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We discuss the current methods for determining the dynamic critical index z for the dynamic
universality class n =1, d =2 where the nonconserved order parameter is the only slow mode
(model A). We conclude that essentially all known methods (~ expansions, high-temperature
expansions, Monte Carlo calculations, Monte Carlo renormalization-group calculations, and the
real-space dynamic renormalization method) are, at their present level of development, incon-
clusive. We show, in particular, that if we analyze the available high-temperature expansion
data using methods similar to those used in carrying out the ~ expansions, the resulting series is

too short to extract any nonconventional value of z. At this level of expansion, the series is

compatible with a conventional value of z. We show that these difficulties appear to be associat-
ed with the existence of an asymptotic dynamic critical region much narrower than the asymp-
totic static critical region.

I. INTRODUCTION

A problem of current interest in the field of
dynamic critical phenomena is the determination of
the dynamic critical index z for the dynamic univer-
sality class where the nonconserved order parameter
is the only slow mode. This is "model A" in the
enumeration of dynamic universality classes due to
Halperin, Hohenberg, and Ma. ' This problem has
been studied using two rather different models which
are believed to belong to the same dynamic univer-
sality class. In both cases the value of z is very un-
certain relative to the accuracy that we have for the
static critical indices for the same problem. It is
worth noting that methods which work extremely
well for determining static critical properties give
widely differing or inconclusive values for z. These
difficulties are particularly acute in two dimensions
where most of the work has been carried out. In this
paper we will discuss these discrepancies and indicate
reasons for these difficulties.

The two models mentioned above which have been
studied extensively are the time-dependent
Ginzburg-Landau (TDGL) modelz and the single-
spin-fiip3 kinetic Ising (KI) or Glauber4' model. The
TDGL model is developed in terms of n-vector fields.
It is believed that the n =1 TDGL model should be
in the same universality class as the KI model.

These models are apparently ideally suited for the
application of techniques which have been extremely
successful in investigating static critical phenomena.
The TDGL model is a prime candidate for the appli-
cation of momentum-space renormalization-group

methods, e expansions, and I/n expansions. The KI
model seems well suited to analysis using high-
temperature expansions, Monte Carlo methods, and
real-space renormalization-group analysis.

Let us briefly recall some of the results in the
literature associated with these various approaches.
The e expansion (e =4 —d, d =spatial dimensionali-
ty) gives the result for z"'.
z =2 —q+z'

2 fl+2
(n+8)'

3141+6(3n +14)1475
(n+8)'

z'=~ 0.0320(1 —0.216m) +0(e ) (p =1)

which leads to z'=0 for d =4, z'=0.025 for d =3,
and z'=0.073 for d =2. This series seems reason-
ably well behaved, but we have many fewer terms
than exist for the static exponents. Using resumma-
tion methods we now have very accurate determina-
tions of static exponents using the e and related ex-
pansions. We should have much less confidence in
these dynamic results. One can also perform large-n
calculations' and a'=d —2, n ) 2 expansions'o for
these TDGL models. These calculations are probably
not very relevant to the n = 1 case which is qualita-
tively different than n ~2 because of the lack of
Nambu-Goldstone modes for n =1.

Let us turn next to the KI model. Some of the
earliest work in this field was the use of high-
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temperature expansions to analyze z for the two-
dimensional square lattice case, Yahata and Suzuki"
analyzed a 9th-order series using the Pade approxi-
mant method and obtained z =2 +0.05 while Yaha--

ta, ' and Racz and Collins, '3 analyzed a 12th-order
series, and obtained z = 2.0197 and z =2.125 +0.01,
respectively. Typically high-temperature results and
Monte Carlo studies of the same systems have been
in good agreement in determining static critical prop-
erties. Direct Monte Carlo studies'4 of this problem
have given values of z =1.85 +0.10. Here there is a
substantial disagreement.

There have been a large number of other types of
calculations to determine z using renormalization-
group methods. We list a number of these calcula-
tions in Table I.'

An objective survey of these results supports our
earlier statement that there are serious difficulties in
obtaining reliable estimates of z in two dimensions
and in this paper we investigate some sources for
these difficulties. We will not resolve the basic ques-
tion of the precise values of z, but we hope to indi-
cate the degree of quality required of a calculation to
do so.

