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In this paper we systematize the real-space dynamic-renormalization-group method we
developed elsewhere. e treat the two-dimensional kinetic Ising model with relaxational
dynamics defined on a square lattice, e show how one can set up a systematic perturbation-
theory expansion which treats the coupling between cells of spins as a small parameter. The
novel feature of the expansion is that it provides a method for determining the appropriate ef-
fective interaction between spins in a set of uncoupled cells. By obtaining a good zeroth-order
approximation for a set of uncoupled cells, one finds that the effective interaction between cells
is reduced. Similar ideas are also applied to the dynamics of the problem and we indicate how
one can obtain a good zeroth-order approximation in terms of the dynamics of uncoupled cells.
We couple these perturbation theory ideas to the real-space dynamic-renormalization-group
method and carry out explicit calculations of a variety of observable quantities including the
magnetic susceptibility, specific heat, static structure factor, time-dependent spin-autocorrelation
function, and the dynamic structure factor. In every case we obtain excellent results in keeping
with the scaling behavior near the phase transition and the high-temperature limit.

I. INTRODUCTION

The potential advantages of the real-space
renormalization-group (RSRG) method have been
recognized since its beginning. ' Because one can
work directly with the actual Hamiltonian of a system
(rather than with an effective Hamiltonian as in the
momentum-space technique) it can be used for the
calculation of nonuniversal quantities in any tempera-
ture range. It is then possible to obtain phase dia-

grams or thermodynamic quantities. ' Furthermore,
the RSRG formalism can be extended to dynamic
phenomena ' and as we have been able to show re-

cently, to the evaluation of static and dynamic corre-
lation functions over a very wide range of
wavelengths, frequencies, and temperatures.

There is, however, a formal aspect of the RSRG
method which deserves further attention: except in

one dimension, where the decimation transformation
can be used and the problem solved exactly, the ap-
proximation methods needed in order to carry out
RSRG method have not been very controlled, Typi-
cally, one divides the system into cells and applies
block spin methods, treating the intercell couplings as
small parameters. Bond-moving techniques are also
used, sometimes in combination with the cell
methods. Naturally the accuracy of such methods is

open to question.
Let us consider, in particular, the correlation-

function formalism introduced in Ref. 6. It was
shown there, that in order to ensure the proper
asymptotic exponential decay with distance of the
static correlation functions, the recursion relations in
the very high- and low-temperature limits must have
certain specific forms. We found that these condi-
tions were not satisfied by many of the standard ap-
proximation schemes, like the cumulant expansion.
Those schemes cannot, then, lead to even qualita-
tively correct results for the correlation functions.
While the required asymptotic forms for the recur-
sion relations were satisfied by the transformation
used in Ref. 6, the method used there was still
plagued by the quantitative uncertainties which beset
the RSRG procedure. In particular, the single-cell
static and dynamic parameters A o and J2 were deter-
mined in a somewhat ad hoc way by means of two
adjustable parameters chosen in a rather arbitrary
fashion. The procedure was clearly unsystematic and
difficult to generalize. It was justified first because
the assumption Ko —2K (the cell coupling for a
square lattice is just twice the bulk coupling) makes
good physical sense, secondly because we preserved
the correct asymptotic behavior of the resulting re-
cursion relations and finally because of the impres-
sive quantitative accuracy of the results obtained,
There were additional consistency problems, as we
shall discuss later, in satisfying the detailed balance
condition at any given order and in the way the cell
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spin-flip characteristic time was determined. The
latter problem can be shown to lead to erroneous
results in the dynamic correlations at high ternpera-
tures.

In the present work, we wish to address ourselves
to this problem of a systematic expansion. We shall
develop a new expansion procedure, valid for both
static and dynamic problems. Our expansion method
is consistent, generalizable (it does, of course, correct
the above-mentioned difficulties) and remarkably, it

retains the advantages of the ad hoc procedure of the
previous work: correct asymptotic behavior and good
numerical results at first order. Indeed, the numeri-
cal results are even improved.

In the present paper we consider the T ~ T, tem-
perature range. Below the transition the analysis is a

bit more complicated because of the presence of
symmetry-breaking effects. Those effects are very
interesting in their own right and we shall discuss
them separately in future work. We shall carry out
our systematic calculations consistently to first order
in an effective coupling between cells and we shall in-

dicate how they can be extended.
This paper is divided into four sections. After this

introduction we discuss the static properties in Sec. II,
and the dynamics in Sec. III. The numerical results
and conclusions are presented in Sec. IV.

