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Spin-dynamical calculations on one-dimensional systems have relied heavily on classical
(s = ~) theories, despite abundant evidence that quantum effects can be extremely important at
low temperatures. We present a new approach to the spin dynamics of the one-dimensional iso-

1
tropic s =

2
Heisenberg antiferromagnetic (HB AF) which does not involve the many-body

techniques usually employed. It is based on analytic Bethe ansatz calculations of excitation ener-
gies and densities of states combined with finite-chain calculations of matrix elements. An im-

portant feature of our method is the use of rigorous selection rules and the introduction of new
selection rules, which are valid for macroscopic systems in a magnetic field. We show that in

zero field the dynamical two-spin correlation function S„„(q,cu} at T =0 is governed by a two-

parameter continuum of spin-wave-type excitations. In nonzero field, the longitudinal com-
ponent S,.(q, ~) and the transverse components S„„(q,~) —= S„,(q, ~) behave quite differently
because they are dominated by different continua of excitations, The former is characterized by
a lowest excitation branch with a zero-frequency mode moving from the zone boundary (q = n)
towards the zone center (q =0) as the field increases, whereas the latter is characterized by a

lowest branch with a zero frequency mode moving from q =0 to m with increasing field. The
first part of our work features an approximate analytic expression for S„„(q,cu) at zero tem-

perature and in zero field. Although our expression is not rigorous, exact sum rules are violat-
ed only by a small amount, and good agreement exists with the few known exact results. Our
studies are extended to nonzero temperatures by placing major reliance on exact finite-chain
calculations. Our work was stimulated by recent neutron scattering experiments and is oriented

towards experimental comparisons. Our result for the s = —integrated intensity is in much
2

better agreement with neutron scattering data on CuC12 2N(C&D5) (CPC) than the

corresponding semiclassical result. Moreover, the spectral-weight distribution in S „(q, cv)

shows increasing asymmetry as q.—n, a quantum effect, again in agreement with more recent
neutron scattering data. The second part of our work deals with the effects of an applied mag-
netic field. We extend the analytic work of Ishimura and Shiba to obtain expressions for the
energies and densities of states of the various excitation continua. It is shown that these con-
tinua are expected to give rise to multiple structures in the scattering intensity. Our results ap-
pear to be in quantitative agreement with preliminary results of a neutron study in CPC in a
field of 70 kOe, revealing anomalous scattering intensity peaks. Our results repeatedly demon-
strate the inadequacy of classical spin-wave theory for this problem. They call for additional ex-
perirnental studies on quasi-one-dimensional antiferromagnets to examine other unusual and in-

teresting phenomena predicted by our approach.

I. DYNAMICS IN ZERO MAGNETIC FIELD

A. Introductory survey

Linear spin-wave theory applied to the one-
dimensional (1D) Heisenberg antiferromagnet

(HB AF) assumes that the system in its ground state
has staggered long-range order along the chains. '

This (semiclassical) theory is asserted to be valid to
order 1/s and therefore expected to be a good ap-
proximation for real systems with large spin quantum
numbers s. It takes into account small deviations
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from the aligned Neel state, and the single spin
waves are transverse (J.Z) excitations obeying the
well-known double-sine dispersion relation of Ander-
son

ecL(q) =2Js Isinq I

[J is the exchange constant of the Hamiltonian
(1.4)]. The contribution of these spin waves to the
low-temperature dynamics is reflected in a 8 peak at
the spin-wave frequency in the transverse structure
function [defined in Eq. (1.8)] S„„(q,~) =S~, (q, 01)
whereas the longitudinal component S,, (q, co) is
predicted to exhibit a logarithmic singularity at the
single spin-wave position. Inelastic neutron scatter-
ing studies on TMMC (tetramethyl ammonium man-
ganese trichloride) by Hutchings et al 'were . in good
agreement with Anderson's theory, and this was at-
tributed to the fact that the effective spin s = —, of
the manganese ion was sufficiently close to the classi-
cal limit s = ~. Another way. of stating the classical
result is to say that the Anderson spin-wave states
exhaust the sum rules for T =0, which implies that
no higher excited states can contribute to the spin
dynamics. The limitations of linear spin-wave theory
are, however, intrinsically evident by a basic result:
Due to the zero-point fluctuations the sublattice mag-
netization of the assumed Neel ground state is re-
duced by a certain amount. In 1D, where the fluc-
tuations are strongest, this spin reduction diverges
when calculated in a spin-wave approximation. Thus,
in 1D the symmetry-breaking Neel state is not a good
approximation to the AF ground state. In fact, it has
been proved that the ground state of the HB AF (for
arbitrary s) must be a singlet, i.e., a state which is ro-
tationally invariant in spin space.

Following the work on TMMC, speculation began
on the possible role of quantum effects in 1D AF
spin dynamics. For the s = —, HB AF (extreme

quantum limit) the lowest excited states are the
famous des Cloizeaux-Pearson (dCP) triplets (having
total spin s =1)," which exhibit the same double-
sine dispersion curve as the Anderson s = ~ states
(1.1), but with amplitude increased by a factor m/2.
Finite-chain calculations' as well as exact calcula-
tions by Yamada7 using the Bethe ansatz approach9
revealed the existence of an extended (two-param-
eter) continuum of excited triplet states whose lower
boundary in (q, a1) space is the dCP expression

slightly displaced upwards from the triplet continuum
for finite N, can be sho~n to become degenerate with
the triplet continuum in the thermodynamic limit
N ~.6 The lowest-lying excitations therefore be-
come fourfold degenerate, in agreement with analytic
work of Johnson and McCoy. ' Furthermore, as is
implicit in the results of Sec. II, there are double con-
tinua of excitations with total spin s ~= 2, 3, 4, . . . ,
which will, in the thermodynamic limit, also com-
pletely overlap with the triplet continuum as long as
sr//1/ ~p 11

Interest, therefore, arose as to whether excitations
higher in energy than the dCP spin-wave branch
wou1d contribute to the spin dynamics for the s =—

2

HB AF chain. Bonner et aI. , on the basis of numer-
ical calculations on a system of W =8 spins, showed
that higher-lying states in the triplet double continu-
um contributed a considerable amount to the
spectral-weight function S»( q, co) for q values close
to m, and conjectured that, in the limit N ~, an
appreciable "tail" of spectral weight should extend to
the upper boundary. Hohenberg and Brinkman'
used exact sum-rule calculations in order to answer
this question. However, they were only able to show
that for small q S»(q, co) should have most of its
~eight concentrated near the lo~er threshold, which
is the dCP energy.

Calculations on the 1D XY model, which behaves
very similarly to its HB counterpart but is far more
amenable to exact calculations, have provided valu-
able insight into 1D spectral-weight distribution at
low temperatures. A comprehensive paper by
Niemeijer'3 on the dynamics of the s = —XY chain

2

has been of considerable value to us in formulating
the approach to the Heisenberg spin dynamics con-
tained in this paper. The Neimeijer work, however,
is highly mathematical in approach, without discus-
sion or evaluation of important expressions. This
may explain why, in our opinion, this important pa-
per has not so far received the attention it deserves.
More explicit calculations of various dynamic quanti-
ties for the XY model at T =0 and finite tempera-
tures became available shortly after the work of
Niemeijer. "" Using the general expressions of
Niemeijer it is straightforward to calculate the T =0
longitudinal structure function S,.(q, 01) exactly. [For
the result see Eq. (1.35).] It is entirely governed by
a two-parameter continuum of excitations with lower
and upper boundaries

et(q) = J lsinq I

2

whereas its upper boundary is given by

(1.2a) .f"(q) = Jlstnq I

aP(q) = 2J I sinq/2 I

(1.3a)

(1.31 )

a2(q) =n Jlsinq/2I (1.2b)

It has been shown, however, that the low-lying HB
AF spectral excitations include a second double con-
tinuum of singlet (s =p) states, which, though

The spectral weight is finite at the lo~er boundary
[Eq. (1.3a)], and it increases towards the upper boun-
dary [Eq. (1.3b)], where it has a divergence. Thus,
the lower branch, which is often called specifically
"the spin-wave branch" does not dominate the low-
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8. Calculational details and selection rules

The Hamiltonian for the 1D HB AF is given by

N N

H =J X s j s j+t gpa~ gsj* . —
I~l I~1

(1.4)

temperature dynamics at all in this case. This strik-
ing result shows immediately the importance of
studying the higher excitations of the HB AF coun-
terpart.

Returning to the HB AF, some experimental evi-
dence for an asymmetrical line shape was apparent in

neutron scattering studies by Endoh et al. ' on the
quasi-ID s = —, HB AF compound CuClz 2N(C5D5)

1

(CPC). Such an asymmetry would be consistent with

a tail of spectral weight above a low-frequency cutoff
with dominating spectral weight, and would be incon-
sistent with classical spin-wave theory. At about the
same time, some theoretical evidence for the ex-
istence of an asymmetry appeared in the work of To-
dani and Kawasaki. " This work is a dynamical
Hartree-Fock calculation, which reproduces the static
properties of the Bulaevskii Hartree-Fock theory' in

the appropriate limit. The results, ho~ever, display
nonphysical features such as a gap in the dispersion
spectrum at q = n, as well as divergences in the
response function at finite temperatures. The au-
thors did not specifically relate their work to the
underlying spectral excitations. A Holstein-
Primakoff-type calculation by Mikeska, ' which
should be valid to order 1/s, yielded analytic expres-
sions for spin-correlation functions at low tempera-
tures for q = m. The Mikeska scattering function ex-
hibits a strong asymmetry for all s. However, on the
basis of his results, Mikeska conjectured that asym-
metry effects would only be experimentally observ-
able for -s = —, , where, of course, a semiclassical cal-

culation is least reliable.
In the remaining subsections of Sec. II we present

a fully quantum-mechanical study of the zero-
temperature spin dynamics: We use (exact) finite
chain calculations and apply selection rules (which
wiil be proven) in order to identify that class of states
which is relevant for the T =0 dynamics. We then
calculate exactly in the Bethe ansatz approach ener-
gies and density of states of these relevant excita-
tions. Finally, we use again finite chain calculations
(including extrapolations) in order to find an expres-
sion for their spectral weight. We end up with an
analytical expression for S„„(q,cu) which, though ap-

proximate, is in good agreement with various sum
rules as well as with exact calculations in the Lut-
tinger model. Finite temperature effects are dis-
cussed and comparison with low-T neutron scattering
experiments is highly encouraging for peak frequency
and line shape as well as integrated intensity.

The first term describes an isotropic AF (J ) 0) ex-
change interaction between nearest-neighbor spins s/
with quantum numbers s = —, . The Zeeman term

couples the system to a uniform magnetic field B in
the z direction. In our notation we shall use the re-
duced field /t = g pa8/J Per. iodic boundary condi-
tions (s~+t = s~) are applied. A related model to
which we shall make frequent reference because it al-
lows for exact solutions for many aspects of the
dynamics problem is the s = —1D XY model with

Ham iltonian

/V /V

H=J X(sjsj+j +sjsj~j ) gp, sB Xs~
/=1 /=1

(1.5)

When we deal with these models we should make use
of their symmetries. The following important opera-
tors commute with H: (i) the z component of the to-
tal spin s

S-= Xs~"
/=1

(ii) the translation operator 7

(1.6a)

Ts&"T+= s/" ~, p, =x,y, z (1.6b)

(iii) the magnitude of the total spin s (for the HB
AF only)

/V

s = Qsj +
/V /V

QSj + /Sf (1.6c)

All eigenstates ~h. ) of Mean therefore be character-
ized by useful quantum numbers:

(i)
sT sT. . . (1.7a)

where

s~= Ns, Ns —1, . . . , —Ns

(1.7b)

-2 Ts ~sr, ) =sr(sr+ I) ~s ) (1.7c)

with 0 ~ sr ~ Ns (for the HB AF only).
The quantity of interest for comparison with exper-

imentally measurable quantities is the dynamic two-

spin correlation function in (q, co) space S„„(q,co)

(which is also called the structure function or dynam-
ic form factor). It is the Fourier transform of the
time-dependent pair-correlation function
(s,"(t)s,l(0)). If the eigenvalues E„and the eigen-

functions
~ X) of H are known, this Fourier transform

can be written as

where k, the wave number of the state can have the
values

k = (2rr/N ) n, n =0, 1, . . . , N —1



1432 MULLER, THOMAS, BECK, AND BONNER 24

fa+ oo

S„„(q,Oi) = h' ' Xe'"") dt e'"'(si" (t)s, +n )
I, R

$e '() ls~(q)l)')()'ls"(-q)[) )8(~+E„—E,) .
I

(1.8)

Z is the partition function and

si'(q) =/ ' Xe "'si"
I

This is easily proved by making use of the translation
operator,

Due to the rotational symmetry in spin space, off-
diagonal components of S„,vanish,

I(s' ls~(q) ls' ) =0 (1.13c)

S„„(q,co) —=0 unless tL = v

and the two transverse components are identical

(1.10) if lsr —sr
l
&0, 1 or sr=s =s =0

s+-(q) = s'(q) + is'(q) (1.12)

Due to the reflection symmetry of the system all the
wave-number-dependent properties are necessarily
even functions with respect to q. Hence, for simpli-

city in the following we present results only for

q ~0. The number of nonvanishing terms in

S»(q, i0) represented by the double sum (1.8) is

considerably reduced by the use of selection rules,
which result from the symmetry properties of H as
discussed above:

I I

(sr ls. (q)ls ) =0 unless s, =s

(sr ls+-(q) ls ) =0 unless s =s +1

(1.13a)

These rules are easily derived from the properties of
the operators s (q), s+-(q)

(k ' ' ls~(q)lk'' ' ) ~8k,k+q+2~n

n =0, +1, +2, . . . , . (1.13b)

S,(q, io) =- S„„(q,i0)

A requirement for the isotropic HB AF in zero field
is that they are equal to the longitudinal component
S,.(q, cu). This is, as stated above, violated by
Anderson's two sublattice theory. Instead of S„, and

S„ it may be more convenient to evaluate S+ and
S + using the relations

This is a direct result of the Wigner-Eckart theorem
for the case of vector operators.

These selection rules are extremely valuable espe-
cially for T =0, where Eq. (1.8) reduces to a single
sum

S„„(q,o)) = $M„"5(0i+ EG —E„) (1.14)

EG is the energy of the ground state l 6), and the
squared matrix elements M," are given by

ug =2~l (G Is~(q) I) ) l' (1.15)

The selection rules tell us which classes of states
have nonzero matrix elements with the ground state
(whose character changes, of course, with the mag-
netic field), and thereby contribute to the spin
dynamics. This simplifies the dynamics problem con-
siderably. For the special case of the HB AF in zero
field, Eq. (1.13c) implies that since the zero-field
ground state is a singlet (s =0), the singlet continu-
um mentioned above cannot make any contribu-
tion, and neither can the low-lying states with
s ~=2, 3, . . . , . This feature was observed in previ-
ous finite-chain calculations lacking, however, an ex-
planation. The important result is that in this case
the spin dynamics are completely determined by the
triplet (s =1) excitations.

Figure 1 shows S,, (q, ~) for a cyclic chain of
N = 10 spins in a representation which is most suit-
able for the T =0 dynamics results for small systems.
We may call it the "spectral representation. " For
each value of the wave number q = (2vr/N) n,
n =0, 1, . . . , 5, S,, (q, cu) is a set of 8 functions ac-
cording to Eq. (1.14). The triangles denote energy
and wave number of the triplet excitations, and the
numbers represent the corresponding spectral weight
M&. The circle indicates the singlet ground state.
Figure 1 is strongly suggestive of the important point
we present and emphasize in this work. The dom-
inant contribution to the spin dynamics comes from
triplet states lying between the two solid lines which
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to the lower boundary e, (q), which affirms the im-
portance of the dCP spin-wave branch for the dynam-
tcs.