In the next section we define more carefully the
models of interest. %e carry out in Sec. III some
formal development, discuss some exact results, and
indicate how one can set up perturbation-theory cal-
culations with the purpose of calculating z for both
the TDGL and KI models. In Sec. IV we use the
results of the previous sections to analyze the results
of high-temperature expansions. In Sec. V we con-
clude with some discussion of the basic difficulties in
this problem.

II. MODELS OF INTEREST

A. TDGL model

P[@)=e F'4"/Z (2.1)

where F[P] is the Ginzburg-Landau-Wilson free-

The TDGL model is defined in terms of a field
$( x ) which can vary continuously from —~ to + ~.
The equilibrium statics of this field are governed by
the probability distribution

TABLE I. Results for the dynamic exponent z for the models discussed in the present work, ob-
tained by different methods. (NA indicates not available. )

Ref. Comments

1

1

6
11
12
12
13
14

15
16
17
18

19
20
21

22
23
24
25

- 26
27
27

. 28

2.005
2.0
1.82

2+0.05
2.0197
2.0249

2.125 + 0.01
1.85 + 0.10

1.4+ 0,4
1.99

2.22 + 0.13
2.19

2.23
2.24
1.67

1.70
1.96

1.879
Arbitrary
1.85 + 0.15

1.70
2.22
1.796

0.989
NA

0.837
1.00
1.00
1.005
1.00

(assume
y =1)

0.96+,04
1

1.07+ 0.15
0.950

0.950
NA
2.24

1.264
0.662

1

NA
0.68
1.76

0.950
0.989

0(e ) calculation for TDGL model
0(1/n) for TDGL

0(e3) calculation for TDGL model
9-term HTE (high-temperature expansion)

12-term HTE (square lattice)
10-term HTE (triangular lattice)

12-term HTE (square lattice)
Monte Carlo (square lattice)

MCRNG (Monte Carlo renormalization group)
MCRNG
MCRNG

2nd-order cumulant, triangular lattice
RSRNG (real space renormalization group)

same as Ref. 18.
Bond moving, square lattice. RSRNG

1st-order cumulant, triangular lattice
(RSRNG)

Triangular lattice. RSRNG
Migdal approx. RSRNG
Migdal approx. RSRNG

Triangular lattice. RSRNG
Square lattice. numerical RSRNG

Triangular lattice, (cumulant) RSRNG
Triangular lattice (different model) RSRNG

Square lattice RSRNG
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energy functional,

F[g] = ld x —@ (x) +—[&f(x)] +
4

spin time-correlation function is given by

D
C~(r) = (aqe a;) (2.11)

ro ——r'( T —7;0) (2.2)
and the SFO corresponding to model A can be writ-
ten in the form

T is the temperature and I ', c, u are positive
temperature-independent constants. Z in Eq. (2.1) is
the partition function

(2.3)

D[ {
']=-—QAi'l, W, [a]a,a,',

~"',-=/f5
CF, O' CTg, O'J

JWi

(2.12)

where we carry out a functional integral over all P.
The equilibrium correlation functions are given by

(y(x)d(x )) = J ~(y)P[y]y(x)@(x ) . (2.4)

The dynamics of this model are assumed to be
generated by a generalized Fokker-Planck operator
D& such that time-correlation functions are given by

where we use a convenient matrix notation'. thus
D F[o] means

D F[o]= XD[o{o']F[a'] (2.13)

The function W;[a] is restricted'0 by the condition
that the equilibrium probability be stationary under
time translations

(@(x,t)y(x )) = (@(x )e ay(x)) (2.5) D P[o]=0; D[.a{a']—= D[a-'{a] (2.14)

where

8D@= ~~ d xI
Sy(x)

SF[d] S („)
5@(x) S@(x)

B. KI model

and I 0 is a temperature-independent relaxation rate.
In this development it is assumed that $(x) contains
only wave-vector components less than a cutoff A.
Many properties of D& and its adjoint D& are dis-
cussed in Ma and Mazenko.