II. STATIC CALCULATIONS

A. General considerations

To develop our systematic procedure we start out
by considering the Ising Hamiltonian (multiplied by
— )

intercell coupling. Of course, before we artificially
divide the lattice into cells, we have K~ =K, =K.
Our goal will be to develop an expansion where we
treat the "effective" coupling between cells as a
small parameter. The identification of this effective
coupling and the associated expansion requires a few
rearrangements. Let us first recall that a straightfor-
ward cumulant expansion assumes that K~ is small
and that uncoupled cells parametrized by the cou-
pling K, = K& represent a good zeroth-order approxi-
mation to the problem. A bit of reflection indicates
th'at this does not make good physical sense. In the
square lattice case the physics of the situation can be
clearly seen: the spin at site i directly feels bonds of
strength 4K. When breaking up the system into
cells, however, the same spin at lowest order, ~here
we ignore couplings between cells, feels bonds of
strength 2K, =2KO. If KO=K, the error in the in-

teraction felt at site i is large-. We would in fact ex-
pect that a much better approximation for Ko is that
is should be close to 2K.

The basic physics indicates that we should arrange
our expansion such that the zeroth-order value of the
cell coupling is different from the bulk value of the
coupling. Thus we let

K, -K,() ) +) [K, —K, () )],
where K, (X) possesses a power-series expansion in

the ordering parameter P. In a similar fashion we ex-
pect that the coupling between cells should be modi-
fied due to these effects. In particular since some of
the correlations between cells are taken into account
through the choice of the effective cell coupling
Ko —2K, we expect that the interaction between cells
will be reduced over the bulk coupling. We can again
write

H[rr] = —'K $(r;cr~
(v)

(2.1) K, -K, ())+Z[K, —K, ())] .

where K is the coupling, the sum is restricted to
nearest neighbors, and i and j are site indices. For
the purposes of this work it is convenient to relabel
the sites by dividing the lattice into cells. We shall
use the same notation as in Ref. 6, assigning to
each site a cell index i and a site within the cell index
a = 1, 2, 3, 4. We also introduce primitive lattice vec-
tors 8, in the original lattice and 5, in the cell lattice.
We can rewrite the Hamiltonian in the form

(2.2)

Introducing these representations in the Hamiltonian
we obtain

+ h. (K((h. ) + h[K/ —K((h. ) ]] V/[ ], (2.4)

and our perturbation expansion is developed in

powers of h. . We assume that K, (X) and K~(k) pos-
sess expansions of the form

where

Vo[rrl = $a;, o.;„, (2.3a)

K, (h. ) =Ko+ $ h."Ko
n 1

(2.5a)

(2.Sb)

i,a
(2.3b)

We shall call K, the intracell coupling and K& the

and the parameters Ko, K„, Kq, and K„are to be
determined through the imposition of constraints on
an order by order basis.
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(2.6)

The course that we shall pursue is to determine the
coefficients in these expansions in such a way as to
ensure rapid convergence of the series expansion in

A. . To first order in A. we have

H = Hp[ g. ] + XH, [ g ]
P[p]= QT[plg]P[g] (2.15)

the equilibrium probability distribution for the cr lat-

tice P [g.] is mapped onto the probability distribution

P[y. ] for the p, lattice via

Hp[g] =Kp Vp[g]

Ht [g ] = AK| Vp[ g]+Kg VI[ g]

AK) ——K —K()+ K)

(2.7a)

(2.7b)

(2.7c)

Similarly if A [g.] is some variable defined on the g.

lattice, then the corresponding variable defined on
the L[L lattice can be defined as

A [p]P[p] = QP[g]T[p, lo]A [gl . (2.16)

The first-order expansion for FF [g.] leads to the
result for the partition function Z to first order

Z = geH =Z [1+)thK FVr +O(X')], (2.8)

The proper normalization of P[p, ] requires that the

mapping function T[pl g. ] satisfied the constraint

$ T [p.
l
g] =1 (2.17)

Zp= ge =[4(3+cosh4Kp)] (2.9)

r is the nearest-neighbor correlation function for a

cell,

where A' is the total number of spins. Zo is the parti-
tion function for uncoupled cells It is rather natural when thinking about the coarse

graining procedure to introduce a projection operator
which picks out of a O.-dependent quantity the com-
ponent "along" the block spin degrees of freedom

a'A [ a] —= $ T ( p, l
o.] Q 6 [g l p. ]

up(1+ up' )
r = ~I,~~;.,+) o=

) 41+uo
(2.10) x ~[g]T[plg]A [g]. (2.18)

where up=tanhKp and ( )p denotes the zeroth-order
thermal average. Another useful quantity is the
next-nearest-neighbor correlation function for a cell

2uo
s (g lag la+2) p 1+uo4

The equilibrium probability distribution can also be
expanded to this order:

where

G[p, lp, '] —= QP[g.]T[p, l
g]T[p'l g].

h/

=II&
P P .

