis functions for R.
We must find m basis functions @i, . . . , $ for each
R, which transform into each other under the ele-
ments of Go. The determination of these basis func-
tions has previously been discussed for a symmorphic
Go. ' Once the transformation properties of these
basis functions are known, the construction of the
LGW Hamiltonian is straightforward. '

%e consider here the example of a nonsymmorphic
space group, (Ga, R) = (p2gg, (( f), (i) )), where
( f) denotes a star from Fig. 1 and (i) denotes a line
of the character table of Table I. From the construc-
tion of this character table, ' we find that R, is real.
Since the star of k is a single vector, we see that
the number of basis functions we need to construct is
m =rsl =2. Figure 2 gives the appropriate pattern
from Ref. 19 along with a convenient choice of axes.
From Go we determine a set of basic "rotations, "

Sr = (E,C2, t-, tt2+-, 2t2~-, , t-, t2+-, 2t2~,
2

)

and a set of basic translations, S2= (t-, , t-, ). Here

t ~ denotes a translation by b and a--, is a reflection
across the a; axis. The basis function $i and P2 are
chosen so that, under the operations in S), the
resulting character table is (i) from Table I„while
under the operations in S2, t-, QJ =exp(i k a;) rf&,

After a small amount of trial and error, we find
that the basis functions of Fig. 3 satisfy the above re-
quirements since they transform, under the sets S~
and S2, as

I

I

I

I

I

I
i Ii

0( ~

FIG. 2. Pattern from Ref. 19 for the space group p2gg.
a

~
and a~ are the primitive lattice vectors for the pattern. A

convenient choice for the unit cell is shown.

Constructing the LGW Hamiltonian such that each
term is invariant under the above six operations, we
find"

+u(]r +Q ) +v(Q +Q ) +

A similar analysis when R is (( f), (ii ) ) yields the
basis functions of Fig. 4 and the same LG% Hamil-
tonian.

C2 4'1 tel 42 42

t-, t2+-, t2rJ-, or t-, t2+-, t2rr-,

TABLE I. Those character tables not found in point-
group character tables which label the real small representa-
tions of Table II.

2
—2

(iii)
(iv)

FIG. 3. Set of basis functions of the real irreducible
representation R = ((f), (i) },where Go=p2gg, ( f) is
from Fig. 1, and (i) is from Table I.
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V. RESULTS

FIG. 4. Set of basis functions of the real irreducible
representation R = ((f), (ii) ), where Gll =p2gg, (f) is from

Fig. 1, and (ii) is from Table I.

Table II lists those transitions (Ge,R) which may
be continuous. ' Continuous transitions are possible
for all 17 of the two-dimensional space groups Go.
The row of the character table of a real small
representation R, is labeled as in the point-group
character tables of Ref. 22 or the character tables of
Table I.

Given an experimental transition, one can use
Table II in the following manner. (I) Determine Gll

from the symmetric phase. (2) Construct the differ-
ence 8 (p( r ) ) of the ordering density (p( r ) ) in the
symmetric phase from its value in the broken-
symmetry phase. (3) From the k which characterizes
the translational symmetry of (p( r ) ), find the ap-
propriate star of k in Fig. l. (4) The group of k is

given in Table II. If Go is nonsymmorphic, replace
the group of k by the set of basic "rotations" of
Ge.23 (5) Perform the operations of the set in (4) on
8 (p( r ) ) to form a set of functions S. Use the
linearly independent functions of Sas a basis of the
real small representation R, and calculate the corre-
sponding characters of the elements of the set in (4).
(6) If R, is included in Table II, a continuous transi-
tion is symmetry allowed. If the transition is indeed
continuous, ' the table gives the universality class via
the LGW Hamiltonian.

The LGW Hamiltonians referred to in Table II are

0=01
2 2

H=H2+u XQ +1t gltI|+
1 I-1

H=H2+tl($1 —3/1/2) +

H2+tl(l|I1 31llllrt2) + t2( itl 341 H)( P1 3 P2 H) +

H =H2 + w 1 ( Q1
—3 ill 1 li12) + t 1 ( Q1 3/1/2)—+ ~ ~ ~

H=H2+wl(p', —31tl,y2)+w2(&2 —31C21i11)+tl(y'1 31II,Q' )—'2t+2(yl —3y, y2)(lrt2 —3y21I11)+

3

H=H3+v Xlil, +

(2a)

(2b)

(2c)

(2d)

(2e)

(3a)

3

H =H3+w$1$2$3+u Xlirl + (3b)

4

H4 &1 X limni
+&2( lill li12 ll111I11 1II11i14+ 1|141113)+ 213($11I13 '421114 $1/1 + ll141112)