W, [o]=(1 —o;ta hnE;[ ]a)

E; [a ] = K ga, = Ko,', —
J

(2.15a)

(2.15b)

where, in Eq. (2.15b), the sum extends to the four
neighbors-of ~i. We shall, in this paper, use this
form of W, [o.l. Other forms have also been used"
in the renormalization-group (RG) methods, but
similar considerations ~ould apply. One easily
shows' that

High-temperature series expansions for this model
are invariably performed using the Glauber4 choice of

H[a]= 2K X(T(aj
&iJ)

(2.7)

with the sum extending to all nearest-neighbor pairs.
The equilibrium probability distribution is given by

Kinetic Ising models involve dynamics driven by a
stochastic spin-flip operator (SFO) acting on a system
of Ising spins. We will restrict ourselves here to a
two-dimensional square lattice. We shall denote a
given Ising spin ( o.; = + I ) configuration by
o. —= {at, o.2, . . . , o.N [ where N is the number of
spins and i an index which numbers the lattice points.
The Hamiltonian, multiplied by ( —P), is

a; tanh E;[ o ] = A a;a;~+ 8 cr;a;r (2.16a)

(2.16b)

3 = —(2tanh2K+tanh4K)

8 = ——(2 tanh2K —tanh4K)
8

(2.17)

(2.18)

C. Common development

where the last sum extends over the four triplets
made up of nearest neighbors of i and

P[a] =e"' '/Z

XeH[nl

(2.g)

(2.9)

We can develop much of the formal structure for
the TDGL and KI models in terms of a slightly more
general model. Let us introduce a variable

Equilibrium correlation functions are defined by

(0';aj) = XP[o]a;aj

The dynamics of this model are such that the spin-

q

1V '~2 $e 'a; (KI)
I

y '
J d xe' '"@(x) (TDGL)

(2.19a)

(2.19b)
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D. (KI}

D», (TDGL),

(2.2Oa)

(2.2Ob)

(2.20b)

which is the Fourier transform of the order-
parameter of the two problems. R; is the position of
the ith Ising spin and V the volume containing the
TDGL fields. If we also introduce

where a is the lattice spacing, and

t q x I
—

@3( ) (TDGL)v'~'

+ nW 'i 8 Xe 'o; (KI)

(2.27a)

(2.27b)

then the order parameter-order parameter time-

correlation function for both cases can be written as
III. FORMAL DEVELOPMENT

A. Memory functions

c( q, t) = (y, e qy, ) .

%e will also work with the Laplace transform

C(q, z) = —i '~ dte'*'C(q, t)

= (e-q«z}Vq),
where the resolvent operator is defined by

R (z) = (z —iDq) '

A useful identity is that

D«4» = 4 q4« + 1q ~

where

(2.2l)

(2.22)

(2.23)

(2.24)

(2.25)

It is now well understood" that it is a profitable
procedure to shift one's attention from the correla-
tion function C(q, z) to the associated memory func-
tion P(q, z) defined by the equation

[ +zi @(q,z)]C(qz) = C(q) (3.l)

where C is the static correlation function C(q, t =0).
There are two procedures one can develop for calcu-
lating @(q,z). The first, which was developed in Ref.
33, will be discussed in this subsection. The other
method, which involves the introduction of response
functions, will be discussed in Sec. III B.

It seems rather natural to divide Q into a static part
$t'l and a dynamic part @

I;(r, +c-q') (TDGI. ) (2.268)
0 —u[1 —2A (cosq„a +costa)] (KI), (2.26b) and some straightforward algebra shows that

(3.2)

y&*&(q)c(q) =-(y »D&y, ) .

gt+(qz)C(q) = —i[((D&g )R(z)(D&g ))—((D&p )R(z)p )C (qz)(P »R(z}(D&Q ))]
(3.3)

(3.4)

e can go a bit further with this development if we
notice first that we can evaluate

(3.S)

exactly for both of our models. Using the explicit
form of the equilibrium probability distribution we

easily show for the TDGL model that r ' = r,
(TDGL). We evaluate I"' for the KI case in Appen-
dix A with the help of the known exact calculations
of short-range static correlations and an identity

derived from the minimal coupling3' form of II,[o.].
It follows from Eq. (AS) that I ' =uf(1t) where
f (1t') is a positive definite function of E which we
plot as a function of u =—tanh E in Fig. 1. Notice that
it is a rapidly varying function of u at all u &,u, . It
has the finite value at the critical coupling
u, = J2 —1, f( u, ) =0.2823.