) PFPF

(2.19)

(2.20)

(2.2 1)

II [~]
P[ 1='

Z

and A'' is the total number of cells. It is easy to see
that {Preally is a projection operator

= Pp[g] [1+ltgH) [g]+O(Z') }, (2.12)
&'A [g] =» [g] (2.22)

where

Pp[g] =e /Zp
~ v[~i

and

(2.13)

through the use of Eq. (2.20). The appearance of the
6 matrix in the definition of {Pcomplicates matters
significantly. %e have found that the analysis is sim-

plified and the physical interpretation of the coarse
graining as a simple block spin transformation is

maintained if we require that the constraint

SHt[g] = AKi( Vp[g ] —(Vp[g])p)+Kg V, [g.]

(2.14)
@ulv'] = (T[vlg] T[~'lg]) = &. „.P[v] (2.23)

B. First-order static renormalization

be satisfied. %e have then that

P[I ]r' '[I lu'] =&„„ (2.24)

The fundamental idea of the RSDRG is the intro-
duction of a coarse graining transformation T[p, l

g. ]
which maps the original set of spins, cr, onto a new

set, p„defined on the cell lattice. This mapping is

then used to obtain coarse-grained variables. Thus

and the projection operator becomes

» [g] = QT[Vlg]P '[t ] QP[a.]T[l lcr]A [g]

(2.25)
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which agrees with our definition in Ref. 6.
If we work to zeroth order in A. and wish to satisfy

Eqs. (2.17) and (2.23) then we see that Tis given by a

product of contributions from uncoupled cells

separation of the slow and fast modes in the system.
%e will return to this point later.

Once f=0 we can determine the normalization Nl
from Eq. (2.28c) giving

To[ l ] = ff T'[
l ] , (2.26) N'=[4(1+2r+s)] ' (2.29)

where T'is given by

T'[pl o] = —,
' (I + p;y(o, )] (2.27a)

where P(o;) is a function of the four spins in cell i,
subject to the restrictions

(y( )) =0,
([e(~)]')o= I

Symmetry considerations imply that

y(rr;) =Ni(o,'+f o,r).

T~i = ~~i',a~i,u-l ~(,a+] ~

a

(2.27b)

(2.27c)

(2.28a)

(2.28b)

(2.28c)

The normalization Ni is determined by Eq. (2.23) [or
Eq. (2.27c)l.

Some discussion of the role of the parameter fwas
given in our previous work. Ultimately we will
choose f by noting that certain functions of the spin
variables are less susceptible to change under pertur-
bations due to thermal fluctuations than all others. It
is sensible to map the block spin variables onto these
"slowly" varying degrees of freedom. The quantifi-
cation of these ideas is easiest carried out in the con-
text of our dynamic considerations. It is worth not-
ing that the identification of the slow degrees of free-
dom with the solution of an eigenvalue equation for
the spin-flip operator D can also be thought of as
purely statistical statement associated with a Monte
Carlo sampling procedure. %e will show later, in
Sec. III, that our discussion of dynamics leads natu-
rally to the choice f =0. Let us say here that the
choice f =0 seems reasonable from two qualitative
considerations. First, the choice f =0 indicates that
the slow mode in a cell is just the order parameter for
that cell. Since the order parameter is the slow de-
gree of freedom of the system this makes sense.
Secondly, if we choose f %0 we find that at first or-
der in A. that the coarse grained variable associated
with the spin cr;, is proportional to p,I+Cp, IT where

p, ;~ is the symmetric sum of three spins similar to o.;T
given by Eq. (2.28c). At this level we see that the
physical interpretation of p, ; as a block spin is blurred
by the appearance of the triplet term p, ;T. It is not
difficult to show that the coefficient C is proportional
to f and the choice f =0 eliminates the triplet term
from the mapping o-;, p, ; and leads to a clear

For our purposes in this section the main property of
T] is that it is orthogonal to To to zeroth order

(T [pl )T [p'I ))o=o (2.31)

The second step in the determination of T is to rotate
T[p, l

o.] in p, space such that the constraint Eq.
(2.23) is satisfied. That is we perform a rotation to
diagonalize the quantity.