+U4(QF1I14 + ll12$3 + $31|I2+ $41irl ) +&5( tllli2l$l3 + 421I11$4 + $3$11i14+ 1II4$2$3)

++6(411|131tt4 li12$3$4 lit1411|12+ 11141i1142) + &7(llr1421ii4 11114143 41/2/4 + li141lllll13)

+&8 ( lit 1 1I11 + Q1f4 ) + &9( lit 1 $4 + Q2 Q3 ) + &10llil ltr2$3 $4 + ' ' ' (4)
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where

H„=
2

r XQ~ +
2 $(VQt) +u Xpt +t XQf +'' '

For each equation above, the " " means higher-order terms than those given. Using Qi = pcos8 and

P2 = p sin8, we can also write the n = 2 LGW Hamiltonians to sixth order as

H=H2 +v'p'cos48+t'p cos48+ ~

H =H2 +t]'p6cos68+

H=H2'+t~'p cos68+t2'p sin68+ =H2 +tp cos(68++) +

H =H2 + w]p'cos38+t]'p cos68+

H = H2 + +]p' cos38 + ~2p' sin38 + t]' p' cos68 + t~ p sin68 +
= Hq' + w p cos(38+ u~) + t p cos {68+a2) + .

(2a')

(2b')

(2c')

(2d')

(2e')

where

H2 = ,
' r p'+ —,

' —((Ap)'+p'(A8)') + u'p'+ t'p'+

LGW Hamiltonian (1) is that of the Ising model.
Equation (2a) corresponds to the XI'model with
"cubic" anisotropy (as well as several other
models'~ "), while Eq. (2b) is that of Jose et al."
Equations (2d) and (3b) correspond to the three- and
four-state Potts model, respectively. " Equation (3a)
corresponds to a model discussed by Domany and
Riedel. ' 7 If the variations in p are frozen out and
the appropriate higher-order terms are irrelevant,
then Eq. (2c) has the same critical behavior as Eq.
(2b), and Eq. (2e) has the same critical behavior as
Eq. (2d). Under general circumstances Eqs. (2c) and
(2e) may correspond to classes different from those
identified in the past. Also Eq. (4) has not been
identified in the past. Notice that the transitions with
LGW Hamiltonians (2d), (2e), and (3b) do not satis-

fy the second Landau-Lifshitz rule, while the remain-

ing ones do.

VI. APPLICATIONS

A. Monolayer adsorption of atoms

In the usual lattice-gas model, '8 we assume that the
adsorbed atoms can be described only by the occupa-
tion numbers n( r ) =0, 1 where r denotes the site

I

positions. We assume a pattern of sites which re-
peats itself in two nonparallel directions, so the pat-
tern can be associated with a space group. The model
Hamiltonian is

H pN= ——X V( r —r ')n( r )n( r ')

—p, Xn(r)

The order-parameter components are

y, = X@,( r ) n( r )

where i labels the basis functions of the real irreduci-
ble representation in question.

%e introduce here the "modified lattice-gas
model, " in which some sites are more likely to be oc-
cupied than others because of the potential which the
substrate offers to the adatoms. One common exam-
ple'29 of this is adsorption on laminar halides or
(111) crystal faces of fcc or bcc crystals in which the
substrate atoms are in a close-packed triangular array.
In these cases a hexagonal lattice of sites is present at
the surface, but layers of substrate atoms below the
topmost make one half of the sites more likely for an
adsorbed atom to occupy than the other half. Figure
5 displays the symmetry of the "disordered" phase.
We will label the "dot" sublattice by A and the
"circle" sublattice by 8, so in this phase (n( r A))
W (( r B)). The model Hamiltonian becomes

]
PA+A pB+B 2 X VAA( A "A)n( A) n( r A)+2 $ VBB( B "B) ( B) ( r B)

+ X VAB(rA —rB)n(rA)n(rB) —pA gn(rA) —pB Xn(rs)
"A "B B

The chemical potentials p,~ & p, B incorporate the difference between the two types of sites. The space group Gp

is p3ml. Only the real irreducible representations ((k),A' j and ((nt), A ) (see Table II) can be realized in this
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FIG. 5. Structure of the disordered phase described in

Sec. VI A. In this disordered phase, the dot sites are more
likely to be occupied than the circle sites because of the sub-
strate potential. The space group associated with this struc-
ture is p3m1.

the continuum model reduces to the usual lattice-gas
model. This continuum model has the following ad-
vantages: it can be used to describe molecular ad-
sorption, and also it can be used to describe surface
reconstruction. In the next two sections we will in-

clude examples of how the continuum model applies
in these cases.

case. Allowed ordered structures in a continuous
transition are illustrated in Fig. 6. The order-parameter
components are

P, = X g~( r w) n ( r a) + g ( r a)n( r a)

Similar results hold for an arbitrary number of dif-
ferent types of sites A, B,C, . . . .