%e 'can also say something about the dynamic part
of $:Ptd~ is one-body irreducible. That is, any part of
D&Q» that is linear in Pq will not contribute to $
Consequently we can ~rite

(q z)C(q) =I't ~(qz) = i [(1 «R (z)1,—) —(I »R(z)pq) C '(q z) (p »R (z)1»)] (3.6)
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I.O

0.8

0.6

f{u)

04

and

y"(0) -y(0, 0) .

Then for large enough (
0) =cg

y(o, o) =c'g

and

Spcf 0) c'g '

(3.11)

(3.12)

(3.13)

(3.14)

0.2
so that

z «zp=2 —q (3.15)

I I

OQ2 O.l 02 Q5 0.4 Q5 Ok 0.7 08 03 Ig
U

which is the Kawasaki' bound in the problem.
We then ask what must occur if z is to take on

"nonclassical" values x & zo') For this to occur (ij'"
(0) and Q(~) (0, 0) must cancel identically at the criti-
cal point. We can state this result in the form

FIG, 1. The quantity f(K) —= I ' /n evaluated exactly for
the KI model, as a function of u =—tanhK. r" +r")(0,0) =Dg * *' (3.16)

~'=y()(q =o) =I'*'x-', (3.7)

where X is the exact static susceptibility. The dynam-

ic critical index z is defined by (», —g
* where g is

the correlation length. Since x —g2 '), we obtain in

this case z -=zp = 2 —q.
We are more concerned with the role of the non-

linear corrections to the conventional theory given by
Q(~). One can show, following the analysis of
Kawasaki, ' that @' ' (0, 0) (0. On the other hand

the characteristic frequency for the system can be de-
fined by

~e immediately see that I'~) (q, z) is of second order
in the coupling between components of p». In the
TDGL case I"'»' —O(u ) while in the KI case
I' ~ -0 (B2) —0 (E6). As a first approximation in

an» expansion [where u —0(»)] or in a high-

temperature expansion in E we would neglect the
dynamic part of the memory function relative to the
static part.

This approximation leads to the conventional
theory for the dynamic index z. We have in this case
that the characteristic frequency for the system is',

simply

As T T„1 ' goes to a constant and therefore, for

z &zo I' =' —I""+D( 0 .. This seems like a

theoretically discouraging result. Any approximate
calculation, including a high-temperature series ex-
pansion, is very likely, particularly considering (Fig.
I) the rapid variation of f(E) with the temperature,
to treat inadequately this delicate cancellation, and
hence to lead to inaccurate results for z.

8. Response functions

G(q, z) = (&»R(z)(i)») (3.17)

where the resolvent R (z) is related to that intro-
duced earlier by

We show in this section that we can rearrange our
calculation of the characteristic frequency
a&, = $(0, 0) in a way that (i) the Kawasaki bound is
manifestly satisfied and (ii) a result z —zo & 0 arises
from the divergence of a quantity, not from a delicate
cancellation. The approach we use is essentially that
used in the development of the ~-expansion method
for the TDGL model. ' Ma and Mazenko intro-
duced a response function

«), = qh(0, 0)

and if the system is stable then

$(0, 0) )0

This tells us immediately that

y (s) (0) )@(d)(0 P )

(3.g)

(3.9)

(3.10)

R(z) =R(z)( (6,) . -
This quantity has the property that

G(q, z =0) =C(q)

Since

zR (z) = I —R (z)

(3.18)

(3.19)

(3.20)



1424 GENE F. MAZENKO AND ORIOL T. VALLS 24

zC(q, z) =C(q) —G(q, z) (3.21)

the response and correlation functions are related by to order u'2(u =tanhK). We can use these results
to evaluate Q as a power series in u since

Formally we can define a memory function $(q, z) to
be associated with the correlation function