(T[pl~]T[p'lo) =—G[pl p') (2.32)

To first order one finds easily that, because of Eq.
(2.31), T, in fact drops out of the calculation of
6 [p, lp, ']. The first-order correction comes, then,
only from the first-order Hamiltonian Eq. (2.14). We
find after straightforward algebra

G [pl p') =8,P[p)+ xZ[p l p, '] + 0(z') (2.33)

where

P[p) =Po[p) [1 +32v|KsoH|[p]+O(h2)), (2.34a)

P [ ] I/2iv/4

vl = (o;,y(o;) )o = —,
' (I +2r +s)'i',

(2.34b)

(2.34c)

Hl[p] = —,
'

Xp;p„, (2.35)

r T

~[pip'] =P [p) XA„"'„p-p'~K '+4" +'
1+2r +s

(2.36)

A"', = ff 8
k(~1) &k'I'k

(2.37)

Thus far we have been discussing the. zeroth-order
value of the mapping function To[p, lo]. It is to be
expected that one should have higher-order correc-
tions to T and we have discussed the determination
of these higher-order contributions elsewhere.
Here we are primarily interested in a first-order cal-
culation, hence we consider only Ti[p, l

o.l, the contri-
bution to T[p, lo] that is of first order in X. We con-
struct T] in a two-step process. The first step is to
construct the quantity T[p, l o] as the solution to the
eigenvalue problem discussed in Sec. III. %e can
write

T [pl o] = To[pl ~]+»1[» I
~]+O(&')
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We see that G [p,
~
p, '] is not diagonal so we must ob-

tain T[p, ~cr] from T[p.~o. ] via a rotation S

(2.38)

preserving the condition Eq. (2.23). In Eq. (2.38) a

sum over barred configurations is implied. The cal-
culation is quite straightforward. We assume S to be
symmetric and find that G differs from G only by the
absence of the off-diagonal term in Eq. (2.33). One
then has

where a prime signifies the quantity defined in terms
of the coarse-grained p, variables.

For the magnetic susceptibility we find in this case,
making use of Eq. (2.34c) the. extremely simple
result

X =4v]X (2.46)

The Fourier transform of Eq. (2.45) yields the recur-
sion relation for the q-dependent structure factor

C(q) =1+2rgi(q) +sg, (q)

P[p) =P[p][1+0(&')] (2.39) —v'j/ (q) +v'(f'(q)C (2q) (2.47)

which implies, together with Eq. (2.34a), that the
new coupling characterizing the p, probability distri-
bution is given by

where the f'and g functions are essentially cell struc-
ture factors

K' = 2v2Kgo (2.40)
f (q) =1+cosq„+cosqr+cosq„cosq~, (2.48a)

The first-order contribution to T~ [@.~ o-] due to the
rotation can then easily be obtained. and

gl(q) = —, (cosq„+cosqr)] (2.48b)

g2(q) = cosq» cosqy (2.48c)

C. Zeroth-order collective variables

and recursion relations

M;,, [p l = vl p,;+0 (X) (2.41)

We can now derive the recursion relations for the
static correlation functions. With the probability dis-

tribution P[p, ] taken at first order, we need to con-

sider the coarse-grained variables at zeroth order
only. From Eq. (2.15) we easily find, for T = To, the

coarse-grained variables corresponding to a;„
o.;,o. , (i 4 j), and o.;,o, These we call, respec-

l, O

tively, M„[p.], 11' [p, ], and II', [p, ] and are given

by

All wave vectors are measured in terms of the in-
verse lattice constant which is taken to be unity [no-
tice the rescaling in the last term of Eq. (2.47)]. At

q -0 Eq. (2.47) reduces to Eq. (2.46). Notice that
in the limit q 0 the "inhomogeneous" term in Eq.
(2.47) vanishes. Note that in the case J WO then
4v2] —1 —2r —s ~0 and there is an inhomogeneous
contribution to the recursion relation for the suscepti-
bility. This has the consequence that only for f =0
do we map all of the slow mode onto a q =0 mode.

It is also of interest to write down the recursion re-
lations for the short-range correlation functions of
the form

[p.] =v p,2|; /LJ+0( )k (2.42) e(ni, n) = —$(o., o,.+ „. „.)=1
A'

(2.43)

Using the projection operator procedure developed
in Ref. 6 we can work out the recursion relation for
the static correlation functions for

We find for the first few such quantities

e(1, 0) = , r + —,v', e'(1,0)—
e(2, 0) = v2)e'(1, 0)

e(1, I ) = —[s +2m'(1, 0) + e'( I, 1) ]

(2.50)

(2.51)

(2.52)

with

(2.44)
General formulas depend on whether nI and n are
even or odd and we will not write them down here.