C. Approximate analytic expression for S„(q, co)

Using information derived from finite-chain
results, selection rules, and exact dispersion curves
described above, we have postulated2o-22 the follow-
ing analytic, albeit approximate, expression for the
dynamical correlation function in (q, Oi) space

[ 2 2( )]I/2

x ()(&u —e~(q))O(e&(q) —co), (1.16)

0 i

0 m /5 2m/5 5m/5 4~/5

where O(x) is the step function, and A is an impor-
tant constant which occurs repeatedly as we examine
various aspects of the physics of this problem. This
function diverges at the lower boundary

e~(q) = (~/2) J Isinq I

FIG. 1. Spectral representation of S..(q, ~) [=—S„(q,~)
=S „(q, ~)] at T =0 and h =0 for the 1D HB AF with

N =10. The circle denotes the singlet (» =0) ground state
and the triangles triplet (»T=1) excitations together with

their spectral weight M=„. The solid lines represent the lower

boundary 6](q) and upper boundary ~2(q) of the SWC.
The full symbols distinguish those S'+C states which can be
identified in the Bethe ansatz approach for finite N as well as
for JV oo.

correspond to the dispersion curves et(q) and e2(q)
of Eq. (1.2). In the thermodynamic limit (N —~)
these states form a two-parameter continuum
("spin-wave continuum, " SWC) in (q, ro) space with
boundaries e~(q) and e2(q). This feature is indicated
by our finite-chain calculations, which show with in-

creasing N more states appearing and closing up as
I/N both as a function of q and ~. However, we will

generally use N =10 for presentation purposes in this
paper. It is important to note that there are also trip-
let states lying above and outside the upper continu-
um boundary a, (q). However, their spectral weight
is observed to be lower by at least one order of mag-
nitude compared with the states of the SWC. Addi-
tional triplet states with even higher energy, which
are not shown in Fig. 1, have extremely small spec-
tral weight. The question of whether any spectral
weight persists in the thermodynamic limit for the
"triplet sea" outside the SWC is interesting and will

be considered later in this section. Finally, we ob-
serve in Fig. 1 that the matrix elements of the SWC
states increase in magnitude as the energy decreases

the upper cutoff energy. The expression (1.16) is
that part of the total correlation function S (q, ~)
which comes from the triplet SWC. The approxima-
tion results from the fact that triplet states from out-
side the SWC are ignored, We shall see later that the
deviation from the exact result must be small. Fig-
ure 2 shows expression (1.16) plotted in relation to
the upper and lower boundary of the SWC for vari-
ous fixed q. For small wave numbers the two boun-
daries are close together in ~. Hence the effects of
the tail become much more pronounced as q ap-
proaches the zone boundary. This feature is em-
phasized by finite-temperature rounding effects
sketched as dashed lines. The step height 5 at the
upper cutoff frequency depends on the constant 3:

vr I sin'q/2
(1.17)

Note that for 0 ( q ( Tr (1.16) has a square-root
divergence [ru —e~(q)] '~', whereas at q = 7r the
divergence is stronger. S (q, co) —co

' reflecting a

large integrated intensity at the zone boundary, as is

expected for an antiferromagnet. The integral

dq dcu S(q, cu) of Eq. (1.16) remains nonetheless
finite, as required by the sum rule (1.44) (see Sec.
I E).

Here we should include a remark on the "zone
boundary" in 1D AF systems, a term whose use is

not unique and which has therefore led to some con-

which is the dCP spin-wave frequency, and has a tail
out to

e, (q) = vr J Isin(q/2) I
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the value of the pioneering paper by Richards and
Carboni" on finite-chain spin dynamics is handi-
capped by the fact that they have chosen the wrong
wave number for comparing their calculations with
experimental results on TMMC.
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FIG. 2. Our conjecture for S.(q, cu) at T =0 and h =0
plotted as a function of «u for fixed q =(2m/10) n,

n =0, 1. . . , , 5. The top of the figure shows the boundaries
of the SWC which determine the cutoffs of S.„(q, cu). For
q =0 an exact calculation predicts zero spectral weight in

agreement with our conjecture. Finite temperature rounding
effects are sketched as dashed lines.

D. Bethe ansatz calculations and matrix elements

In this subsection we identify those excitations of
the finite system (in Fig. 1 drawn as full triangles)
which have dominant spectral weight, i.e., the SWC
states, with a special class of eigenstates in the Bethe
formalism. We show explicitly that in the thermo-
dynamic limit these states form a two parameter con-
tinuum between the dispersion branches et(q) and
e2(q) of Eqs. (1.2) as described qualitatively above.
This portion parallels earlier work of Yamada, ' How-
ever, we extend this work to derive new results for
the density of states in the SWC and for the matrix
elements between the ground state and the SWC ex-
citations. We calculate corresponding quantities for
the LY linear chain, and in Sec. II we shall show how
the Bethe ansatz approach may be used to find the
appropriate continuum boundaries in a nonzero mag-
netic field. A preliminary account of these Bethe an-
satz calculations has already been presented. '

The Bethe ansatz for the exact eigenfunctions con-
sists of a linear combination

qf = Xa(n), . . . , n„)@(nt, . . . , n„)

fusion and even to wrong interpretations of results.
The reason lies in the different translational invari-
ance of the classical and the quantum-mechanical AF
ground state. In the classical theory, where the
ground state is the ordered Neel state, the magnetic
unit cell is twice as large as the chemical unit cell.
Hence, taking the distance between neighboring spins
as unity, the Brillouin zone of the classical HB AF
extends to q = m/2. However, the quantum theory of
the 1D HB AF, which gives in any case a more accu-
rate description of the corresponding real quasi-1D
spin system, yields a ground state without true long-
range order. This means that the magnetic unit cell
is the same as the chemical one, and the Brillouin
zone clearly extends out to q = 7r rather than Tr/2.

This difference has direct consequences in quasielas-
tic neutron scattering. Whereas the classical theory
predicts a sharp Bragg peak at the "reciprocal-lattice
site" q = m due to the magnetic long-range order, the
quantum theory predicts a peak with finite width at
the "zone boundary" q = m, owing to the slow alge-
braic decay of the correlation function. As an unfor-
tunate consequence of this different nomenclature

of local basis vectors with reversed spins (with
respect to the ferromagnetic state) at lattice sites
n ~, . . . , n„and with coefficients of the form

I'

a(n, , . . . , n„) = /exp i Xk, n, + ', i X q~p, p, —p, ,j=~,j (/

(1.19)

2cot2 q'j/=cot
2 kj —cot

2 k/
1 1 1 (1.20a)

Nkj 2rrhj+ $='Pp, (1.20b)

The P; are integers confined to 0~ A. j «N —1, and
the choice of a set [ X, } determines an eigenstate of
the system; Having solved Eqs. (1.20) for k, , the
wave number and the energy of the corresponding

where the summation extends over all permutations
of the integers 1, 2, . . . , I' and p, is the image of j
under the pth permutation. The k, and the 'P, j obey
the coupled equations



QUANTUM SPIN DYNAMICS OF THE ANTIFERROMAGNETIC. . . 1435

eigenstate can be calculated through

I'

2
r

k= Xk, = —~ Xl, , (1.21)

E = —X (1 —cosk, ) + FF
j=l

(1.22)

where the constant FF is the energy of the ferromag-
netic state Er =N/4. The SWC excitations, in which
we are interested, belong to a class of eigenstates
(called "class C ") identified by sets [ X, }
(/ = 1, 2, . . . , r ) which are subject to the following
restrictions2:

allows for a distribution of the remaining A. j's into
three clusters without violating Eq. (1.23). Each
SWC state can therefore be characterized by the posi-
tions A. ] and A2 of the two possible holes. We shall
use quantum numbers q = (27r/N) ( Xt + X2) and

q„, =(27r/N)h, where q (taken modulo 2m) denotes
the total wave number (1.21) relative to that of the
ground state, and q„, denotes the different branches.
Solving the coupled equations (1.20) by the method
of des Cloizeaux and Pearson' or des Cloizeaux and
Gaudin'6 for the thermodynamic limit we obtain (for
q «0 and O~q„, ~q)

1 ~ Aj ~N —1 and Xj+] —A. ; «2 (1.23) &o„, (q ) = m J sin —cos ——
2 2 2

(1.27)

Ã
s = ——r

2
(1.24a)

The quantum number s~ of some multiplet is related
to the number r' of nonzero X, 's [satisfying Eq.
(1.23)] through

The special properties of the "class C" states are
discussed extensively by Griffiths. 24

Generally, the quantum number s ~ of a state is re-
lated to the number r of Xj's through

Details of the calculation are presented in Appen-
dixes A and B for the more general case with a mag-
netic field present. We see at once the substitution
of q„, =0 recovers the dCP spin-wave branch e~(q)
and q„, = q the upper boundary e2(q) of the SWC.

The class C of states for the HB AF can be mapped
into a corresponding class of states for the A'Y

model. ' An analogous calculation leads to SWC
states with energy (q «0 and 0 ~ q„, ~ q)

s = ——r
2

(1.24b) cu, (q) =2J sin+ cos +—
2 2 2

(1.28)

[A. }=(1,3, 5, . . . , N —1} (1.25)

According to Eq. (1.21) the ground state has wave
number k~ =0 for even N/2 and kG = 7r for odd
N/2. Huithen calculated its energy (for N ~), us-

ing the above equations" to obtain

EG = —N (ln2 ——)
1

4
(1.26)

The states belonging to the triplet (sr= 1) SWC can
systematically be generated by distributing (N/2 —I )
integers Xj in accordance with the above rules, for a
total of N(N +2)/8 states. The missing X generally

Actually, a set of A. j s which are all nonzero charac-
terizes that state of the multiplet for which s~= s~.

The remaining 2s components are generated by ad-

ding a number of r —r'(~2sr) integers h. ; =0 to the
same set of nonzero A. j s, The energies of such com-
ponents, of course, differ only in a magnetic field by
Zeeman splitting. In the Bethe ansatz calculations,
we will always consider the states with s =s, i.e.,
r = r' (These . facts are implicit in Refs. 4 and 24.)
For fixed r the energy of a state is lowest when the kj
cluster near the center of' the interval [0, 2'] In.
terms of the coupled equations (1.20) this implies
that the A. , cluster near the center of the interval
[O, N], subject to the constraint (1.23).

The prescription for the AF ground state, which is
a singlet (sr=0) for even N, corresponds to the set
of r = N/2 integers

M*„—= 2~}(G~s*(q) ~m~ )['= (1.29)

except at the upper boundary, where M'„=(2'/N).
This difference is negligible in the thermodynamic
limit. The matrix elements (1.29) can be evaluated
exactly in the fermion representation. Here, the
eigenstates contributing to S are identified as t~o
particle-hole excitations with spectral weights
M, =2'/N which are degenerate except at e2'(q). 2'

This leads to the same spectral weight distribution as
in Fig. 3 ~ The apparent difference in the number of
excitations is explained as follows. Since the two-fold
degeneracy involves states which have all quantum
numbers equal to each other due to symmetries, we
are free to choose an orthogonal basis within each

Again, substitution of q„, =0 and q yields the lower
and upper boundaries et"'(q) and e,'"'(q) of Eqs. (1.3).
Using the formulation it is also possible to investigate
analytically the finite system, The SWC states of the
XY model for % =10 are displayed in Fig. 3. Three
excitation branches are obtained, corresponding to
q„, = (2rr/10) m, m =1,3, 5, each containing as many
states as the rules (1.23) permit. Figure 3 shows
their wave numbers and energies with respect to the
ground state and their spectral weight M-„. Evidently,
relation (1.28) is exactly obeyed by the states of a
finite system using the appropriate labels m and n,

The squared matrix elements are the same for all
SWC states
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I I I I

/J Szz(q coj N = 10 h = 0 XY MODEL

Here

M-(q, cu) = =const4n
W

(1.32)

represents the squared matrix elements (a constant
for the XY model) and D(q, cu) is the density of
states in the SWC, defined by

1

D ( )
N drain'(q)

4m dq, „
(1.33)

Using Eq. (1.28) for cup(q) we obtain

0 '. -

0 1T/5 2&/5 5 &/5 4&/5

0'(a1 —eP( q) ) 0'(aP( q) —co)

[[am( ) ]2 ~2]1/2 (1.34)

two-dimensional subspace. In the fermion picture,
we are obviously led to a basis consisting of two
particle-hole excitations with equivalent spectral
weight M'„=2 /N2rin S (q, cu). In the Bethe formal-
ism, on the other hand, we are led to a different
choice, consisting of a SWC state with spectra weight
M'„42r/N =and a second state with zero spectral
weight which does not belong to class C. For com-
pleteness we should remark that in finite-chain calcu-
lations, where the Hamiltonian is diagonalized nu-
merically, the computer provides a more or less arbi-
trary basis consisting of two degenerate states with
spectral weight adding up to a total of 4rr/N (see Ref.
27). The SWC contribution to the dynamic correla-
tion function, which is defined for T = 0 according to
Eq. (1.14) as

S,(q, cu) = QM, „„S(ru—10„,(q)) (1.30)

can be written in the thermodynamic limit as a pro-
duct

S, (q, 01) —= M-(q, o))D(q, 01) (1.31)

I.IG. 3. Spectral representation of the longitudinal correla-
tion function S (q, co) at T =0 and h =0 for the 1 D XY
model with N =10. The full circle denotes the ground state
and the open circles the SWC excitations together with
their spectral weight M), . The solid lines represent the lower
boundary e+&'(q) and the upper boundary ~2.'(q) of the SC.
The dashed lines give the three branches (rn =1,3, 5).

a density of states diverging at the upper boundary of
the SWC. With Eqs. (1.32) and (1.34) the longitudi-
nal correlation function (1.31) for the XY model
takes the form

S (q, 10) =2 O(co —J sinq) 0(2J sin(q/2) —co)

[4J2sin2(q/2) ~2]1/2
I

(1.3S)

which is the exact result as is verified by evaluating
the formulas of Neimeijer. "

We attempt to treat the HB AF at T =0 in a simi-
lar way. The sets [h, , ] of the HB AF SWC are the
same as those for the XY model. Therefore, we
again expect to find three spectral branches
(m = 1, 3, 5) for N = 10. We refer back to Fig. I
which shows the HB AF SWC states (full triangles)
and compare with Fig. 3 for the XY model. There
are two important differences:

(i) Although it is clear that each SWC state belongs
to one of the three branches, the finite-chain excita-
tions follow the N ~ branches only approximately,
i.e., there is an appreciable finite-size effect for the
HB AF.

(ii) Some finite, albeit small, spectral weight ap-
pears well above the SWC. No such feature occurs
for the XY model.

In analogy to the XYcase we derive an exact ex-
pression for the density of states in the HB AF SWC
Eq. (1.27):

D(q, cu) = N O(10 —(2r/2) J Sinq) O(2r J Sin(q/2) —&o)

[2r2J2 stn2(q/2) ~2]1/2 (1.36)
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(1.37)

If we now make use of our conjectured analytic ex-
pression (1.16) for S (q, co), we obtain the following
analytic expression for the (squared) matrix elements

1/2
2A 7r vr~J'sin'(q/2) —co

M(q, co) =
N (u' —( m'/4) J' sin'q

I fl

D(q~jI
2m'Z

II

II

Il

II
II

I
I

The consistency and accuracy of our procedure is
featured in Fig. 4, which corresponds to Fig. 1, ex-
cept that the states of the triplet sea have been omit-
ted. The open triangles show the locations of the
SWC states for N =10, The solid circles represent
the locations of the same finite-N states derived from
the Bethe ansatz calculations by solving Eq. (1.37)
for cu and putting into the result the M;„„ for N =10,
It turns out that the best value of the constant A for
this purpose is 3 =1.

Evidently, the agreement is very good indeed, giv-

ing further demonstration of the basic soundness of
the approach. %'e believe this result for matrix ele-
ments of the dominant low-lying excitations to have
considerable significance, since this is the first
theoretical calculation of such an important property
of the HB AF.

In Fig. 5 we compare density-of-states functions

FINITE-CHAIN RESULT

~ ANALYTIC RESULT

0(
0 7r /5 2w/5 3~/5 4~/5

FIG. 4. SWC contributions to S. (q, cu) for the HB AF as

in Fig. 1. The open triangles denote the coordinates in

(q, 0J) space of the SWC excitations for W =10. The solid

circles represent the locations of the same finite-N states
derived from our analytic expression for the matrix ele-

ments (1.37) as described in the text.

I I

0 I

I

I I

I I

ll I I

2 3 0 I

+/J

I

I II

2 3 0 I 2 3

QJ/J g/J

FIG. 5. Frequency dependence at f'ixed q =4m/5 of three
important quantities: (a) normalized density of states in the
SWC (2m J/N)D(q. cv), (b) normalized matrix element ex-
pressions (N/2mA ) M(q, ~), (c) normalized dynamic corre-
lation function (J/A)S (q, au). The solid curves represent
the HB AF and the dashed curves the XV model, for which
the constant A is determined exactly to be A =2.