0)
r(o, o) x' (4.2)

via

G(qz) (p qR(z)( iD&pq)) (3.22)
we have that

I.(s)

I'(0, 0)
(4.3)

(y, (—iDt, yq) )
G q, z

z+iy(q, z)
(3.23)

It is then straightforward to show using Eqs. (3.1),
(3.8), (3.21), and (3.23) that in the small-q and -z
limit

We need then the expansions for I" and X as power
series in u. The required'expansion for r"~ [see Eq.
(AS)] requires the expansion first, of A and I3:

3 = u —3u'+15u —85u'+493u —2871u" + O(u")

and

~, =r(o, o)x-' (3.24)
8 =—2u3+14u5 —84u'+492u9 —2870u" +O(u'3)

1

I'(0, 0) Bz
J 2W

—(d)
and the dynamic part of @ (q, z) is given by

(3.25)
(4.4b)

The expansions for a(0, 1), a(1, 1), and a(2, 0)
(see Appendix A for definitions), which are needed
to get er and rt'~ [Eq. (A5)], are obtained from Ref.
36. To the order needed:

d, '"(q,z) r& & =- [(i,R (z) i, &

—(I,R (z)y, ) G '(q, z) (y,R (z)1,)]
E(0, 1) =u +2u +4u'+12u'+42u

+164u" + O(u"), (4.5a)

IV. HIGH-TEMPERATURE EVALUATION OF Q

Once we have developed the forrnal structure of
the last section we must come up with some way of
evaluating Q. It was a direct expansion of Q in
powers of u for the TDGL model which led to the
result (1.1) when combined with renormalization-
group ideas. Therefore it is not necessary for us to
reanalyze these results other than to say that one
would be comfortable with their numerical reliability
only if one had a much longer series and resumma-
tion methods could be applied.

An apparently much more reliable method for
determining Q is, for the KI model, the use of high-
temperature expansion methods. A great deal of
work in computing series-expansion coefficients for
this problem has been carried out and we shall set up
our calculation so as to take advantage of this previ-
ous work. In particular, the author of Ref. 12 has
worked out directly the quantity

at = Jl dtC (q =O, t) (4.1)

(3.26)
With this formulation we see that we retain a value
for z ) zo only if the quantity Q diverges. It seems
completely reasonable to develop any perturbation-
theory analysis in terms of Q. We discuss the results
of such calculations in the next section.

e(I, I) =2u2+4u~+lou6+32us+118u'0+O(u'2)
(4.5b)

e(2, 0) = u'+6u4+16u6+46us+ 158u»+ O (u»)
(4.5c)

Q = 1 + —u6 +368/27us +4576/27u~+ 4912/27u'

—7912/27u" + 887.433u' + O (u' ) (4.7)

Note first, as pointed out before, that these "dynami-
cal" correlations do not begin until order u6 [see Eq.
(3.26)]. This serves as a check of our algebra in
multiplying out the independent calculations of I ',
a~, and X2. Next we note that it is obvious from in-
spection of Eq. (4.7) that the series is very difficult to
analyze; first, one simply does not have many coeffi-

From these, the result for ar using Eq. (All) is
found:

sr=3u +lou +26u +80u +O(u") . (4.6)

These are sufficient to calculate I ' to order u".
The results are listed as the first column of Table II.
The expansion coefficients for X are available" to or-
der u". We list the expansion coefficients of a~, X ',
and I'(0, 0) ' in Table II. Putting all of these results
we obtain for Q the expansion
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TABLE II. Coefficients of the expansion in powers of u
—=tanhK of the quantities indicated.

Order X (0,0)

0
1

2
3'