This modified lattice-gas model can easily be gen-
eralized into a continuum model. In this case the
model Hamiltonian is

H — dr p(r)n( r )

d r d r 'V( r —r ') p( r )p( r ')

—„dr p(r)p(r)

The order-parameter components become

drys(r)p(r)

Notice that p, ( r ) must be invariant under the ele-

ments of Go. The first two models are special cases
of this continuum model. For example, when

p( r ) = gn( r ~)8( r —r, )

B. Monolayer adsorption of molecules

The results of the Landau-Lifshitz theory in Sec. V
can easily be applied to order-disorder phase transi-
tions of molecular monolayer adsorption. First, if in
the high-temperature (disordered) phase only one
orientation of the molecule occurs for a fixed center
of mass, then the lattice-gas description can be used.
One can simply describe a molecule by its center of
mass, just as if it were an atom. For this case to be
realized, the point group of the adsorption site must
be a subset (or equal to) the point group of the
molecule. The following example of this case has
been treated earlier5: the adsorption of diatomic
molecules on a hexagonal substrated, where the
molecules occupy the "bridge sites" midway between
pairs of substrate atoms, is equivalent to the adsorp-
tion of atoms on a kagome lattice. Similarly, in the
case of acetylene on Ni(111)," the molecules occupy
the bridge sites of a p6mm lattice, as shown in- Fig. 7.
The equivalent lattice for this example is a hexagonal
lattice.

In other cases a molecule with a fixed center of
mass can orient itself in one of several equivalent but
different ways. The simple lattice-gas description
cannot be used in this case, if we describe the
molecules by their centers of mass only. It is easiest
to resort to the continuum description. %e will illus-
trate here the adsorption of benzene on (0001) gra-

o 4

~ 4

~ p

~ p

~ 4

~ 4

~ 4

~ p

~ p

~ p

4 p

~ 0

/
/

/ X /
e

FIG. 6. Structures which can occur in a continuous transi-
tion from the structure of Fig. 5. The real irreducible
representations are ((k),A') for (a) and ((m), A } for (b).

FIG. 7. Allowed locations of acetylene adsorbed on
Ni(111). The dots represent the nickel atoms of the top-
most substrate layer. The acetylene molecules occupy the
positions shown: the center of masses are midway between
the nickel atom (when projected on this plane) and the long
axes of the molecules are oriented as shown.
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C. Surface reconstruction

e ~ + ~

e s ~ o + 0

The results of the Landau-Lifshitz theory can also
be applied to surface reconstruction phase transitions.
Bak"' has discussed one method of applying the
Landau-Lifshitz theory to surface reconstruction. He
uses, as an order parameter, the vector

y;=X@,(r)u(r)

FIG. 8. Allowed projections of benzene on (1000) gra-

phite. The dots represent the carbon atoms of the topmost
substrate layer. The benzene molecules occupy the positions

shown. Each position is equally probable in the disordered

phase. The space group associated with this structure is

p6mm

where r denotes the position of a nonreconstructed
site and u is a displacement operator. If one treats
the displaced atoms as point particles, then the corre-
sponding ordering density is

p(r ) = $u( r')&( r —r')

phite. The benzene molecules are known to stand
up on the surface in a certain range of temperatures
and coverages. Assuming a two-dimensional descrip-
tion is sufficient, we need only consider the projec-
tion of the molecule on the surface, so our analysis
here could apply as well to a diatomic molecule lying
flat on a surface of the proper symmetry. Figure 8 il-

lustrates the equivalent orientations of the disordered
phase, each of which would be occupied with the
same probability. The structures which are allowed
in a continuous transition are displayed in Fig. 9, la-
beled by the corresponding real irreducible represen-
tations. (For simplicity we illustrate not the struc-
tures which would actually occur near the critical
point, but rather structures of the same symmetry as
those which would be found. ) Experiments have not
yet been performed to test the predictions of this
paragraph.

In the following paragraph we illustrate how to
describe surface reconstruction without resorting to
vector order parameters.

As an example, we analyze the second example
which Bak" considered, illustrated in Fig. 10. In
general we can write

(p( r, T)) = (ps( r, T)) +5(p( r, T))

where (p( r, T) ) is the mass density of the recon-
structed phase, (po( r, T) ) has the symmetry of Go

{p4mrrt in our example), and 8 (p( r, T) ) is a linear
combination of the basis functions of the real irredu-
cible representation(s) of Go. For our example only
one basis function is necessary if the atomic displace-
ment is sufficiently small; it is of the real irreducible
representation ((j),E } of p4mm (see Table II).
Since the basis function 5 (p( r, T) ) belongs to a sin-
gle real irreducible representation of Go, and this
representation is in Table II, the transition illustrated
may be a continuous one of the universality class of
the XYmodel with cubic anisotropy, as found by
Bak."