D(q, co), matrix-. element expressions M(q, co) and
correlation functions S. (q, co) in the thermodynamic
limit for both the XYand HB AF models, at zero
temperature, All functions are evaluated at
q =47r/5, which is close to rr. In Fig. 5(a), the solid
curve shows the exact (normalized) density of states
function (27rJ/N)D(q, cu) of Eq. (1.36) for the HB
AF SWC, which is a step function at the lower boun-
dary e!(q) and diverges at the upper boundary eq(q).
For comparison, we show (dashed) the corresponding
exact quantity for the XY model (1.34), which has
the same behavior, but now with boundaries e!""(q)
and eq'(q). In Fig. 5(b), are shown the normalized
matrix-element function (N/2m A ) M(q, co) for the
XY model (dashed) and the HB AF (solid curve).
For the XY model, for which A =2, the matrix ele-
ments are constant for all states within the SWC, and
hence the XY dynamical correlation function (J/A)
S. (q, 0!) [shown dashed in Fig. 5(c)] reflects the XY
density of states function, and diverges at the upper
boundary of the SWC. For the HB AF, on the other
hand, the matrix-element expression (N/2mA )
M(q, ~) [solid line in Fig. 5(b)]!s no longer con-
stant over the SWC, but diverges at the lower boun-
dary e!(q), and vanishes sufficiently rapidly to cancel
the density-of-states divergence, at the upper boun-
dary eq(q). Consequently, the dynamic correlation
function (J/A) S (q, ru) [solid curve in Fig. 5(c)]
behaves quite differently from its XY counterpart and
has a divergence at the lower boundary and a finite
step at the upper boundary, as discussed in Sec. I C.

It is very interesting, therefore, to conjecture the
behavior of S, (q, !0) I'or an anisotropic Heisenberg
XY model. Similar arguments to those just presented
suggest strongly S (q, 0!) should have a divergence at
both the lower and upper boundaries of the appropri-
ate anisotropic SAC, and therefore a double peak
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should be visible in appropriate neutron scattering
experiments for a 1D system of this type. A detailed
account will shortly be submitted for publication. '

It is related to a double commutator through

K„„(q)= ——([[H,s"(q)],s~( —q)]) (1.46)

E. Estimation of the constant A: sum rules

x„„(q)—= 2J u) 'S„„(q,o)) (1.38)

for the XY model we obtain

( ) I
l

I + sin(q/2)
2m J sin(q/2) I —sin(q/2)

(1.39)

For small q

x, (q) = + q'+1 1

m J 12' J

(q «0)

(1.40)

A variety of sum rules exist which govern the spin

dynamics of both the XY and HB AF models. For
the HB AF these sum rule calculations can be used
to demonstrate the rather good accuracy of our ap-
proximate result (1.16) and to evaluate the constant
A. In order to illustrate their consistency and their
relations to important static quantities we will apply
these sum rules first to the XY model where exact
results are known. Recalling the expression for the
XY longitudinal dynamic correlation function
S. (q, cu) or Eq. (1.35) we have the following sum
rules for T=0:

(i) The static susceptibility is related to S» by

where 0 is the Hamiltonian of the system under con-
sideration. For the XY model at T =0 this commuta-
tor (with p, =z) can be evaluated, yielding

K (q) = (EG/—IV) (1 —cosq) = —(I —cosq), (1.47)J

where EG = NJ/r—r is the ground-state energy. '9 The
same result is, of course, obtained by evaluating the
integral (1.45).

The sum rules (i) to (iii) were derived in a paper
by Hohenberg and Brinkman ]2, 3o Ho~e~e~ we
should mention at this stage that this work contains
two errors which can mislead those wishing to use
their sum-rule prescriptions. The first error is that
the factor ( —, ) in front of the double commutator

(1.46) is missing. Second, the "static susceptibility"
defined by the sum rule corresponding to Eq. (1.38)
is actually only half the thermodynamic susceptibility
in the limit q 0. Luckily, these errors do not influ-
ence the results because only ratios of the
corresponding quantities are discussed, where the two
missing factors cancel. However, these errors have
influenced our estimate of the constant A in Eq.
(1.16) in a preceding publication. 2O In the following
we will, therefore, reproduce these calculations—
corrected and in an extended fashion. "

Applying the sum rules (1.38), (1.42), and (1.45)
to our analytic expression (1.16) for the dynamic
correlation function of the HB AF

This result agrees with the uniform (q =0) suscepti-
bility derived thermodynamically by differentiation of
the magnetization with respect to the field

S (q, ru)=
(~' ——'rr'J' sin'q ) '"4

m'0 ~ ——Jsinq
2

x (0) =— —arcsin(h/J)d 1

dh vr
(1.41)

, A=O
X (3 7TJ sin

2
(1.48)

l„„(q)=—
J S»(q, o)) (1.42)

(ii) A second sum rule governs the static suscepti-
bility (integrated intensity):

yields the SWC results for the corresponding static
quantities.

(i) The static susceptibility becomes

For the XY model this yields

I (q)=
2n

The function l„„(q) itself satisfies the sum rule

(1.43)

(1.44)

x,.(q) =
m J sinq

(1.49)

The staggered susceptibility x,, (m) is infinite at
T =0, as is also the case for the XY model (1.39).
However, the divergence of the longitudinal suscepti-
biiity is stronger for the HB AF [X,, (q) —(7r —q) ']
than for the XYcase [x..(q) —~ln(rr —q) ~l.

(ii) The static correlation function is given by

which is, of course, obeyed by Eq. (1.43).
(iii) A further sum rule involves the first frequen-

cy moment:

I ( )
3

I
I+sin(q/2) ( 0) (I 50)

2 ( /2)
For small q

K„„(q)=—Jl AS„„(q, cu)
2m

(1.45) I (q) = -q (q «0)A

4n. (1.51)
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K (q) = —'AJ(1 —cosq) (1.52)

The results (1.49), (1.50), and (1.52) all contain
the constant A, which has yet to be determined expli-
citly. Knowing the exact result for the direct (ther-
modynamic) susceptibility, '4 22

x, (0)=
m J (1.53)

we take the appropriate limit of Eq. (1.49) to obtain

A=1 (1.54)

On the other hand K (q) may independently be
evaluated from the commutator (1.46), yielding for
the HB AF

Note that for q = vr, I. (q) has a logarithmic diver-
gence whereas in the XY model (1.43) it is linear in q
and therefore finite at the zone boundary.

(iii) Evaluating the first frequency moment yields

(1.50) in order to determine A. However, finite-
chain extrapolations for small q(=22r/lV) are con-
sistent with Eq. (1.51) indicating the value

A = 1.1 (1.57)

Finally application of sum rule (1.44) on Eq. (1.50)
yields

A = = 1.3469. . . (1.58)

(1.59)

This integral applied to Eq. (1.50) may conveniently
be divided into two parts. Evaluation of the first
part gives (denoting q" = rr —q)

where G =0.9159. . . is Catalan's constant.
Additional information on A may be obtained from

a study of the static correlation function in real space
2

Ia'+K

I (R)= e '" I (q)2n.

K:=(q) = —
2

(EG/Iq)(1 —cosq) (1.55) (R) = (—1)2t+t dq'cosq R ln sin
2'~ 2

where FG = N(l 2n———) is the ground-state ener-

gy.
'5 Comparison with Eq. (1.52) shows that the q

dependence is exactly reproduced by our SWC result
and gives

A (-1)'
4m R

(1.60)

A = —(2 ln2 —
—, ) = 1.1817. . . (1.56)

For the integrated intensity I..(q) there exist no ex-
act results which could directly be compared with Eq.

The second part can be expressed in terms of an in-

finite sum of powers of R ', plus a contribution
which is nonzero only for the autocorrelation func-
tion

I "'(R) = ( —1)"Jl dq'cosq "R ln 1 + cos q
2m2 2

t(2„1)! 2k f12) t 2»(22' 1)g
R 2» X (

—1)k+» —I

n =1 k.=n k(2k)!22k"

(1.61)

(1.62)

The B2&. are Bernoulli numbers. By studying this ex-
pression for special cases of R we can derive more
values for the constant A.

(i) R =0: The expression for A obtained here is

equivalent to the sum rule (1.44) on l, (q), and

hence gives us the value (1.58)

obtain a new value

A =1.4579. . .

(iii) R ~: The asymptotic behavior of Eq.
(1.61) for large R is

(1.65)

A =1.3469. . . . (1.63) I (R) = +0(R ')
4m R

(1.66)

(ii) R =1: For this case it is possible to evaluate
the integral (1.59) directly, avoiding the infinite

sum. " The result is

This reflects the strong short-range order of the anti-
ferromagnetic ground state. An extrapolation using
results of Bonner and Fisher indicates that

IE(1) =
2m'

(1.64)
A &1.45 (1.67)

But l, (1), the nearest-neighbor correlation function,
is proportional to the ground-state energy. Hence we

We have compiled the various results for A in Table
I.
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TABLE I. Determination of the constant A in Eq. (1.48)
by various sum rules. The first column denotes the
corresponding static quantities which are involved, The
second column indicates their relation to the dynamic quan-

tity S,.(q, 0)), and the last column gives the resulting value

for A.

Static
quantity

Relation to

S„(q, o))
Value of

constant A

x..(0)

I. (0)

EG /N

(l ~-1')

(5r ~r+R&

f do) GO q ~0

f do) q 0

f d~cu any q

d~ dq

des dq e'~R

1.1817

1.3469

Clearly, if our expression (1.48) for S„(q, cu) were
exact, all sum rules should yield the same value of

In principle, two effects can give rise to the
discrepancy: (i) The description of the contribution
of the SWC to S,, (q, co) by Eq. (1.48) is only approx-
imate. (ii) There exists a continuum of higher triplet
excitations ("triplet sea") which also contributes to
S (q, cu). We conjecture that this latter contribution
constitutes the main deviation from our approximate
description. Defining a kind of "average frequency"

(1.68)

implying that most of the spectral weight for small q
is concentrated near the lower threshold et(q)
= (Tr/2) J sinq. This result agrees with our numerical
extrapolations of the same quantity for finite chains. "

Since the neglected triplet-sea states have relatively
large energy, their effect (for a given q) is minimal
for the ru

' moment leading to the minimum value
A =1. Their influence becomes more important for
the cuo moment and maximal for the ru

' moment (al-
ways in the limit of small q). Apparently the relative
weight of the triplet-sea states increases with q,
becoming maximal at the zone boundary q = 7r. This
is clearly reflected in the last two rows of Table I.
The sum rule for ((sj)') averages the triplet-sea ef-
fect over the whole Brillouin zone and, therefore,
provides a larger constant A =1.3469 than the same
frequency moment for small q only (A = 1.1).
Furthermore, since the real-space correlation func-

Hohenberg and Brinkman, " by using exact values for
K (q) and X,.(0), show that

(1.69)

lion l,, (R) is dominated by the q = nmodes (espe-
cially for large R), it is expected to yield the largest
value of the constant A, as is the case. Hence, we
seem to have a consistent picture for the relative im-
portance of the dominant SWC contribution and the
small but finite contribution of the triplet sea. We
have also been able to determine the constant A in-
dependently of the various sum rules: By extrapola-
tion of finite-N matrix elements for q = m and
vr —(2m/W), using the expression (1.37),

(1.70)

In conclusion we should point out that, although A

cannot be determined uniquely, our expression
(1.48) is the first result for S„(q, co) of the HB AF
which can be related to sum rules and gives reason-
able results for all q.

We should at this point give some discussion of
these triplets whose presence is required to satisfy the
sum rules, but whose effect on the spin dynamics
does not seem to be very perceptible. They cannot
be characterized by our extension of des Cloizeaux
and Pearson's prescription for the Bethe ansatz
states. 4' The same is the case with the singlet con-
tinuum which becomes degenerate with the triplet
SWC in the thermodynamic limit. An extended
Yang-Sutherland prescription can accommodate
both singlet and triplet SWC's, but gives no account
of the triplet sea. At present, therefore, we have no
theoretical tool available for examining them. There
is currently some discussion on the role of bound
spin complexes and soliton excitations in the HB
AF. ' It is worth noting that it follows directly from
the prescription for the class C of Bethe ansatz
states' that the SWC states are clearly of a spin-wave
character. Hence, we may comment that at very low
temperatures, where the SWC contributions are ex-
pected to dominate the spin dynamics, neither bound
states nor solitons are likely to be observable in the
1D quantum Heisenberg antiferromagnet (1.4) using
current experimental (neutron scattering) techniques.
It might, however, be interesting to determine
whether the states of the triplet sea have any special
(non-spin-wave) character. Subsequent investiga-
tions in Sec. II show the presence of non-SWC states
with appreciable spectral weight near the critical field.
We have been able to identify such states as bound
states of two overturned spins which are familiar
from the case of the zero-field HB ferromagnet.

As a further comment we remark that Griffiths
studied thermodynamic properties of the special class
C of Bethe ansatz states and the results are available
as unpublished reports. However, as he pointed
out, they are too small in number to influence the
partition function in the thermodynamic limit, at least
for zero field. Now we realize that they dominate the
low-temperature spin dynamics in zero field, and also
in nonzero field as we shall see in Sec. II. It is in-
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teresting to complete our sum-rule discussion with a

brief account of the classical spin-wave results. The
fluctuations of the Neel ground state are described by
sharp spin waves perpendicular to the order parame-
ter as follows".

S,(q, co) =A'tan+8(co —J ~sinq ~) (1.71)

~here A' is another normalizing constant. Applica-
tion of sum rule (1.45) to Eq. (1.71) yields

K~(q) = (1-cosq)A'J
2m

(1.72)

which has the same q dependence as the quantum
result (1.55). This is due to the fact that the q

dependence of the double commutator in Eq. (1.46)
is independent of spin quantum number and is there-
fore also valid in the (classical) limit s = ~. The per-
pendicular static correlation function of the Neel
ground state is obtained by sum rule (1.42):

l, (q) = tan-q2' 2
(1.73a)

It diverges as (n —q) ' whereas our result (1.50) for
the s = —HB AF diverges more weakly as

~ln(7r —q) ~. Both curves are shown in Fig. 6 togeth-

&xx~cl

~xx p

5—
SWC RESULT

SEMICLASSICAL RESULT

)'FIN ITE-CHAIN RESULT

0
0 m/2 r

FIG. 6. Normalized q-dependent static correlation func-

tion for the HB AF at T =0. The solid line represents the
SWC result (1.50). It is in good agreement with exact calcu-

lations on cyclic chains containing N =8 (squares) and

N =10 (circles) spins. For comparison the result of the
two-sublattice theory (1.73a) is shown (dashed line). It de-

viates markedly from (1.50) for q ) m/2.

er with (exact) finite-chain results for N =8 and 10.
The latter clearly follow the S%'C curve. The perpen-
dicular static susceptibility

x,(q) = 1

27r J 1+cosq
(1.73b)

as obtained by sum rule (1.38), is identical to the
result for the entirely classical chain obtained by
means of the transfer operator technique. ' It has
a strong divergence of the type (n —q) ' which has
to be contrasted with the weaker divergence
(rr —q) ' of our SWC result (1.49) reflecting the iso-
tropy in spin space.

F. Comparison with other theories

Our approach, which leads to the (approximate)
analytic expression (1.48) for the dynamic correlation
function S»(q, co) at T =0, is completely new,
comprising the following advantages:

(I) It deals explicitly with spin excitations instead
of the rather abstract "particle" and "particle-hole"
excitations in the fermion representation. ""There-
fore the underlying physics is much more transparent
than in the fermion picture and is directly applicable
to the selection rules involving spin operators.

(2) In contrast to most (approximate) approach-
es,"""it conserves the rotational symmetry in

spin space, which is reflected in the equivalence of
longitudinal (llz) and transverse (zz) fluctuations.

(3) In contrast to semiclassical calculations"'9 it

treats the extreme s = —, quantum limit at the outset

and therefore reveals the quantum behavior in a fun-
damental way and not merely as a correction to clas-
sical behavior. This aspect is particularly important
for nonzero magnetic field (see Sec. II).

(4) A unique aspect of our approach is that it clear-
ly distinguishes between effects of density of states
and effects of matrix elements. This is very useful
for elucidating problems arising in theories which are
based on linearized dispersion relations in the fer-
mion picture and therefore suppress important
density-of-states effects.""'

(5) It employs an analytic expression for S»(q, co)

which is applicable (for all q) to the set of sum rules
presented in Sec. I E. These in turn give results for
q-dependent static quantities which are in good agree-
ment with the few available exact results despite
some uncertainty in the constant A due to the ap-
proximate character of Eq. (1.48). All other dynam-
ics calculations we are aware of have provided results
which are either not applicable'9 to the sum rules, ap-
plicable only for a limited range of q values ' or if ap-
plied yield results which are in striking contradiction
to exact results. '

(6) It reproduces, for any q, those characteristic
features which have been observed by neutron
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scattering experiments on appropriate quasi-1D com-
pounds at very low T. '

Nevertheless, we discuss here briefly three other
theoretical approaches to the T =0 dynamics which
preceded our calculations. Each one provides results
which show at least some aspects of the characteristic
behavior (1.48) as described above.