4
5
6
7
8
9

10
11
12

1

.0
—4

0
4
0

—28
0

132
0

-900
0

4668

1

8
44

200
804

2984
31 372/3

105 272/3
3 069 692/27
9 674 456/27

29 807 204/27
3 336 900.146
9 921 382.374

1
—8
24

—40
72

-168
360

—. 776
1704

-3752
8184

-17768
38808

1

0

0
12
0

196/3
0

5588/27
4576/27

35 324/27
10392/27

5062.692

1

0
0
0
0
0

16/3
0

368/27
4576/27
4912/27

-7912/27
887.433

cients to work with, because of the initial string of
zeros, and, next, the sign of the u" coefficient shows
that the sign is neither constant nor alternated. The
ratio method cannot be used. We have worked out
the Pade approximant results for the logarithmic
derivative of Q. Again, because of the initial string
of zeros, not many approximants can be constructed.
The results are in Table III and are clearly hopeless.
Since u, is known exactly, one can also attempt to es-
timate (z —zo) by evaluating the Pade approximants
for (u —u, )(g'(u)/Q) at u =u, . The results (Table
III) are clearly inconclusive. It is well known that the
Pade approximant method works best when the ex-
ponent is large. Hence, one can take these results as
an indication that z —zp is probably small. It is in-

teresting to simply plot Q vs u as given by Eq. (4.7)
.-as shown in Fig. 2. We have also plotted the high-
temperature expansion for 1/I't'l including terms up
to u''. We know that I/I' t') is finite for all u. We
see, however, that it is always greater than Q. An
objective observer might well conclude that for corre-
lation lengths associated with a 12 term high-
temperature series the effective value of z is given by
its conventional value.

These results are to be contrasted with those of
Ref. 11: z =2.0+0.05 from analysis of the series
for ai directly, while Racz and Collins' analyzed
a i X ' and obtained z = 2.125 + 0.01.

6.0

N

uc = 2.85
z —zp&&1

uc =0.3
z —zp =0.013

M =043
z —zp =0.295

TABLE III. Top: results for u, and z —zp obtained from
a Pade analysis of the series for Q'/Q. An asterisk means
no solution for u, was found. Bottom: results for z —zp ob-
tained from a Pade analysis of the series for (u —u, ) Q'/Q.

5.0—

4.0—

5.0—

2,0, —

1.0
O.l 0.2 02

I

I

l
I
I-
t

I
/

/

/

/

/

/
/j

/
/

/

OA

0.143
0.223
0.216

0.490
0.217

0.145 FIG. 2. Comparison of the high-temperature series
results for Q and I ' ' in the KI model. The solid line is Q
from Eq. 4.7 and the dashed line is the series expansion of
1/I" (s)



1426 GENE F. MAZENKO AND ORIOL T. VALLS 24

V. DISCUSSION

In the light of the preceding results and considera-
tions, let us review the status of the various methods
for computing z in two dimensions.

A. Field theory

The e-expansion method works near four dimen-
sions and leads to a plausible estimate for z in three
dimensions. Extrapolation of these results to two
dimensions gives a value of z = 1,823 but one expects
the ~ expansion to be rather poorly behaved in two
dimensions.

B. High-temperature expansions

A main point of this paper is that the high-
temperature expansion method, which has been seen
as the most reliable for treating this problem, is not
yet useful because the series is too short. We are
becoming increasingly aware3 that we need rather
long series if we are to be able to make quantitative
statements. In this case we need many more terms.

C. Monte Carlo calculations

These calculations have been inconclusive for
much the same reason the high-temperature expan-
sions have been inconclusive. As Racz and Collins'3
have pointed out the asymptotic dynamic critical re-
gion appears to be much narrower than the asymptot-
ic static critical region. Thus, while one may obtain
very good results for static quantities one may not be
within the dynamic critical region and may therefore
obtain poor values for the dynamic critical properties
(these will probably be close to the conventional
values). In the case of the high-temperature expan-
sion, going to small reduced temperature and larger
correlation length requires sampling larger distances
on the lattice which in turn requires going to higher
order in the expansion. We should point out that the
one-dimensional KI model does not provide a good
test in this regard. In this case the interesting quanti-
ty Q defined by Eq. (3.26) is exactly one and there is
no crossover from conventional dynamics to a z ) zp

regime,

D. Monte Carlo RG methods

We also add that the existence of a dynamical scaling
regime does not guarantee that it is the asymptotic
scaling regime. We expect that there will be a region
of temperatures (effective correlation length) where
one has dynamic scaling with a conventional value of
z and this region may be rather broad. We point out
that a possibly confusing feature in these calculations
is the rather rapidly varying (aithough noncritical)
temperature dependence associated with the initial

decay rate I '. One must be careful not to confuse
the rapid decrease of I' ' near T, with a source of ad-
ditional critical slowing down.