(a) (b)

(c)

FIG. 9. Structures with the same symmetries as those
which can occur in a continuous transition from the struc-
ture of Fig. 8. The real irreducible representations are (a)
((0),E2), (b) ((k),At }„(c)((k),A2}, and (d) ((m),At ).

FIG. 10. Example of surface reconstruction considered in
Sec. VI. In (a) the arrows indicate the direction in which
the atoms, denoted by the circles, are displaced. To lowest
order in the displacement, 5(p( r, T) ) has the symmetry of
(b), which is a basis function of the real irreducible
representation ((j),E }.



1490 CRAIG ROTTMAN

TABLE III. The energies associated with the possible nearest-neighbor interactions of the first

model in the Appendix.

State of the site
on sublattice 1

State of the site
on sublattice 2

Energy

Notice that the basis functions of 5(p( r, T) ), as
well as (po( r, T) ), change their functional form as
the temperature T changes. The Landau-Lifshitz
theory still applies when this happens since what is
important is the symmetry of the functions immedi-
ately above and below the transition. If we had used
the continuum model for atomic monolayer adsorp-
tion and included the random thermal vibrations of
the adatoms, the functional form of the appropriate
ordering densities in this case would change as T
changes since the adatoms would spend more time
away from the equilibrium positions as 1increases.

VII. CONCLUDING REMARKS

states, A, B, and C, are associated with each site.
The energies E associated with the nine possibilities
for a given pair of nearest neighbors are given in
Table III. When E2 = 63, this model reduces to the
three-state Potts model. The energy E can also be
written in terms of the variables $~, where i =1,2 la-

bels the sublattices, and s; = l(0, —I) if the site of
sublattice i is in the state A (B,C). Then

E(s~,s2) = a + b~s~ + b2s2 + c~s~' + c2s2

+ C3$]$2 + d) $& $2 +62$) $) + 8$] $2

=3 +Bsin (s~ —s2)+Ccos (s~ —s2)
. 2m 2m.

3 3

We hope that the investigation here will stimulate
continued experimental interest in systems which are
expected to exhibit the transitions discussed. Of spe-
cial interest are systems which we predict to be in the
possibly new universality classes of the LGW Hamil-
tonians (2c), (2e), and (4) of Sec. V. In the future
we expect to treat two-dimensional symmetry groups
which contain space groups as subgroups. We 'hope

to describe transitions in magnetic systems which
have time-reversal symmetry. We also hope to treat
coadsorption of two or more particles in which
particle-exchange symmetries play an essential role.

e

. ~

(a)

~ ~

~ ~

e

~
4

0
~ ~
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We have found a ferromagnetic discrete model
which yields the LGW Hamiltonian (2e) of Sec. V.3'

The model is composed of two interpenetrating
square sublattices, labeled 1 and 2. Each site in-

teracts with its four nearest neighbors only. The

1

FIG. 11. Ordered structures for
3

coverage in which the

order-disorder transition is characterized by LOW Hamil-

tonian (2e).



24 SYMMETRY CLASSIFICATION OF CONTINUOUS PHASE. . . 1491

TABLE IV. The real irreducible representations of the symmetries illustrated in Fig. 10 and

properties of the coefficients of the discrete Hamiltonians which would yield such symmetries.

Pattern from

Fig. 5

Space

group

Star

of k

Real small

representation
V

Ix I

Y

(a)
(b)
(c)
(d)
(e)

p3
p3
p3

p 31m
p6

(0 I

(1)
(1)
(1)
(oi

E
A

E
A1

E1

—1

1
—1

1

—1

—1
—1

—1
—1

—1

—1

1

—1

1

0
0
0
0

—1

where

1

bi = b2= T(e—2 —e3)

1

C) = C2 = —6) +
2

(f2+t3)
1

c3 = TE] 4 (6p+E3)

3
di = —d2= —„(e2—e3)

3 3
e =

2 6]
&

(fp+t3)
1.

A = —,(et+e2+e3)

1
(E2 63)

1C =
3 (2E] —6p —E3)

We have also found antiferromagnetic models

which can prove useful in predicting adsorbed mono-

layer transitions which are characterized by the LOW
Hamiltonian (2e). The patterns of the sites which a

particle can occupy are given in Fig. 11, along with

ordered structures for
3

coverage at T =0. In terms1

of the variables n; =0, 1, the discrete Hamiltonians
required are of the form

H —p, lV= VXn, nj+8' X n;n, +X X ntn~.
NN NNN 3NN

+Y Xn, n, pxn—, ,,
4NN

where "3NN" denotes third nearest neighbor, etc.
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