(i) Todani and Kawasaki" employed a Green's-
function approach in the fermion representation.
They treated the xx and yy part of the exchange in-

teraction exactly and the zz part, which transforms
into a fermion interaction, in the Hartree-Fock ap-
proximation. Their result for S,, (q, cu) is governed
by the "particle-hole" excitations which form a two-
parameter continuum equivalent to our SWC, with
boundaries similar to our et(q) and a2(q) of Eq.
(1.2). However, instead of a divergence at the lower
boundary and a tail out to e2(q) their result is a
smooth curve with a maximum somewhat above the
lower boundary and zeros at both boundaries, yield-
ing therefore an "effective dispersion curve" which
has a gap at q =m. The defect of their result is best
understood when we discuss it in relation to Fig. 5.
The density-of-states effect D(q, co), which is qualita-
tively the same for both the A'V model and the HB
AF is treated essentially exactly in their approach.
However, the matrix element effect M(q, ro), which
is strongly dependent on the zz-exchange interaction
appears to be only poorly approximated by the
Hartree-Fock method,

(ii) Mikeska' studied the HB AF dynamics by a
Holstein-Primakoff-type approach. In order to avoid
the problems for 10 magnets introduced by the ordi-
nary Holstein-Primakoff transformation, 44 which as-
sumes a preferred direction in spin space, Mikeska

introduces a representation of spin operators in terms
of boson operators which uses only rotationally in-
variant combinations. This accounts for the absence
of LRO. He obtains an analytic expression only for
q &m'.

1„„(q, ) (, [ c~ )], (
O(cu —e. (q))

(1.74)

ec"(q) is the classical spin-wave frequency (1.1) and
the exponent is given by o. =l —m '[s(s+1)] '~2.

since the result is predicted to be valid to order 1 js
the value of the exponent in the s = —, quantum lim-

it, o. =0.63, is in reasonably good agreement with our
u =0.5. Note that Eq. (1.74) has no upper cutoff
violating therefore at least sum rule (1.55). Mikeska
and Pesch extended this approach to smaller q by a
numerical investigation. " Their result predicts for
q ~ n j2 two peaks in S»(q, ru), one peak at ec"(q)
and a second one at some higher energy. However,
the existence of this second peak appears to us to be
in doubt, In the approach to be discussed next, ' a
similar phenomenon appears, which is clearly an un-
physical byproduct of the linearized dispersion rela-
tion.

(iii) As is well known, the 1D s =
2

HB AF Ham-

iltonian (1.4) can be mapped onto an interacting fer-
mion Hamiltonian by means of the Jordan-signer
transformation. The continuum limit (Luttinger
model) is obtained by linearizing the dispersion rela-
tion of the fermion excitations with respect to q. In
this limit the system can be treated exactly according
to the method of Luther and Peschel. 4' By Fourier
transforming their result for the time-dependent
pair-correlation function we obtain

&o5(ru —cq), q &0
[(o —c (m' —q) ] 0'(cu —c(vr —q)) q & m (1.75)

Here, c is a renormalized Fermi velocity which is as-
signed the value c = (rr j2)J in order to reproduce the
correct lower boundary of the S%C near q =0 and vr.

The correct value —of the exponent is obtained by

using Baxter model results. "' The linearized fermion
dispersion of the continuum approximation is clearly
echoed in Eq. (1.75) by linearized spin-wave disper-
sion curves. Therefore, we expect the results of this
approach to be valid only for small excitation ener-
gies co, which occur in the present case for q & 0 and
q & m. For small q the narrow SWC of Eq. (1.48)
and Fig. 2 is approximated by a 5 function. It nicely
reproduces the linear term in time static correlation
function (1.50) and the finite limit of the static sus-
ceptibility (1.49) for q 0. For q & 7r, (1.75) yields
the characteristic square-root behavior of Eq. (1.48) (1.76)

but with the lower boundary of the SAC replaced by
a straight line and without the important upper cut-
off. Although the validity of this approach is clearly
restricted to small frequencies, the two parts of Eq.
(1.75) are commonly written as a sum of two
terms, '~' and each term is given a physical meaning
throughout the whole Brillouin zone. It is this in-
terpretation which would lead to a double-peak pre-
diction for S,, (q, co) at small q and is referred to by
Mikeska and Pesch. " At the same time it leads to
results which are in serious violation of the sum rules
of Sec. II E. Its inadequacy is clearly demonstrated by
comparing the corresponding Luther-Peschel result
for the XY model"'

f(ug(o) —cq). q &0
S-..(, QJ) ~ O(.—.(--q», q&-,

i
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with the exact result (1.35). Here the Fermi velocity
is c = J. For q & 0 the narrow S%C is again well ap-
proximated by the 5 function, and for q & m the con-
tinuum result (1.76) reflects the step at the lower
boundary of the SWC. This second term in Eq.
(1.76) has obviously no physical meaning at small q.
Again the structure of S,, (q, co) at higher frequencies
is not reproduced at all in the Luttinger model.

G. Finite-temperature effects and

experimental comparisons

As noted in Sec. I A a tail of spectral weight above
the lower threshold energy q~(q) should give rise to
an asymmetry in the line shape of the corresponding
neutron scattering peaks, since the inelastic-scattering
cross section is proportional to S»(q, co). Such an

asymmetry is clearly evident in our SWC result
(1.48) for wave numbers near the zone boundary. It
is important to verify, however, that this asymmetry
effect extends to finite temperatures. Early neutron
scattering experiments by Endoh et al. ' were done at
a reduced temperature ka T/J =0.05 and more recent
experiments of Heilmann et al. at an even lower
one: ka T/J =0.045. Since our analytic calculations
are valid only for T =0, we must resort to finite-
chain calculations alone to study finite-temperature
dynamics. However, as we have demonstrated re-
peatedly in this section, finite-chain results are a very
good indicator of behavior in the thermodynamic lim-

it. The numerical results for S»(q, co) at finite Tare
most suitably presented as histograms at fixed q. The
corresponding interval width has to be chosen large
enough in order that finite-size effects are suppressed
but small enough in order that the physical structure
is not smeared out, This is possible for N =10 if the
temperature is not too low: ka T/J & 0.3. Hence in

Fig. 7 we have plotted spectral-weight histograms for
a variety of q values, and at the two reduced tem-
peratures ka T/J =0.35 and 0.5. It is evident in Fig.
7 that a rather appreciable amount of spectral weight
develops at energies below the lower edge q~(q) of
the S%C. For the higher temperature
(ka T/J =0.5), in fact, this part of S,, (q, co) with

ru ( qt(q), which we may call the "diffusive tail, " is

comparable in spectral weight to the part at
ru & q, (q), which represents the nonclassical asym-
metry effect or "quantum tail. " The occurrence of
both a diffusive tail and a quantum tail may explain
why the quantum asymmetry effect was hard to
detect unambiguously in the earlier experiments of
Endoh et al. ' and has only recently been confirmed
by further experiments. ' Figure 8 shows the tem-
perature dependence of the integrated intensity for
various q as obtained by finite-chain calculations with
N =8 and 10. The values for T =0 reflect the curve
of Fig. 6. The value for the q = e contribution,
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FIG, 10. Spin waves of the classical antiferromagnetic
chain. The arrows denote the ground-state configuration of
spins belonging to different sublattices. Note that the
dispersion curves are shown in the extended Brillouin zone
of the classical system.

current experimental interest, however, as a result of
very recent neutron scattering experiments on the
s = —linear HB AF CPC ' and on the s = —linear

2 2

HB AF TMMC, ' both in a field of 70 kOe. Active
experimental investigation is also underway of proton
spin-lattice relaxation times in the s = —linear HB

2

AF compounds CuSe04 SH20, CuSO4 SH20,
and o.-CuNSal, ' at low temperatures and over a
magnetic field range up to and larger than the antifer-
romagnetic critical field. The theoretical interpreta-
tion of these studies requires knowledge of dynamical
spin-correlation functions. Finally, a new family of
magnetoelastic s = —, linear HB AF systems has been

discovered, ' which display a spin-Peierls transition
from high-temperature uniform-chain behavior to a

low-temperature phase where the Heisenberg chains
are alternating or dimerized in character as a result of
an underlying lattice distortion. Such systems show
unusual phase behavior in an applied magnetic field,
and spin-dynamical experiments would provide valu-
able information on the nature of this behavior.

At present, very little theoretical information is
available on the low-temperature quantum spin

dynamics of the s = —HB AF in an applied magnetic

field. The predictions of the classical spin-wave
theory" are shown in Fig. 10. At h =0 the ground
state is of the Weel type with spins, say, parallel to
the z axis owing to an infinitesimal anisotropy field.

The spin-wave excitations with the sinelike dispersion
Eq. (1.1) are then perpendicular to z; i.e. , they contri-
bute only to S,„(q, co) and S„,. (q, ru). As soon as a
very small field is turned on, the classical AF under-
goes a transition to the spin-flop phase with spins
essentially perpendicular to the field. The rotational
symmetry with respect to the z axis is broken and the
spins lie, for example, in the xz plane. Now, the spin
waves predominantly contribute to S (q, cu) and
S„,(q, cu). With increasing h the dispersion spectrum
progressively distorts and develops a gap at q =0 for
the spin waves with magnetization perpendicular to
the field and at q = m for the spin waves with mag-
netization parallel to the field, respectively. The two
dispersion curves differ by a reflection about the axis
q = m/2. When the field reaches the critical field,
h = h, . =2, the system changes to the ferromagnetic
phase with all spins aligned parallel to the field,
Here, the ferromagnetic spin waves with the familiar
cosinelike dispersion contribute exclusively to
S,.„(q, co) and S..., (q, ao).

In the extreme quantum limit (s = —, ) the situation

is quite different. At h =0 the ground state is a

singlet. It is completely invariant under rotations in

spin space. Hence, the longitudinal and the
transverse fluctuations are equivalent (as discussed
extensively in Sec. I). When a small field is turned
on, although the quantum system does not change to
a spin-flop phase, the reduction of rotational sym-
metry gives rise, nevertheless, to anomalies in the
behavior at h )0, as we shall see later in this sec-
tion.

A transverse spin-wave dispersion curve for the
quantum chain in nonzero field was first obtained by
Pytte" who studied the s = —, HB AF in the fermion

representation and used the Hartree-Fock (Bulaev-
skii) approximation's for the fermion interaction. He
identified the transverse spin waves with single-
particle (or -hole) excitations. His results are in qual-
itative agreement with the results of a more recent
calculation by Ishimura and Shiba who used a Bethe
ansatz technique. In analogy with the work of des
Cloizeaux and Pearson4 they identified the transverse
spin waves with a special subclass of states in the
Bethe formalism. The energies of the states were
found by solving the Hulthen integral equation nu-

merically (see Appendix B). The important feature
that both approaches have in common is the ex-
istence of a zero-frequency mode which progressively
moves from the zone center (q =0) to the zone
boundary (q = m ) as h increases from zero to h,

This feature, which appears also in our own calcula-
tions (for the transverse excitations), means that the
extreme quantum limit of the HB AF is very dif-
ferent from the classical limit. This concerns not
only the details of dynamical correlation functions, as
demonstrated in-Sec. I, but even such a general
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feature as the lowest dispersion branch for nonzero h.
The physical relevance of this "spin-wave" branch,
i.e., its observability in dynamical experiments is,
however, not clarified by either of the two ap-
proaches. For this purpose it is necessary to know
the appropriate matrix elements between the ground
state and these spin-wave excitations. To the best of
our knowledge there are no such calculations for the
HB AF at nonzero h previous to this study, except
for some calculations of frequency moments of
dynamic correlation functions for q =0 by Puga.
Our aim in Sec. II is to provide a comprehensive dis-
cussion of the longitudinal and the transverse spin
dynamics of the S = —, linear HB AF in a uniform

magnetic field and at low temperatures, particularly at
T =0.

In Sec. II B we present the exact result for S,, (q, pt)
for the XYmodel at T =0 and arbitrary h, which is

highly suggestive for our study of the HB AF system.
In Sec. II C we derive the energies of various con-
tinua of states, which are expected to play an impor-
tant role in the T =0 dynamics. Calculational details
are placed in Appendixes A and B. New selection
rules, which are valid for macroscopic systems at

h WO are introduced and proved in Sec. II D. In
Secs, IIE and II F we discuss in detail the field
dependence of the T =0 longitudinal and transverse
structure functions. Section IIG, finally, deals with
experimental comparison and predicts characteristic
features which should be observable in future experi-
ments.

B. Exact result for S„(q,ao) of the
XY model at T =0 and h &0

In Sec. I D we have obtained the exact result for
S,, (q, pl) of the XY model at T =0 and h =0 Eq.
(1.35) by using the density of states of the relevant
excitations (1.34) as calculated in the Bethe formal-
ism and the corresponding matrix elements (1.29) as
obtained by finite-chain calculations, This approach
is readily generalized in order to obtain S„(q, pp) for
nonzero magnetic field exactly. A detailed discus-
sion will be published in connection with a study on
the anisotropic HB XY chain. Here, we give the
result for the T =0 time-dependent two-spin correla-
tion function as calculated by Niemeijer in the fer-
mion representation'

+n (1—o-) p+n a
(sj(t) sj+R) = (r'+ (2rr) '

dlit Jl dlit'exp[i R (lit+ lit' —rr) ] exp[it(cosllt —coslit')1 (2.1)

where

o = JV ' X (sf) = —arcsinh, 0 ~ o ~
2

1 1

/=1 7r
(2.2)

is the magnetization. The structure function is found immediately by Fourier transform, yielding
t

O(f2U(q) QJ}H(rp a2l (q))
[4J'sin'( /2) —N']' '

S..(q, ~) =2mo-'8(~)8 p+'
O(a, U(q) —r0) [O(c0 —&2L(q)) +O(pl —&tL(q)) ]

[4J2 sin2(q
m'o. ~ q ~ m (2.3)

where t t

atL(q) = 2J sill —cos + rraq
2 2

(2.4)

plU(q) =2Jsin+
2

(2.5)

pqL(q) =2Jsin —cos —+rra.q q
2 2

(2.6)

a2u(q) =~lL(q) (2.7)

As is sketched in Fig. 11, S,, (q, cp) is governed by
two continua of excitations. We shall denote the
upper continuum as (1) and the lower continuum as
(2). The upper continuum is confined to wave
numbers q ~2mo- and lies between the boundaries
elL(q) and alU(q) whereas the lower continuum with
boundaries 62L(q) and 6 (q)2Uextends over the ~2L(rr) =2J sinatra =h (2.8)

whole Brillouin zone. For q «2n o., elU(q) coincides
with atL(q). The lower continuum has zero-
frequency modes, at q =0 and q„=—rr(1 —2o.),
respectively. In the limit h 0, the lower continuum
vanishes and the upper continuum exhausts all the
spectral weight as described in Sec. I D. As the field
is increased the "soft mode" at q =

q~ moves away
from q = rr and reaches the zone center (q =0) at
the critical field h = h,. =1. At the same time the
upper continuum collapses into a single excitation at
q = m, co =2J, and the lower continuum reduces to a
single branch, both with negligible spectral weight.
At h «h, . the entire spectral weight of S,, (q, lp) is
contained in its static part 2mo'8(rp). The gap at
q = m is proportional to the magnetic field
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as q increases. For q ) 2mo- both continua contri-
bute. S„(q, co) now has a square-root divergence at
the high-frequency cutoff etU(q), and a step both at
the middle boundary e2L(q) = e2U(q) and the lowest
boundary e2L(q).

~r
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/ g /

r
/

If
I

+ 2rro I-
q&

m' q&'

q

FIG. 11. Sketch of the two continua of excitations which

govern the structure function S (q, 0)) of the XY model.
All symbols are explained in the text. The center of the
Brillouin zone is at q =0 and the zone boundary at q = vr,

Figure 12 shows expression (2.3) plotted in rela-
tion to the boundaries of the lower and upper contin-
uum for various fixed values of q and a-=0.2. For
small wave numbers, only the lower continuum con-
tributes. S,, (q, cu) is finite but has a sharp peak at
the upper boundary e2U(q) and develops a shoulder
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FIG. 12. S..(q, cu) for the A'Y model at T =0 and a-

=0.2 (h =0,588) plotted as a function of cv for fixed

q =(2m/10)n, n =0, :, . . . , 5. The top of the figure shows
the boundaries of the two continua contributing to S..(q, cv).

For q =0 there is no spectral weight except the static contri-
bution 2m cr25(cv) not shown in the figure.