E. Real-space dynamic RG (RSDRG)

This method in its various current manifestations is
not sufficiently accurate to give reliable values for z.
In the most recent version of our own RSDRG
method'9 we find qualitative agreement with the pic-
ture of a very narrow region of asymptotic dynamic
critical phenomena. At low order in a systematic ex-
pansion in the coupling between cells we find that z is
given by the conventional value. At the same order
of development, however, we find that the static crit-
ical indices have values very close to their known
asymptotic values.

We must conclude that we do not yet have in two
dimensions an accurate determination of z. This is
due in the KI model to the narrowness of the asymp-
totic dynamic critical region relative to the asymptotic
static critical region. This narrowness follows from
the nonuniversal feature that Q = I + 0 (u') in a
high-temperature expansion and we must go very
near T, (have a very large correlation length) for Q
to deviate substantially from 1. To resolve the basic
question of the value of z apparently requires either a
much higher-order high-temperature expansion, a
more clever expansion method, or analysis of another
model in the same universality class but with a
broader asymptotic dynamic critical region.
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APPENDIX A: EXACT EVALUATION
OF y~» FOR THE KI MODEL

From Eq. (3.3) we have

These methods do not appear to be sensitive
enough to obtain z. From what we said above one
can see that it is not sufficient to have good static
resu1ts and reproduce the one-dimensional result.

d "(q)C(q) = ——Xe ' ' & r~,
ij

(Al)

(A2)
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From Eq. (2.12) it follows that

r/J a—(a,o, W, [cr]) . (A3)

where

(7 = ~O 0,. =V
a a

(A9a)

But since the product WI[o]P[o] is independent of
o-; it is clear that I tj will vanish unless i =j:

1A1= ——tanh2E
2

(A9b)

I'(~ = —ags( W, [(r]) (A4) It is known" that W, [o ]P [a 1 is independent of
0-;, and, hence, for any i ~j one has

from which it immediately follows that (o, (rj WI[o.]) =0 (A10)

y&'l(q)C(q) = a[1 —4A f(0, 1)-4a.,] = rt*' . (AS)

e(01) = (rr;rr, +-, )a
(A6)

while eT is the four-spin —static-correlation function

~r=&~&ai+I al+s ~+@) .
1 2 3

An exact expression for e(01) is given in Ref. 34.
To evaluate eT consider the function

W;[o]=1+Aia'o +A2a (Ag)

Here, e(0, 1) is the nearest-neighbor correlation
function: if we denote by 5 (a= 1, 2, 3, 4) the four
shortest lattice vectors

Choosing for j a nearest neighbor to i leads to the
identity

0=a(0, 1) +Hi[1+2&(1,1) +e(2, 0)]

+2a,' [~(0, 1) +e,], (Al I)

where e(m, n) is the static-correlation function
between two spins separated by m lattice points hor-
izontally and n vertically. An exact expression for
e(l, 1) is given in Ref. 34. For e(2, 0) one can use
the general formulas for e(m, 0) which are also given
in Ref. 34. The calculation is a tedious but straight-
forward exercise in Jacobi elliptic functions. %e shall
not write down explicitly here the lengthy final result
for e(0, 2). In the notation of Ref. 34 [see their Eq.
(4.1)] five matrix elements Xo, X+~, X+2 are needed,
of which the first three are given by Eqs. (68) and
(70) of Ref. 34. We obtain for X+2 the result (for
T~T, ):

ex+, = —(I —K )K(K) [K K 1+K (I+K) (K —1)]
K(1+~) '~'

+ 2 —3(1+v) 1+
3/2

K ]+K

' 1/2'

E(~,)

(1+~)'~'
+ 'tl'

K

K

1+]c

1/2

[(I+K )+K] (I+K) 1+2 1+.
1 /2

—(1 + K) ' (A12)

with:

K =sinh 2E
2„1/2

K1= ]+K

(A13a)

(A13b)

and K (~), E(~~) are complete elliptic integrals. Once e(0, 2) is known, it is trivial to obtain er exactly from Eq. (All).
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