C. Spin-wave continua of the HB AF
in applied field

In this subsection we extend our study of the exci-
tations of the HB AF and their relevance for the
zero-temperature dynamics to the case of a nonzero
applied field. For h ~0, we have to treat the longi-
tudinal fluctuations described by S (q, cu) and the
transverse fluctuations described by S,,-(q, rv)
—= S„„.(q, co) separately. In order to deal more easily
with the selection rules (1.13) we decompose the
transverse component into two parts according to
(1.12):

S„„(q,u ) =——'[S,(q, ~) +S, (q, ~)] (2.9)

A preliminary impression of the results may be
gained by recalling the selection rules (1.13). At
T =0, S„„(q,ru) can still be written in the form
(1.14). However, for h A 0 the ground state

I G) is
no longer a singlet (sr=0). The effect of the Zee-
man term in the Hamiltonian (1.4) is to progressively
depress states of larger total spin sT so that the
ground state becomes successively a state belonging
to a triplet Is =I, s =1) to a quintet Is =2,
s"=2), etc. For fields higher than the critical field

(h ) h, . =2) the ground state is ferromagnetic, i.e., it

has all spins lined up parallel to the field. Thus, the
ground state

I G) at arbitrary h «0 is identified as
the lowest state with quantum numbers
sr= [No-(h)], where [ ] are Gaussian brackets,
sr=sr, where o. =sr/N is obviously the T =0 mag-

netization. An impression of the behavior of the
various eigenstates with field is given by a prelim-

inary study of Bonner and Nagle. ' From an exami-
nation of the selection rules (1.13a) and (1.13c) we

observe the possibility of six different classes of states
contributing to S„„(q,ru) at T =0. According to Eq.
(1.15) S (q, ru) involves matrix elements of the type

(Gls (q) IX). Therefore, the only excited states
which can give nonvanishing contributions must be-

long to either of the two classes (i) [ [sr= N cr+1,
s =No) ] or (ii) {Isr=No., s, =No. ) }. Note that

IG) itself belongs to class (ii). Specifically, if IG) is

a triplet state Is =1, sr=1), all excited states IX)
with nonvanishing matrix elements (G Is-(q) I X) are
either also triplet states (with maximum sr) or
quintet states [sr=2, sr=1). For a quintet ground
state Isr=2, sr=2) the contributing excitations are
either quintet states also or septet states [s r =3,
sr=2), etc. S +(q, ~), on the other hand, involves,
according to Etl. (1.8), matrix elements of the type
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(G{s (q) {&),and S+ (q, cu) contains matrix ele-
ments of the type (G}s+(q)}h.). Thus, the selection
rules (1.13) tell us that the excitations which can
contribute to S +(q, ru) must belong to the class (iii)

{ }s r= N a. + I, sr= No. + I) },and those which can
contribute to S+ (q, co) must belong to one of the
three classes, (iv) { }s =No+I, s, =No 1) }—, (v)
{ { s r= N a. s r = N a —I ) }, or (vi) { } s

r = N a. —1,
s,r=Na —1) }. This diversity, which is summarized
in the first three columns of Table II, introduces con-
siderable complexity into our discussion of the h ~0
dynamics. In the limit h =0, where the ground state
is a singlet (sr=0), this complexity is reduced be-

. cause class (ii) is then excluded by selection rule
(1.13c), and the classes (v) and (vi) no longer exist,
leaving the class (i) states { }sr=1, s,r=0) } as the
only potential contributors to S„(q, &o) and the states
{{s"=I,sr=+I) } of classes (iii) and (iv) as the only
candidates for S„„(q,cu), yielding identical results
S„„(q,ru)

—= S,, (q, co) as must be the case for sym-
metry reasons. In the opposite limit h = h, ., the
ground state has quantum numbers s"=s,r= N/2 and
the classes (i), (iii), and (iv) are nonexistent. Thus,
the only contribution to S„(q, cu) comes from class
(ii), which in this limit contains only the ground
state. S +(q, co) vanishes in this limit whereas the
classes (v) and (vi) can still contribute to S+ (q, cu),
as discussed in detail below.

Our task now is to select among the six classes of
states those excitations which are expected to give
significant contributions to either component of the
structure function. Having identified such states we
shall calculate their energies and shall study their
spectral weights in order to be able to make specific
predictions for possible experiments and to give an
explanation for the few experimental results which
are already available. This approach has been very
successful and promising for the case A =0 discussed
extensively in Sec, I. There, we have found that the
class (i) of triplet states, which give the only contri-
butions to S,, (q, cu) at h =0, contain a subclass of
special states which can be identified in the frame-
work of Bethe's formalism. %e have shown that
they form a two-parameter continuum in (q, co) space
(called SWC) and that they exhaust almost all the
spectral weight of S„(q, cu). Such an approach is
much more difficult in the nonzero field case and the
results will correspondingly be limited. Encouraged
by the h =0 results, we can speculate that equivalent
subclasses of SWC states which appear for h =0 in all
six classes of Table II also play a major role in the
T =0 structure function. %e shall, therefore, first
identify the SWC states for h A 0 in the Bethe for-
malism and calculate their energies for the infinite
system (N = ~). In the next subsection, we shall
then study their role in the spectral weight distribu-
tion of S„„(q,co). It is useful to review here briefly
the classification of states of a given sr= N/2 —r sub-

space in the Bethe formalism [Eqs. (1.18)—(1.20)].
%e may concentrate on the case of minimum total
spin s~=s, , since states with s~=s, +ro, ro ) 0, are
obtained simply by adding ro zeros to the set {X, }
[see, e.g. , Eqs. (1.24a) and (1.24b)]. Of special im-
portance for the HB AF is the class C of "spin-wave
states" described by r real wave numbers k;, which
are described by sets { X, } satisfying 1 ~ X~ ~ X2~ A.„~N —1, A. ;+] —

A. , «2, of which there are
altogether

The remaining

N N

The special states out of class (i) (in the following
called SWC 1 states) with quantum number
s~= No-+1 are identified as "hole excitations" in A.

space, i.e., they are systematically generated by distrib-
uting N/2 —No—1 integers X, in accorda. nce with
the restrictions

N a- + 1 ~ A. , ~ N —N (r —1

and

P;+] —
A. , «2 (2.11)

These states correspond to the triplet SWC states in
the zero-field case. Again the rules (2.11) generally
allow for a distribution of the A. , 's into three clusters,

states of the s r = s,r = N/2 —r subspace contain one
or more bound spin complexes with complex wave
numbers (except for small wave numbers k & I/JN
where these states may also have real wave
numbers9).

Let us first concentrate on the longitudinal excita-
tions. As in the case of h =0 (see Sec. ID) we can
identify a number of excitations out of class (i) and
class (ii) which appear in finite-chain results for
S,, (q, co) to be "class C" states in Bethe's formalism.
These states can be traced back to the XY model,
where they correspond to those excitations which —in
the thermodynamic limit —form the two continua of
excitations sketched in Fig. 11. As discussed in the
preceding subsection these two continua entirely
govern S,, (q, co) of the XY model. In order to calcu-
late the energies of these states in the HB AF we
have to determine their configurations in the A. space
of Bethe's ansatz. The prescription for the ground
state, which, for a given h, has total spin s r= N/2 —r
corresponding to a magnetization o. =sr/N, has
changed from Eq. (1.25) for a. =0 to (assuming N
even), "
{X } = {N(r+ I,Na. +3, . . . , N —Nrr —I } . (2.10)
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producing the same two quantum numbers q (wave
number) with respect to the ground state and q
(branch) as for the case h =0. In addition to them a

quantum number q, related to the magnetization
through

This is sketched in Fig. 11, which was originally in-
tended for the XY model but which qualitatively ap-
plies also to the HB AF. SWC 2, on the other hand,
contains excitations with energies (for q ~ 0)

qs =2m'o (2.12) cu2,„(q) =2D ( h) sin + cos —+—'—
2 2 2 2

(2.19)

is needed in order to characterize the eigenstate
under consideration, i.e., its A.; configuration. The
special states out of class (ii) (called SWC 2 states),
which have the same quantum number s~= No- as
the ground state, are identified as "particle-hole exci-
tations" in A. space; i.e., they are systematically gen-
erated by distributing N/2 —Nrr —1 integers in accor-
dance with the restrictions

and quantum numbers q, q,„, and q, obeying the rules

qs —2~o 0 quan qs* q'm q ~ qs+ qm

(2.20)

This continuum, which is also sketched in Fig. 11,
extends over the whole Brillouin zone and is bound-
ed by the two dispersion curves (0 «.q «m)

N&+2 ~ X/ ~ N No —1, A/+&
—

A/ ~2 (2.i3) e2L(q) =2D(h) sin —cos —+rra(h), . (2.21)
2 2

plus an additional Po in the range
~2U(q) =~iL(q) . (2.22)

1~X,~N~, (2.14)

1

~t„,(q) =2D(h) sin —cos ————q g qs qin

2 2 2 2
(2.15)

and quantum numbers q (wave number), q,„
(branch), and q, (magnetization) satisfying the rules

q, = 2 rr rrq, . «q «, rr0«q, „«, q —q, (2.16)

SWC 1 is confined to wave numbers q ~2mo-
between the two boundaries (q, «q «co)

etr (q) =2D(h) sin+ cos ——7ra(h), (.2.17)
2 2

etU(q) =2D(h) sin q
2

(2. i g)

and a corresponding set obtained by reflection at
X = N/2. In the zero-field limit (a- = 0) Eq. (1.25) is
the only possible configuration satisfying Eqs. (2.13)
and (2.14). It represents the singlet ground state
(see Fig. I). For a. )0 the rules (2.13) generally al-

low for a distribution of the A. s into two clusters,
and the isolated Ao can be considered as a third clus-
ter. Thus, again we are able to characterize each of
these special class (ii) states by the three quantum
numbers q, q,„, q,

In Appendix A we present an exact calculation of
the excitation energies of both SWC 1 and SWC 2.
The evaluation of the resulting expressions depends
on the solution of an integral equation. A rigorous
solution of this integral equation has been found only
in the two limits h =0 and h = h,. =2. Therefore, we

present in Appendix 8 an approximate calculation for
intermediate fields, the results of which are now dis-
cussed. SWC 1 contains excitations with energies
(for q ~0)

All SWC boundaries are listed in columns 4 and 5 of
Table II. The prefactor D in all these dispersion rela-
tions depends on the field according to

r

D(h) = —+ —I ——m h vr

2 2 2
(2.23)

x,, (0) =
7r'

X::(h) cc Qh, —h

(2.25)

(2.26)

respectively, in accordance with the exact results of
Griffiths'" and Yang and Yang. "

The magnetization curve is shown as the dashed
line in Fig. 13. It is in excellent agreement with the
result of Griffiths'4 (shown as solid line) obtained by
numerical solution of an exact integral equation
(solid line). Equation (2.24) is appreciably superior
to the Bulaevskii approximation' of the same quanti-
ty (not shown in Fig. 13) which is given by the rela-
tion

2
A = 1+—cosvro. sine o. +2o.

7r
(2.27)

The latter does not reproduce the correct zero-field
uniform susceptibility. ' Very good agreement is ob-
tained also with (N =10) finite-chain results'

A further result provided by our approximate calcula-
tion of Appendix B is an analytic expression for the
T =0 magnetization curve

a. (h) = —arcsin
1 0 «h «2 . (2.24)

i —~/2+ ~/h
'

The uniform susceptibility X (h) which is given by
the derivative of Eq. (2.24) with respect to h, is finite
at zero field and diverges as h approaches the critical
field h, =2. We obtain in the limits h =0 and h,



24 QUANTUM SPIN DYNAMICS OF THE ANTIFERROMAGNETIC. . . 1451

0.5— EXACT NUMERICAL RESULT

0.4

0.3

0, 2

0.1

0.423
I.0I I.sex I.879

2 0

FIG. 13. T =0 magnetization curve for the HB AF. The
solid curve denotes the exact result (Griffiths) and the
dashed curve our analytic approximate result (2.23). The
step function represents the (N =10) finite-chain result as
described in the text. At the bottom of the figure we give
the special values of the field where the ground state
changes character. The number in brackets at each horizon-
tal portion is the total spin s ~= [N o-] of the corresponding
ground state,

represented as open circles in Fig. 13 ~ These results
are based on the midpoints of the horizontal and
vertical portions of the T =0 magnetization a(h),
which for a finite system is a step function. Such a

discontinuous dependence of cr on h is caused by the
fact that at each vertical step a level of total spin
s~+1 crosses the previous ground state with total
spin s~, on account of the Zeeman energy, and be-
comes the new ground state of the system, At each
step, therefore, the character of the field-dependent
excitations changes, as also do the corresponding
spectral weights. Of course, in the thermodynamic
limit, the magnetization steps shrink and their
number increases, thus giving rise to a smooth curve.
The character of the fie)d-dependent excitations like-
wise changes continuously with increasing field until
the critical field is reached. For fields above the criti-
cal field (h ~ h, . =2) the magnetization is saturated,
i.e., the ground state is ferromagnetic with all spins
aligned parallel to the field. Here, the T =0 statics
and dynamics are trivially known. "

Now let us study the class (iii) of transverse excita-
tions. Here, we can identify those excitations which
appear in finite-chain results for S +(q, co) with large
spectral weight again as "class C" states and, more-

over, as states belonging to the same multiplet as the
SWC 1 states of class (i). Consequently they form a
two-parameter continuum (called SWC 3) which has
the same shape as SAG 1 but which is depressed in
energy by an amount h with respect to SAC 1 owing
to the different Zeeman energy. SWC 1 states and
SWC 3 states differ in the Bethe formalism only by
different numbers of zeros appearing in the sets [ h. ; ]
(see Sec. ID). The boundaries of SWC 3 are includ-
ed in Table II.

Also the remaining classes (iv), (v), and (vi) con-
tain "class C" states. By inspection of the quantum
numbers in Table II and by studying the excitations
which appear in finite-chain results for 5+ (q, a&), we
find that there are SWC states from class (iv) which
belong to the same multiplets as the S%C 1 states
and the S%C 3 states. Hence, they form another
two-parameter continuum (called SWC 4) of the
same shape as SWC 1 (and SWC 3), but this time
raised in energy by an amount h with respect to SWC .

1 owing to the Zeeman splitting. Table II gives the
boundaries of S%C 4. Further, there are SWC states
out of class (v), which belong to the same multiplet
as the SWC 2 states. Obviously, they form in the
thermodynamic limit a two-parameter continuum
(called SWC 5) which is, due to the Zeeman splitting,
raised in energy by an amount h with respect to S%C
2. Its boundaries are also to be found in Table II,
Finally, class (vi) also contains SWC states which are
the same as the SWC 2 states appearing in S,, (q, cu)

at a slightly lower field (when the ground state has
total spin sr= [Na. —1]), and which belong to the
same multiplet as the SWC 4 states appearing in
S+ (q, cu) at a slightly higher field (when the ground
state has total spin sr= [Wo. + I]). Hence, these
states form, in the thermodynamic limit, a further
two-parameter continuum (called SWC 6). Their en-
ergies are the same as those of the SWC 2 states and
are depressed by an amount h with respect to the
S%C 5 states. Note, however, that SWC 2 excita-
tions with momentum transfer (relative to the
ground state) q appear in SWC 6 at q'=m —q. This
is due to the special property of the s = —, HB AF
that the ground state (for even N) as it changes in an
increasing field from s to s +1 alternates between a
k =0 state and a k = m state. This is why the lowest
SWC branch of the transverse structure function
(i.e., the lower boundary of SWC 6) is reversed with
respect to q = sr/2 compared with the lowest SWC
branch of the longitudinal structure function (i.e. , the
lower boundary of SWC 2). All these continuum
boundaries are given in Table II.

D. Selection rules for the "macroscopic system"

A major result following from the selection rules
(1.13) is the identification from among all the eigen-
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states of those six classes of excitations (summarized
in Table II) which contribute to either component of
the structure function. This information is also con-
tained in Fig. 14 which shows the classification of all

eigenstates according to their quantum numbers s ~

and s, . For fixed h the ground state belongs to the
class at the right-hand side of the row with
s"=Na(h). Hence, it moves with increasing field
from the bottom square along the diagonal to the top
right square. The arrows (solid or dashed) indicate
the possible contributions to S~„(q, &o) from various
classes of states according to the selection rules
(1.13a) and (1.13c), which are based on the Wigner-
Eckart theorem. In addition to these rules the
%igner-Eckart theorem provides relations between
matrix elements involving excited states out of dif-
ferent classes in the same row of Fig. 14. For h WO

and in the limit Ã ~ these relations develop into
additional selection rules which further reduce the
number of classes contributing to S~„(q, co). The
usefulness of the signer-Eckart theorem lies in the
fact that it separates matrix elements of the spin
operator (6 Is"(q) I A. ) in a Clebsch-Gordan coeffi-
cient and a reduced matrix element. Specifically, we
obtain for matrix elements between the ground state
IG) =—Is =No. , s,

=Ncaa,

u) and excitations out of
the classes (i) to (vi).

N/2

ST
Z

" Ne. -i No Nty+1 "N/2-i. N/2

(v)

N/2-1

(iv) ( i ) (iii)

(vi )

S Na.

{vi)g

( i V) (i) (iii)

FIG. 14. Rigorous selection rules and selection rules for
the macroscopic system. The figure shov s a classification of
the eigenstates according to their quantum numbers s ~and
s.~. The ground state for fixed h belongs to the class with

quantum numbers s ~=s„~=No-(h). The arrows (solid or
dashed) point to those classes of excitations which are al-

lowed by selection rules (1.13a) and (1.13c) to contribute to
either component of S,(q, co) at T =0. The dashed ar-

rows, in particular, point to those classes of excitations
which are excluded from contributing to the T =0 dynamics
by additional selection rules valid for 0 ( h & h, , in the limit

g ~oo.

I & G
I
s'(q)

I
N a + } N a. u'& I' = (2 N a + }) I (N a. u I Is (q) I IN a+ } u'& I' .

(ii) I (G I
s-(q)

I N a, N a, u') I' = N at{.(N a, ulls (q) I I
N cr, u') I'

(iii) I(G ls (q) INa +1, u')I'=(2Na +1)(2Na+2)I(Na. , ul.ls(q)llNa. +1, u')l2

( tv ) I ( G
I
s+ ( q) I

N a + I,N vr —I, u ')
I

2 = ~PI ( N a-, u
I I s ( q) I I

N a- + I, u' ) I

(v) l(Gls+(q)INcr, Na —},u')l2=2Nal(Na, IIu( s)IqIN au')I

(vi) l(Gls (q)INa —},Nvr —},u')I'=2Na(2Na —1)l(Na ulls(q)IINvr —},u')I'

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

0, denotes all additional quantum numbers characterizing a special state. From these equations we immediately
deduce the following relations between matrix elements involving excited states which belong to the same multi-
plet and which therefore appear in different components of S,(q, v0)

l«ls'(q)INa+}. Na, u')I'= l(Gls (q)INa+}.Na+}.u'&I'
2 Na+1 (2.34)

I (G Is'(q) IN a-+1,N a—1, u')I'=—.
(Na+1)(2Ncr+1)

—I(Gls (q)INa. +},Na+1, u')I' (2.35)

l(Gls+(q) INa. , Na —I, u')l2 =
I (G Is-(q) INa, Na)I2

No-
(2.36)

For a finite system these relations are useful but their
consequence is not very dramatic. For the infinite
system, however, they give rise to a singular behavior
of S„,(q, cu) in the limit cr 0. Let us first consider
relation (2.34). For a. =0 it confirms that the longi-
tudinal and the transverse structure functions must
be equivalent. At fixed o- & 0, on the other hand,

the longitudinal excitations out of class (i) are less
important than the corresponding transverse excita-
tions out of class (iii) by a factor of order (Na. ) '.
The transverse fluctuations for o- & 0 cannot increase
by a factor of order N o- with respect to the case
v =0, because their integrated intensity is limited by
sum rule (1.44). The necessary consequence of
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(NcrNcr~s , (q) ~sr, s.r ) 0

unless s =s
(2.37)

(Na. , Na. ~s-(q) ~sr, sr ) 0
r I

unless s ~ = s ~ = N o- + 1

(2.38)

Of course, these rules are only poorly satisfied by
finite-chain calculations. However, now that we are
aware of them, we can confidently study finite-chain
matrix elements in order to gain valuable insight into
the spectral weight distribution of S„„(q,cu).

E. S„(q, ao) of the HB AF at T 0 and h WO

In Figs. 15(a), 15(b), 15(c), and 15(d) we show
the spectral excitations contributing to S,, (q, cu) at
T =0 for a cyclic chain of N =10 spins. The four
plots belong to field ranges corresponding to the hor-
izontal step portions (1), (2), (3), and (4), respec-
tively, of Fig. 13. The lowest step (0), of course,
corresponds to the zero-field case, which has been
presented in Fig. 1 and extensively discussed in Sec.
IB. The ground state (always drawn at the bottom
left) has changed from an sr=0 singlet at h =0 to a
sr=1 state (triangle) at h =0.423. At higher fields it
subsequently changes to an s =2 state (square), an
sr=3 state (inverted triangle), an s =4 state (dia-
mond) and finally, at the critical field, to the fer-
romagnetic state with sr=N/2=5. This last field
range is not shown in Fig. 15. The solid lines repro-
duce the boundaries of SWC 1 and SWC 2 as calcu-
lated in Sec. II C by use of Bethe's formalism (see

(2.34), therefore, is that the longitudinal excitations
of class (i), which dominate S,, (q, co) at h =0, van-
ish, in the thermodynamic limit, for any nonzero
field. A similar anomaly results from Eq. (2.35) for
the transverse excitations of class (iv): They govern
S+ (q, ru) at It =0 but they vanish, in the limit

N ~, for any nonzero h. By the same argument
we conclude from Eq. (2.36) that the transverse exci-
tations of class (v) vanish in the thermodynamic limit

for fields 0 & h ~ h, An exception is the single
transverse excitation of class (v) at q =0. Its spectral
weight is related by Eq. (2.36) to the static contribu-
tion to S,, (q, ru). Since this static contribution be-
comes of macroscopic order at o- ~ 0, it does not
suppress the spectral weight of the corresponding
transverse excitation at q =0. Hence, the dashed ar-
rows in Fig. 14 denote those classes of excitations

. which only contribute for finite N to the T =0
dynamics of the HB AF at nonzero h.

In summary, we have found the following selection
rules for a macroscopic HB AF system at 0 & h ( h, .

and q &0, in addition to Eq. (1.13)

also Table II). The finite-chain SWC 1 states are
given by the full symbols within the continuum
boundaries e~L(q) and etU(q). At /t =0, these states
exhaust almost all the spectral weight of S,, (q, cu) for
the finite system as well as for the infinite system, as
has been shown in Sec. I. At h =0, they are still
present in a finite "nonmacroscopic" system,
although the SWC 1 is steadily shrinking in range and
losing spectral weight. For a macroscopic system,
however, we know from Eq. (2.37) that as soon as /t

becomes nonzero the SWC I states [together with all .

the other states of class (i)] immediately lose their
spectral weight in S,, (q, co). Thus, we are left with
the SWC 2 states including the other non-negligible
excitations out of class (ii). The finite-chain SWC 2

excitations including the ground state are shown by
the full symbols within the continuum boundaries,
62L(q) and e2U(q), throughout the sequence of Fig.
15. At /t =0, this continuum (except for the ground
state) is nonexistent. In the field range (1) [Fig.
15(a)] the SWC 2 states form a single branch with
spectral weight increasing as q approaches m. At
higher fields [Figs. 15(b) and 15(c)], further SWC 2

branches appear. The matrix elements of these exci-
tations clearly increase towards the lower boundary
e2L(q), which consists of two different branches,
separated by the zero-frequency mode q, . This indi-
cates that in the thermodynamic limit, when the
states close up as 1/N, the spectral weight distribution
in S (q, &o) has a divergence or a cusp at the lower
threshold e2L(q). A more quantitative description of
the expected singularities at both lower thresholds re-
quires further investigation. An extension of this ap-
proach which uses extrapolations of finite-N matrix
elements and expressions for infinite-N densities of
states derived in the Bethe formalism is in prepara-
tion. Further, S,, (q, ru) contains a zero-frequency
mode with vanishing spectral weight at q =0 and one
with large spectral weight at q = q„=27r(1 —a.).

Apart from the SWC 2 states there are other exci-
tations out of class (ii) with non-negligible spectral
weight, which we cannot account for in the above
prescription. They are drawn as open symbols. We
are already familiar with such states outside the SWC
for h =0, namely, the "triplet sea." At intermediate
fields [Figs. 15(a) and 15(b)], most of them appear
in the range of the SWC 1 states or somewhat above.
However, there seems to be a clear discontinuity in

spectral weight between SWC 2 excitations and the
other higher lying excitations [see, e.g. , Fig. 15(b)].
Therefore, we may speculate that also the upper
boundary of the SWC 2 gives rise to some structure
in the inelastic neutron scattering cross section. This
feature will be further analyzed in Sec. IIG. In Fig.
15(c), which corresponds to a field range already
close to the"critical field, we expect some of the exci-
tations to be identifiable with states close to the
ground state of the Heisenberg Ferromagnet (HB
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FIG. 15. (a) —{d) Spectral representation of S„(q,~) for the HB AF with%=10 at T=O and h in the ranges (1) to (4) of
Fig. 13. For each value of the wave number q = (2m/10) n, n =0, 1, . . . , 5, S„(q,co) is a sum of 5 functions according to Eq.
(1.14). In each plot the ground state, whose character changes with field, is drawn at q =0, eo =0. The different symbols indi-

cate the quantum numbers sT of the states: sT=1 (triangle), sT=2 (square), sT=3 (inverted triangle), sT=4 (diamond), sT=S
(star). Full symbols denote "class C" states and open symbols "anomalous" states as described in the text. The numbers
give the corresponding spectral weights Mz. Excitations not shown in the figures have spectral weights which are smaller by at
least one order of magnitude. The full lines represent the SWC boundaries as given in Table II for the appropriate field indicat-
ed at the top of each figure, The dashed line in c is the dispersion relation of bound spin complexes with two overturned spins
(see Ref. 27).
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FM) in zero field. Indeed, the single sr=3 excita-
tion near the top of the figure is a spin-wave bound
state of two overturned spins. In the finite system
there will be a whole branch of such bound states
present as indicated by the dashed line, The
relevance of the bound states for the AF dynamics
near the critical field is not yet clear and needs fur-
ther investigation. Figure 15(d) shows the situation
for the field range (4) of Fig. 13 closest to the critical
field. The ground state has s =4 and is identified as
a ferromagnetic spin wave of one overturned spin.
Together with the states of SWC 2 it forms the com-
plete (1-cosq)-like ferromagnetic spin-wave branch,
and the single surviving state in the shrinking SAC 1

with total spin s~=NS =5 is one component of the
ferromagnetic ground-state multiplet. There are no
other excitations which can contribute to S,, in this
field range, and the matrix elements of the remaining--.

excitations can be calculated exactly. 50 They all have
the same value M'„=2m/N, and will therefore have
negligible spectral weight in the thermodynamic limit.
In fact, if we examine the states along the lower
threshold ~2L(q) for the sequence of Figs. 15(a)
through 15(d), we observe that their spectral weight
continuously diminishes as the field increases. Hence
we conclude that the relative importance of the longi-
tudinal S,, fluctuations decreases as the critical field
is approached. In fact, the spectral weight in S,, is in-

creasingly absorbed by the static part at q =0, co =0.
For fields above the critical field corresponding to the
saturation magnetization o. =

2
[field range (5)] the

ground state is ferromagnetic with all spins aligned .

parallel to the z axis and the longitudinal fluctuations
are completely suppressed; i.e., the static part of
S,, (q, ~) exhausts all the spectral weight. We shall
later see that, by contrast, the relative importance of
the transverse S„, fluctuations steadily increases with
field.

As mentioned before for 0 ( h ( h, . some
"anomalous" states which do not belong to either
S%C but have non-negligible spectral ~eight appear
in S,, (q, co) in Figs. 15(a) to 15(c). There is a possi-
bility of describing at least some of these states in the
Bethe formalism by slightly changing the restrictions
(2.13) and (2.14) of the allowed h. , configurations for
the SWC 2 states. This would lead, in the thermo-
dynamic limit, to ne+ S% continua. Such new con-
tinua could possibly account for most of the
"anomalous" states appearing inside or near the
boundary of SWC 1. So far, a direct identification
with the N =0 "anomalous" states has not been pos-
sible. Hence, the nature of the "anomalous" states
and their relevance for S,, (q, ru) requires further
study.

The field dependence of the HB AF also gives us
an interesting insight into the convergence to the
thermodynamic limit of finite systems with even and
odd N. It may be observed from Fig. 1 that, as is

I I I

Szz{q,sj N 9 H 0 T=O HB AF

0.01

o 0,01

2'/9 4r/9 6r/9
t bqQ

Sr/9

FIG. 16. Spectral representation of S..(q, ao) for the HB
AF with N =9 at T =0 and h =0. The ground state is four-
fo)d degenerate and consists of two doublets (s ~= —) with

1

2

wave numbers differing by (vr —vr/N). Doublet states
{s = 2) are denoted by circles and quartet states {s~=—)y 1

2

by triangles. The numbers give the corresponding spectral
weights M„. The continuum boundaries are given in Table
II for an effective field h =0.496.

well known, the ground state (drawn at q =0, cu =0)
for an even-N system at h =0 is a singlet (sr=0).
The next higher state is a triplet (s =1) at q = m

with a small energy gap. This gap vanishes in the
thermodynamic limit as 1/N in accordance with the
dCP triplet dispersion curve (2.2a) which has a zero-
frequency mode at q = m. The form of the
corresponding dispersion curve for odd N is not so
familiar. ' The ground state at h =0 is fourfold de-
generate, consisting of two doublet (s = —) states

with wave numbers differing by (7r —m/N). Figurc
16 shows S,, (q, co) for N =9 at h =0. The excitation
spectrum consists of two continua: a lower continu-

y. 1

um of sr= —states (SWC 2) and an upper continu-

um of sr= —, states (SWC 1). Continuum boun-T 3

daries are drawn for an effective field h =0.496, ob-
tained by locating q„at the position of the zero-
frequency excitation. Hence the odd-N chain appears
to behave in all respects like an even-N chain in a
nonzero magnetic field. For N ~ the dCP disper-
sion (2.2a) of the lowest branch is regained, but not
in terms of a vanishing energy, but rather a vanishing
"q deviation" Aq = rr/N.
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F. S +(q, co) and S+ (q, co) of the HS AF
at T-Oand h &0

Figures 17(a), 17(b), and 17(c) show the spectral
excitations contributing to S +(q, ru) at T =0 for
N =10. The applied field is in the same ranges as in

Figs. 15(a), 15(b), and 15(c). The h =0 case, where
we have

S„(q, (o) = —,'S+ (q, cu) = —,'S +(q, cu)

is represented in Fig. 1. In accordance with the selec-
tion rules (1.13), the finite-chain results show that
only class (iii) excitations contribute to S. +(q, cu).
Moreover, they clearly show that the SWC 3 states
(shown as full symbols) have dominant spectral
weight. The solid lines represent the continuum
boundaries e3L(q) and e3U(q) as given in Table II.
The spectral weight strongly increases towards q = m

and towards the lower continuum boundary &3'(q).
Therefore, we expect that in the limit N
S +(q, ru) has a divergence or a cusp at the lower
boundary e3L(q), which should be experimentally ob-
servable. Thus, for 0 ~h ~h, . , S +(q, co) has a
zero-frequency mode with large spectral weight at
q = 7r and one with negligible spectral weight at

q =q, =2mo-. For A h, , the SWC 3 collapses into a

single excitation at co=0 and q =m. , which then van-
ishes for h ) h,

Note that there are again "anomalous" states ap-
pearing outside SWC 3 with non-negligible spectral
weight. Their role in a macroscopic system is unclear
so far and needs further investigation. Note further,
that the SWC 3 spectral weight distribution is the
same as in SWC I of Figs. 15(a), 15(b), and 15(c)
up to a factor 2(Na. + I) enhancing the SWC 3 spec-
tral weight in S +(q, cu) with respect to the SWC I
spectral weight in S„(q, cu).

By studying S+ (q, cu) we are faced with greater
complexity, since the selection rules now allow three
classes of excitations [(iv), (v), and (vi) j to contri-
bute to the structure function, at least for finite N.
In Figs. 18(a), 18(b), 18(c), 18(d), and 18(e) we
show the spectral excitations contributing to
S+ (q, cu) at T =0 for a cyclic chain of N =10 spins.
The five plots belong to the field ranges correspond-
ing to the horizontal step portions (I) to (5), respec-
tively, of Fig. 13. With increasing field the ground
state (at the bottom left in each plot) changes from a
singlet (sr=0, shown in Fig. I as circle) subsequent-
ly to states with increasing total spin, sr=1 (trian-
gle), sr=2 (square), sr=3 (inverted triangle), sr=4
(diamond), s =Ns =5 (star), until saturation is

I

e/J
4

S +(q, (d)
I

I I

N = IQ h = P 423+
I

4
S +(q, ~) N=IO

I

I

Ij = I.597+

0.01

(a) (b)

Q ~ e

QJ/J I

4 S,(q, ~) N=IO h = I.II6+

(c)

vO.OI
v 00I

Q ii

0 qs m/5 2v/5 37'/5 4&/5

p L~

0
I

«5 qs 2m/5 3r/5 4v/5

FIG. 17. (a) —{c)Spectral representation of —5 +(q, co) for the HB AF with N =10 at T =0 and h in the ranges (1) to (3) of
1

Fig. 13. The ground state which is a singlet (s =0) at h =0 changes subsequently to an s =1 state (triangle), an s =2 state
(square), and an s T=3 state (inverted triangle). In each of the three cases the allowed excitations have quantum numbers
s~=2, s~=3, and sT=4 (diamonds), respectively. Full symbols distinguish the SWC 3 excitations. The numbers give the
spectral weight M& of each excitation, according to Eq. (1.15). The solid lines represent the S%'C 3 boundaries ~3L(q) and
63U(q) for the infinite system as given in Table II. Excitations not shown in the figures have spectral weight which is smaller by
at least one order of magnitude.
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FIG. 18. (a) —(e) Spectral representation of —S (q, co) for the HB AF with N =10 and h in the ranges (1) to (5) of Fig. 12.
The quantum numbers of the excitations are characterized by different symbols: circles (s ~=0), triangles (s ~=1), squares
(s T=2), inverted triangles (s T=3), diamonds (s T=4), and stars (sT=5), In each plot the ground state, whose character
changes with field, is drawn at q =0, co =0. Full symbols distinguish the various SWC states. The numbers give the spectral
weights M), of each excitation, according to Eq. (1.15). The solid lines represent the various SC boundaries [except AU(q),
which is drawn as dotted line] as given in Table II. In (d), the dashed line denotes the dispersion relation of bound spin com-
plexes with two overturned spins (see Ref, 27) and the dot-dashed lines denote the boundaries of the ferromagnetic two-spin-
wave continuum (2.39). Excitations not shown in the figures have spectral weight which is smaller by at least one order of mag-
nitude.

reached at the critical field. The finite-chain SWC 4
states are sho~n as full symbols between the continu-
um boundaries e4L(q) and c4U(q) in the sequence of

'Fig. 18. At h =0 (shown in Fig. 1) these states dom-
inate S+ (q, cu), whereas we know from Eq. (2.38)
that for a macroscopic system at any nonzero h they
can be neglected in S+ (q, «u). By the same argu-
ment, the S%C 5 states which appear in the finite-

chain results for 0 & h ( h, as full symbols between
the boundaries eqL(q) and e5U(q) can be neglected
for a macroscopic system (except at q =0, as dis-
cussed above). The same is true for all the other ex-
citations out of class (iv) or (v) (shown as
corresponding open symbols). Hence, we are left
with the SAC 6 states including the other important
excitations out of class (vi). The SWC 6 excitations
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EFM ( q) = 2I( 1 —sinq/2 ) (2.39)

but the difference is small. It is interesting to note,
however, that, due to this difference, in the limit
h h, the dCP spin waves as calculated by Ishimura
and Shiba'9 for arbitrary h do not correspond to the

are given by the full symbols below e5L(q) [i.e. ,
roughly between 66L(q) and 66U(q)]. At h =0 SWC
6 does not exist. For N =10, a first complete branch
appears at h =1.116 and further branches at higher
fields. At the critical field SWC 6 collapses into the
single "ferromagnetic" spin-wave branch to be dis-
cussed below. Thus, we have obtained an inventory
of the lower-lying excitations which dominate
S+ (q, ru). However, the intensity pattern of these
SWC 6 excitations is more complicated than that in
S +(q, ~) and S„(q, co). Furthermore, a consider-'

able amount of spectral weight is distributed over
higher-lying excitations out of class (vi), again with a

complicated intensity pattern. Therefore, our calcula-
tions do not enable us to give a detailed prediction of
the behavior of S+ (q, cu) for a macroscopic system.
Nevertheless, the finite-chain matrix elements indi-
cate that S+ (q, co) has a maximum near the lower
boundary e6L, (q) of SWC 6. S+ (q, co) has two
zero-frequency modes, one at q = q, =2m'- and one
at q = m. The latter has much larger spectral weight.
Further, we observe that most of the spectral weight
of class (vi) excitations is (roughly) concentrated
below the e3U(q) boundary (except near the critical
field). Thus, we might expect to observe some struc-
ture in S+ (q, cu) at this boundary, too. Further
predictions based on the present results would be too
risky. In order to give more precise predictions of
the behavior of S+ (q, &o) we need information on
the energies of the higher-lying class (vi) excitations.

We have so far not been able to extract this infor-
mation from the Bethe formalism. For this reason, it

is of particular interest to study the situation close to
the critical field [Fig. 18(d)], where some exact
results are available. It sheds some light on the na-

ture of the states, which contribute to S~ (q, cu), but
which do not belong to the SWC 6 states. The exci-
tations which appear in S+ (q, cu) at h = h, . are a

subset of states which characterize the excitations of
the 1D s = —, HB FM at zero field. ' As is well

known, the excitations with s,r= iV/2 —2 of the HB
FM consist of two classes. One class is the two-
spin-wave continuum, and the other class consists of
bound spin complexes. Now, the excitations of Fig.
18(d) comprise all the states of the ferromagnetic
two-spin-wave continuum (the boundaries of which
are indicated by dot-dashed lines) and a single branch
of bound states (indicated as dashed line). Our
lowest SWC boundary e6r (q) does not coincide ex-
actly with the corresponding ferromagnetic two-spin-
wave continuum boundary

lowest lying excitations of the HB AF. Nevertheless,
the finite-chain matrix elements in Fig. 18(d) indicate
that for the spectral weight distribution in S+ (q, &o),

e61 (q) serves rather better as the lower boundary
than does eFM(q). Hence, we now know that the
Bethe ansatz class C prescription used extensively in

this work does not provide all the spin-wave states '

(by definition, it does not provide the bound states).
We may, therefore, assume that states occurring in

S„„(q,co) which are not "class C" states can
nevertheless be spin-wave states. We have also
learned that at least some of the excitations which ap-
pear in S„„(q,cu) have bound-state character. Clearly
the nature of all the excitations which do not belong
to any SWC but which contribute significantly to ei-
ther component of S~,(q, co) is a very interesting
question in need of further investigation.

When the critical field is finally reached, the com-
plexity of the behavior of S+ (q, cu) is drastically re-
duced [see Fig. 18(e)]. The ground state has
sr= W/2, i.e., all spins are lined up parallel to the
field, and the only excitations which can contribute to
S+ (q, co) are the ferromagnetic spin waves forming a

single branch. An exact calculation yields'

S+ (q, co) =2n5(o& —J(1+cosq)) (2.40)

in accordance with the finite-chain result for N =10.
Note the difference in spectral weight between the
longitudinal fluctuations at h = h, . [Fig. 15(d)] and
the transverse fluctuations at h = h, . [Fig. 18(e)].
Whereas in the case of S„(q, co), the matrix elements
of the states along the single branch have the same
constant value M'„=27r/N, and hence vanish in the
thermodynamic limit, the matrix elements of
S+ (q, ru) have the constant value M~+ =27r. Hence,
as noted in Sec. II E, it is the transverse dynamical
correlation function which dominates near and above
the critical field. . In fact, the (exactly calculated)
behavior of S, (q, co) at h ~ h, is identical to that
predicted by standard spin-wave theory. Thus, at
these values of applied field, no quantum effects are
expected.

G. Experimental comparison

Having described, theoretically, the behavior of the

longitudinal and transverse dynamic correlation func-
tion S,, (q, ru) and S„„(q,&u) of the HB AF in an ap-
plied magnetic field, we now discuss possible experi-
mental comparisons. The complex and unusual
features we have observed in the preceding discus-
sion, together with the striking differences between
the quantum system and the classical (s = ~) sys-

tem, suggest that experimental investigation using,
for example, neutron scattering, would be of consid-
erable interest. We sha11, therefore, discuss features
of our results suitable for experimental study, such as
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the relative location of peaks in the scattering intensi-
ty (spectral weight distribution) at low temperatures,
and the variation of integrated intensity (static corre-
lation function) as a function of q, also for low T.

The dramatic difference between S„,(q, co) and
S (q, co), especially in the vicinity of the critical field,
raises the question of the limiting behavior as h 0.
Since isotropy prevails at h =0,,

(d/J

I I I I I I I I I

SZZ(q cd} h = 0.2I

(a)

S (q, o)) = —S+ (q, ~) = —S +(q, o))

A~ = 2h sin'—
2

(2.41)

and it is of interest to see how the three components
approach the same zero-field structure. Figures
19(a) and 19(b) show, respectively, the important
features of S,, (q, cu) and S,„(q, cu) for a small re-
duced field of h =0.21, appropriate to 70 kOe neu-
tron scattering experiments on CPC. From these
figures it is clear how the various branches of the
S, (q, co) and S,„(q, ru) converge to the isotropic
h =0 limit.

Let us first consider the longitudinal correlations.
We have observed in Sec. II E that in SWC 2, which
dominates S,, (q, cv) at T =0 and h AO, the spectral
weight increases strongly towards the lower boundary
e2L(q). Therefore, we expect to see a distinct peak
in the intensity of scattered neutrons at sufficiently
low temperatures for energies corresponding to this
lowest boundary. At the special wave number
q„= rr(1 —2O-), this peak should shift down to zero
frequency. Our finite-chain matrix elements also in-

dicate that the spectral weight distribution in S,, (q, cu)

has a second discontinuity at a2U(q), which is the
upper boundary of SWC 2 and the lower bound of
excitations with considerably smaller spectral weight.
The observability of such a discontinuity may be
enhanced by the fact that the density of states at
a2U(q) is considerably iafgef than at 62L(q). This
gives some indication to expect some additional
structure at E2U(q) in the inelastic neutron scattering
cross section. Experimental resolution problems may
restrict the observation of the two discontinuities in

S, (q, cu) to wave numbers in the vicinity of the
zero-frequency mode q~, and the location of q„
depends, of course, on the magnitude of h. Figure
19(a) shows the two branches which are expected to
be of experimental relevance as solid lines.

Another possible experimental variable is the ener-

gy separation of the two discontinuities at e,L(q) and

e2U(q). This (and other possible experimentally in-

teresting quantities) may be obtained from the ap-

proximate analytic formulas of Sec. IIC. By using

Eqs. (2.21) and (2.22) for the expected discontinuity

positions we obtain, for a wave vector fixed in the

range 2n o.(h) ( q & 7r[1 —2o (h)], an energy split-

ting which is proportional to the field

~/2

q

h

I I I I I I I I I

(d/J SXX(q, (d) = Syy(q, (d) h = 0.2l

(b)

h
0

0 qs

FIG. . 19, S'+C boundaries of the excitations appearing (a)
in the longitudinal and (b) in the transverse structure func-
tion at the reduced field A =0.21 corresponding to 70 kOe in
CPC. The branches drawn as solid lines are predicted by
our theory to give rise to observable structures in the inelas-
tic neutron scattering cross section for h ~0 and at low T.
The positions A, B, C in (b) correspond to the special ener-
gies indicated by vertical lines in the scans of Fig. 20.
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This relation will break down, of course, for
q ) rr(1 —2a.), and for q «27rowe expect only in-

tensity in a small energy range. Recent neutron
scattering experiments on the s = —, linear antifer-

romagnet TMMC, hitherto regarded as an ideal classical

system, in fields up to 70 kOe have revealed"' spectra
with two peaks, the separation of which is roughly
proportional to h, which are not explainable in a sim-

ple classical spin-wave picture. " Our studies here on
the extreme quantum system suggest an explanation
of this feature observed in TMMC, in terms of resi-
dual quantum effects.

A further potential experimental variable is the en-
ergy gap at q = m which opens in S,, (q, cu) for h A 0.
It is proportional to A as is calculated in Eq. (Bg) and
illustrated in Fig. 15. Note that such features are
specific to S,, (q, co) for a single crystal. Hence,
powder or polycrystalline samples are not suitable for
studying these quantum spin dynamical effects at
h ~0, and the orientation of the crystal must be
carefully checked.

The transverse correlations have been studied in

Sec. IIF. There, we have found that in SWC 3,
which dominates S +(q, co) at T =0, the spectral
weight increases strongly towards the lower boundary
e3L(q) [see Fig. 17(a)]. We expect therefore that
(for low T) at this energy a clear intensity peak of
inelastically scattered neutrons should be observed.
At the upper boundary of e3U(q), of SWC 3, the
finite-chain matrix elements are much smaller. How-

ever, if we remember that the density of states in
SWC 3 diverges at e3U(q) (as it does for h =0), we

can assume that the spectral weight distribution in

S +(q, cu) of a macroscopic system has a second
discontinuity at e3U(q), which may also give rise to
some structure in the neutron scattering cross sec-
tion. S+ (q, cu), on the other hand, has a spectral
weight distribution which is considerably more com-
plex, Nevertheless, we have concluded in Sec. II F
that for the macroscopic system most of the spectral
weight will be concentrated within the two boundaries
c6L (q) and a5U(q). This may again lead at both
boundaries to discontinuities in the spectral ~eight
distribution of S+ (q, co), which should be observable
in the neutron scattering cross section. Note that
part of E6L(q) coincides with e3L(q). It will there-
fore even enhance the intensity peak expected at this
lowest SWC boundary. Figure 19(b) shows those
branches in S„„(q,co) which are expected to be exper-
imentally observable as solid lines.

A striking difference between S„„(q,&o) and

S,(q, cu) is in the behavior at q =0. For S„„(q,ru)

there is no weight associated with the ground state,
i,e., no static contribution. All the spectral weight at

q =0 is associated with a state situated at ru/J = h

above the ground state, belonging to the same multi-

plet. Hence, the experimental scattering intensity at
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FIG. 20. (a) —(c) Comparison of our theoretical predic-
tions for the peak positions in S~(q, ao} with corresponding
experimental data for CPC by Heilmann et al. (see Ref. 43).
The three scans at q = m/2 are for reduced fields h =0,
0.105, and 0.21, respectively. The vertical lines A, B, C
represent the special energies ~31(~/2) = ~6L(~/2),
64L (m/2), and e3U(n/2), respectively. For h =0.21 they
are denoted by the same letters as in Fig. 19.

very low temperatures should consist of a narrow
peak whose location is proportional to the field and
whose magnitude increases as h h, . This feature
should be easy to detect experimentally.

A further striking difference is the existence of a
"soft mode" at q~ =7r(1 —2a. ) in S„(q, co) and at

q, =2rra in S„„(q,co). Note that for h & —h, . the

longitudinal soft mode is much more intense than the
transverse. The behavior of these two soft modes
may be investigated separately by using a carefully
oriented single crystal. Presumably, if the crystal is

misoriented, or if a microcrystalline sample is used,
intensity at co =0 should appear both at q, and q„(for
h AO).

In Fig. 20, we compare our theory with low T ine-
lastic neutron scattering measurements on CPC at
zero field, 35 and 70 kOe, ' It appears likely, from
the account in Ref. 43, that the crystal orientation
with respect to the field is such that the data
represent the transverse correlations S„„(q,cu). The
vertical lines denoted 3, 8, and C correspond to the
energies of the special branches e3L(q) = e6L(q),



24 QUANTUM SPIN DYNAMICS OF THE ANTIFERROMAGNETIC. . . 1461

a4L (q), and e3U(q), where our theory predicts
discontinuities in the T =0 transverse structure func-
tion [see Fig. 19(b)]. At h =0, the maximum inten-
sity is expected to be close to the dCP energy of 3.63
meV shown as coinciding lines A, B in Fig. 20(a).
This is clearly observed in the experiment, whereas
the line C at 5.15 meV is just outside the range of
measurements. Figure 20(c) shows the results for
H = 70 kOe corresponding to the reduced field
h =0.21 used in Fig. 19. Here the experimental data
reveal two peaks, which can both be well understood
in the framework of our theory. The peak at lower
energy again corresponds to the dCP energy e3L(q)
= e6~(q) indicated by line A at 3.2 meV and the
peak at higher energy is clearly due to the com-
bined effect of the special energies e4L(q) and

a3U(q), lying close together at h = 0.21. They are in-

dicated as lines B and Cat 4.2 and 4.5 meV, respec-
tively. In Fig. 20(b), comparison is made with the
data at 35 kOe, yielding fair agreement with our
theory. At this field the lines 8 and C are more
separated and the data indicate in addition to the
peaks corresponding to lines A (3.45 meV) and B
(3.9 meV) a third additional, weak signal, corre-
sponding to the line C at 4.8 meV. Note, however,
that for this field the statistics are poorer because of
the shorter counting times. The agreement between
our theory and these preliminary data suggest that it
would be well worthwhile to repeat the experiment
with a larger crystal carefully oriented.

In Fig. 21 we show the integrated intensity l,, (q)
for T =0 and various values of h. The h =0 in-

tegrated intensity has already been discussed in Sec.
I E. It has been shown (see Fig. 6) that results for
N =10 are a very good approximation to our analytic
expression (1.50) for the infinite system, except for

q = vr, where the finite-chain result does not repro-
duce the logarithmic singularity. Accordingly, the
curves in Fig. 21 are for N =10. The striking feature
of the figure is that it show the relative importance of
the various modes. For A =0, the q =m mode is

dominant giving rise to a weak divergence in the in-

tegrated intensity (1.50) and a divergence in the
corresponding (staggered) susceptibility. As the field

increases, the dominant mode corresponds to

q =q~ = vr(1 —2o.), and the intensity remains almost
constant for q„& q ~ n. . However, the singularity at

q„ is apparently much weaker (a finite cusp) than the
singularity at q =m for h =0. Under the assumption
that the derivatives at the cusp remain finite for

~, one obtains a contribution to the correlation
function of the form

(sj sf + a ) —cos( q, R) /R'

q, = m(I —2(r)

Note also that as h increases, the maximum value at-
tained by the integrated intensity falls, and vanishes

I.O—
l
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FIG. 21. Finite-chain results (N =10) for the T =0 longi-
tudinal integrated intensity at various reduced fields (solid
lines). The dashed line is an interpolation for the special
field h =0.21 corresponding to H =70 kOe in CPC.

in the limit h h, On the other hand, the sum rule
(1.44) tells us that the total intensity is a constant in-

dependent of the field. The remainder of the intensi-

ty, not sho~n in Fig. 21, appears as a 5 function at
co=0 and q =0 and grows as the field increases. It is

indicated in Fig. 15 as the squared diagonal matrix
element

MG = 27r[ (G )
s*(0) ) 6] ) = 27r rr

i.e., as the spectral weight of the (field-dependent)
ground state itself. It is therefore a static quantity
and is omitted from Fig. 21. Of course, it shows up
as magnetic Bragg peak in elastic neutron scattering.
A further interesting comment concerns the singular-
ity. The fact that the logarithmic divergence at h =0
seems to transform into a finite cusp at h & 0 indi-

cates that the exponent —,
'

in the expression (1.16)
for S, (q, co) at h =0 becomes smaller in a (so far
unknown) expression at h AO no longer leading to a

divergence of the integrated intensity near the zero-
frequency mode q, . This interesting feature needs
further investigation.

Finally, in Fig. 21, the dashed curve is the estimat-
ed intensity curve for CPC (with a critical field
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we have so far not been able to condense this infor-
mation into an analytic expression for the T =0
structure function.

Features of particular interest in our work are the
following: (i) The excitations which dominate the
T =0 dynamics are distributed within two-parameter
continua rather than along single dispersion branches;
(ii) the density of states and the matrix elements of
those excitations which govern the dynamics at T =0
and h =0 are such that they give rise to an asym-
metric shape of the structure function; (iii) for jt &0
there are striking differences between the longitudi-
nal and the transverse correlations, both involving
different continua of excitations; (iv) soft modes,
whose positions in q are field dependent, appear in

both S,, (q, cu) and S„„(q,cu), but in different regions
of the Brillouin zone; (v) with increasing field, the
longitudinal fluctuations are more and more
suppressed, whereas the transverse fluctuations be-
come more important. - In all these aspects we ob-
serve considerable qualitative deviations from the
predictions of standard spin-wave theory, which turns
out not to be applicable to this problem.

The reason that our calculations are not exact is

that they neglect a class of states which are not
describable by the special Bethe ansatz prescription
(SWC) used in this paper. Their spectral weight is

fairly small, but nonvanishing in the thermodynamic
limit. Some interesting information is available on
states of this type near the critical field, which calls
for further investigation into their nature for all

fields.
This work was inspired by recent neutron scattering

studies on the quasi-1D antiferromagnets CPC and
TMMC. Our theory explains existing experimental
observations on CPC both qualitatively and quantita-
tively. Specifically, it explains an asymmetry in the
zero-field scattering line shape, it agrees quantitative-
ly with the low-temperature integrated intensity (un-
like a semiclassical theory), and it predicts the ex-
istence and location of multiple structures in the
scattering intensity for h AO. Our theory goes on to
describe additional effects susceptible to future exper-
imental investigation, such as differences between
S (q, ru) and S„„(q,co), l,, (q) and l„„(q) at h A 0,
various features of S,, and S „which are simply relat-
ed to the magnetic field, e.g. , soft-mode locations and

energy relations between scattering peaks, and other
prominent features of the dynamical correlation func-
tions.
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APPENDIX A: GROUND-STATE ENERGY AND SWC
EXCITATION ENERGIES IN HULTHEN'S NOTATION

Here we evaluate the energies of the eigenstates in

the limit of a very large system (N ~). For this
purpose it is necessary to replace the discrete indices
j in Bethe's equations (1.20) to (1.22) by a continu-
ous variable x. Hulthen" introduced such a transfor-
mation which he used to calculate the ground-state
energy for h =0. Several people, applied this
procedure to the calculation of other quantities.
Here, we use the same notation in order to calculate
exact expressions for the energies of the SWC states
at arbitrary h. In Appendix B we present an approxi-
mate analytic evaluation of these expressions. It is
exact in the two limits h =0 and h = h, . =2.

1. Ground state in an applied field

In the limit X ~, Eqs. (1.20) and (1.22) for the
ground state in an applied field are transformed into'

2 cot
2 P(x,y) =cot

2
k (x) —cot —,k (y),

1 1 1

1 —rj.

k (x) =2rrx+ —,
'

J dy y(x,y)

t 1 —o-

EG ——, N J~ dx—[cosk(x)—I] + EF

(AI)

(A2)

(A3)

where the continuous variable x replaces the index j.
The functions k (x) and P(x,y) are defined in the
range 0 ~x,y ~1, but in order to calculate EG it is
sufficient to know them in the range o- ~x,y
~1 —o.. By eliminating P in Eq. (A2), differentiat-
ing the result with respect to k, and substituting

( = cot —k (x), f~(() =—I dx
(A4)

with

the coupled Eqs. (Al) and (A2) transform into the
linear integral equation

W+rx

JG($) =go(4) — dye(4 —rt)fG(rt), (AS)

We are happy to thank Ian Heilman for several dis-
cussions and communications, Gen Shirane, John
Axe, and Marcos Puga for stimulating discussions,

g, (g) =—,, A(g-~) =—2 1 2 1

m I +$2 m 4+((—q)'

(A6)
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and where n is related to o- through
ra+a

dffG(4)

Once the solution fG(g) of Eq. (AS) is found it is

straightforward to calculate the ground-state energy

The same transformations as above with f] replacing
fG in Eq. (A4) lead for these states to

/+a
f, (f) =g, (P) —

Jl drtK(P —g) f (tq), (A16)

with

NEG(o) = ——n' Jl dg gG($),fG(g) + EF, (A8)

and all related thermodynamic properties. The in-
tegral equation (AS) is readily solved for two special
cases:

(i) at zero field (o.=0, n = ~) it is solved by
Fourier transform, yielding

and

~g(4) =gl(g) —gg(()
4 1 4

~N 4+(g —g, )' ~N 4+(g —g, )'

cot,„(q) =—Et,„(q) —FG

fG(f) =
,—, sech —g (A9)

N ++a
d & g&(g) [f,(g) .f, (C)]—

fG(~) =gG(~) (Alo)

The ground-state energy in these two limits takes the
values

EG(0) = —N(ln2 ——), EG( —) =FF = N. (A—ll)

For intermediate fields (0 & a. (
~

) Eq. (AS) has

been solved numerically. ' ' In Appendix B we
present an approximate analytic solution.

(ii) at the critical field (o.= 2, u=0) its solution is

trivially given by

+ [g.(C)+gG(C, )l . (A18)

Equation (A16) can be formally solved by the resol-
vent R

ft(g) =gt(() —Jt d7) R ((—7))gt(q), (A19)

which depends on the integral kernel E according to

R (g —() = K ((—() —„drt K (g —g) R (g —g)

(A2o)

If we set for the solution ft(g) =fG($) + hf1 (g), ,

Eq. (A19) yields

2. Spin-vrave continuum 1 Aft(() =—R (g —gt) +—R (g —g2)
. 2 2

N N
(A21)

The states of the SWC 1 are characterized by sets
of A; obeying the rules (2.11). In order to account
for the gaps between the A. , clusters we have to alter
Eqs. (A2) and (A3) as follows

I 1 —o.
1

k (x) = 2mx +—
J dy P(x,y) ——Q(x, xt)

tT jV

——y(x, xp)
1

jV

r]
Ei,„(q) = EF+

2
N dx [cosk (x) —1]

(A12)

—[cosk (x1 ) —1]

[cosk (x2) I ] (A13)
The gap positions xi, x2, are related to the quantum
numbers q, q,„, q, of the SWC 1 excitations through

and for the excitation energies we obtain

t,.(~) = [f.(~t)+.f.(&2)] (A22)

The relation between gt, g2 and the quantum
numbers q, q,„determined by x], x2 through Eq.
(A14) is given according to Eq. (A4) by

x = —
Jl d$' fG(() +const

0
(A23)

(7 ~(X ~~ 1 (7

where terms O(N ') are neglected. Thus, we have
reduced the SWC 1 excitation problem to the solu-
tion of the ground-state equation (AS). An approxi-
mate result for Eq. (A22) is presented in Appendix
B.

with

x, = (q, +q,„)/2n

x, = (2q —q, —
q,„)/2 n.

q, =2vro-, q, ~q ~ ~

(A14)

(A15)

3. Spin-~ave continuum 2

The states of the SWC 2 are characterized by sets
of A. , obeying the rules (2.13) and (2.14). In order to
account for the gap between the two A.; clusters and
for the isolated Ao we have to take in the continuum
limit the following prescription replacing Eqs. (A2)
and (A3)
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pl —cr

k(x) =27rx+ — dy P(xy) ——P(xxt) +—P(xxp), a'~x ~1 cr
~ o N

el —o 1
k (xp) = 2 7T«p + —' dy Ifl ( xp,y) ——Q( xp, x ] ), 0 ~ xp, ~ o'

4 g N

foal

—o

E2«(q) = EF + —,N Jl dx [cosk (x) —1] + [cosk (xp) —1] —[cosk (x, ) —1]

(A24)

(A25)

(A26)

The "particle position" xo and the "hole position" xl
are related to the quantum numbers q, q, , q„, of the
SWC 2 excitations through

with

«o = (q, —q,„)/2~,
x, = (2q + q, —2q„, ) /2~

q, = mo-, O~q„, ~q,

q. ~ q ~ ~ —qs+em

(A27)

(A28)

Equation (A24) with Eq. (A4) transforms into an
integral equation of the same type as Eq. (A16)

f~+n

f,(4) =g, (4) —
Jl dg K(g —q)f2(q) . (A29)

By using this solution we obtain for the integral
(A31)

/2((o) = 2./G((o) + O(N ') (A34)

~2«(q) = ~[/G (41) ./G(4o) ] (A35)

According to Eqs. (A4), (A33), and (A34) $~, 4'o are
related to x~, xp of Eq. (A27) by

x = —
J dg'fG((') +&i (A36a)

cr ~x ~1 —(r

With Eq. (A33) the integral in Eq. (A32) can be
evaluated and we obtain for the excitation energies of
the SWC 2

But with a different inhomogeneity term

~g, (c) -=g (c) -g.(r)

in accordance with Eq. (A23) and

JI d(' fo(g') +c2 (A36b)

4 1 4 1

n' N 4 + ( g —
g ) ) 2 mN4 + ( $ —'go ) 2

(A30)

+O(N-') . (A3i)

Eq. (A25) with Eq. (A4) transforms into an integral
expression for f2 ( (p)

1 1f, (g, ) = —,g, (g, ) ——, J d~K(g, —~)f,(~)

0~x ~ cr

Thus, also the calculation of the SWC 2 excitation
energies is reduced to the ground-state problem
(A5), which is solved approximately in Appendix B.

APPENDIX B: APPROXIMATE SOLUTION OF
HULTHEN'S INTEGRAL EQUATION

FOR NONZERO FIELD

d(gG($) [f,(g) —f (()]

+ ~[gG(f1) gG((o) ] (A32)

In analogy to Eqs. (A19) and (A20), Eq. (A29) is
formally solved by the same reciprocal kernel R so
that if we set f2(() = fG(() + hf2(() we obtain

Af, (g) = —R ($ —(, ) ——R ($ —$o) . (A33)2 2

N N

The factors ( —, ) arising in Eq. (A31) are due to the

fact that xo lies outside the range of integration in Eq.
(A25) which yields a different derivative with respect
to x. As is readily seen below, terms O(N ') in Eq,
(A31) can be neglected. Finally, Eq. (A26) for the
SWC 2 excitation energies transforms into

cu„„(q) =—E„„(q)—EG

In order to evaluate the excitation energies (A22)
and (A35) of both continua, SWC 1 and SWC 2, we

have to know the solution fG(g) of the Hulthen
integral equation (A5). Since we know the exact
solutions (A9) and (A10) for the two limiting cases
h =0 and h, , respectively, we may approximate the
intermediate case by some interpolation formula con-
sisting of a linear combination of Eqs. (A9) and
(A10) with coefficients determined by a self-
consistent calculation. Unfortunately the evaluation
of excitation energies with such an ansatz leads to
complicated implicit equations. It is simpler if we in-

troduce an interpolation formula in the x representa-
tion rather than in the g representation of Bethe's
formalism. In that case it is straightforward to evalu-
ate the excitation energies of both SWC 1 and SWC2.
However, an entirely self-consistent calculation would
lead to a complexity amenable only to numerical
work.
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Our starting point is the prescription (A36) which
relates the variables g and x to each other. We calcu-
late the analog of fo($) in x space

and for SWC 2

cu (q) =2D sin-cos —+——q qs

2 2 2 2
(86)

F(x) -=— =.f, (g(x))dx

d

and obtain by transforming Eq. (A9)

1

—, sin ex, o- ~ x ~ 1 —o-

Ft(x) =',
—, sin(2n x —q, /2), 0 ~ x ~ o.

(81)

(82)
8 m 7rD= —1 ——+—
2 2 2

(87)

with quantum numbers q, q„q,„ in the range (A27).
In Eq. (86) a constant term, which is obviously due
to the approximate character of our ansatz, has been
dropped, The prefactor D is related to the parameter
8 through

and by transforming Eq. (AI0)

F2(x) =

1—(I+sinmx), w~x ~1 —~
'rr

1 qs—1+sin 2nx ——,O~x ~o- .
7r 2

(83)

FG(x) = 1 ——Ft(x) + —F2(x)8 8
2 2

where 8 is a parameter to be determined below with
the limiting values 8 =0 for o-= h =0 and 8 =2 for
a. = —,h = h, . =2. If we use our ansatz (84) in the

1

exact expressions (A22) and (A35) we obtain for the
excitation energies of SWC 1

Here, the constants ct and c2 in Eq. (A36) have been
fixed such that Eq. (82) inserted into Eq. (A22)
reproduces the exactly known zero-field SWC (1.27)
for q, =0 and Eq. (83) inserted into Eq. (A35) yields
the exactly known ferromagnetic spin-wave branch'
at the critical field, i.e, , for q, = m.

As a simple ansatz for arbitrary fields 0 ~ h ~ A, .

=2 we choose the linear superposition

%e are left with the problem of determining the
parameter 8 as a function of h or o-, Since our pur-
pose here is to provide a simple approximation with
handy formulas, we avoid at this stage a self-
consistent calculation, which would involve numerical
evaluation of complex expressions. An alternative
way uses the exact result that the energy of the
lowest excitation contributing to S,, (q, co) at the zone
boundary is proportional to the magnetic field'

cut,„(rr) = co,(m) = 2D sinrr o = h (BS)

8—= h (89)

with q,„=0and q =q, This determines the param-

eter D (or B) as a function of o and h. Unfortunate-
ly, there is no exact analytic expression available for
the T =.0 magnetization curve a-(h), which would
determine our parameters D and 8 as a function of o-

or h alone. However, we can compare Eq. (88) with
the magnetization curve which was calculated numer-
ically by Griffiths. This comparison yields a nearly
linear dependence of D on h. Therefore, in order to
have a simple expression we assume a linear depen-
dence without making our approximation significantly
worse; i.e., we identify our parameter 8 with the
magnetic field

qs qm
cu~,„(q) =2D sin cos

2 2 2 2
(85) This provides us with a simple but effective analytic

expression for the T = 0 magnetization curve

with quantum numbers q, q„q„, in the range (A15) o.(h) = rr ' arcsin[h/2D(h) ] (810)
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