Finally we can write down a recursion relation for
the specific heat

we obtain [using Eq. (4.26) in Ref. 61
C„=K kgC (2.53)

where

+sg —vt] (2.45) (2.54)
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~here

(2.55)

and H[o] is given by Eq. (2.1). The lowest order
recursion for C is given by

(Ko to this order) must be obtained from short-range
considerations.

Consider first K'(K). The simplest relation
between K' and K, not involving cell parameters
through v, r, s, which we can obtain from our recur-
sion relations is

+ vf(s —1)e'(2, 0) + vt(C' —2) (2.56)

C =2+3(s —r ) +8v~[vt+2Nt(s+r) —2v~r]e'(1, 0)
e(4, 0) e'(2, 0)
e(2, 0) e'(1, 0)

(2.s8)

D. Determination of the parameters

It is not possible to proceed any further without
specifying the required parameters in the expansions
of K, and KI, Eqs. (2.5).

It follows from Eqs. (2.28) and (2.24) that, to first
order, we need to specify only two quantities Ko and

Kg. Because of Eq. (2.40), specifying Kg is

equivalent to specifying K'(K), once Ko is known as
a function of K. Obviously, to higher order more
parameters are needed, but these can be specified by

generalization of the procedure developed here.
We are guided by two important physical principles.

One is that the following two conditions must be sat-
isifed in order to ensure' that C„" decays to zero ex-
ponentially at large distances

K'~K' (K «1),
K' =2K (K )) 1)

(2.57a)

(2.S7b)

The second physical point is that dividing the system
into cells, cutting bonds, etc. , will lead, in principle,
to very large errors in the determination of the
short-range correlations. Once K'(K) has been ob-
tained in a satisfactory way, the remaining parameters

I

The exact solution to this equation satisfies the
conditions Eq. (2.57) as may be seen from the series
expansion of e(m, n) We. showed in Ref. 6 that an
approximate solution K'(K) which is a good approxi-
mation to Eq. (2.58) and very convenient to use is

given by the relation:

(2.59)

where @=e'"tanhK. The function K'(K) obtained
from Eq. (2.59) leads to very nearly the same numer-
ical results as the more laborious series method solu-
tion of Eq. (2.58). This point is further discussed in

Ref. 6. More importantly we know that the recursion
relation given by Eq. (2.59) gives the exact value of
the transition temperature and the proper flows to
the high- and low-temperature limits under i.tera-
tion. It is completely consistent and certainly a sim-
plification to simply assume that K' = K'(K) is given
by Eq. (2.59). This corresponds to a specific choice
for the zeroth-order form of Kg via Eq. (2.40):
Kg = K'(K)/2vf.

Given K'=K'(K) we can determine the cell
parameter Ko from the short-range behavior of the
system. The shortest range recursion relation avail-
able is Eq. (2.50). In terms of e(0, 1) and e'(0, 1)
Eq. (2.50) yields the result for Ko

go ——tanh2KO = (—2 —e'(1, 0) + [[2+e'(1, 0) ] —16'(1,0) [e'(1,0) —8e(1, 0) ]]'~ )/8e(1, 0) (2.60)

from which one can obtain Ko(K) provided that
e(0, 1) is known as a function of K [and likewise
e'(0, 1) as a function of K']. 1n the present case
e(0, 1) is known exactly, ' but this is not very impor-
tant: the solution to Eq. (2.44) with the exact ex-
pression for e(0, 1) shows that Ko is a very smooth
function of K. We plot in Fig. 1 Ko —2K vs tanhK.
We see that this quantity is small over the entire
temperature. scale. This result could have been de-
duced from high- and low-temperature —series-
expansion results had exact results not been avail-

able.
With all parameters determined, the various static

correlation functions can be evaluated. We postpone
the discussion of the numerical results thus obtained
to Sec. IV. We point out here that, when more ex-
pansion parameters are needed (for higher-order cal-

culations), they can simply be determined as func-

I

tions of K, like Ko, by use of Eqs. (2.51), (2.52), etc.
It seems likely that it is not necessary to use the ex-
act expressions for e(m, n) as a knowledge the
asymptotic high- and low-temperature behavior may

suffice. 4 We now move on to the more complicated
and interesting problem of the dynamics.

O.IO

0.05

N 0
I

C)

-0.05

-O. IO

I I I I I I I I I

0 O. I 0.2 0.3 OA 0.5 0.6 0.? 0.8 0.9 I .0
U

FIG. 1. Eo —2Evs u tanhK,
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III. DYNAMIC CALCULATIONS

A. General considerations

%e now turn our attention to the dynamics. %e
wish to show how the ideas elaborated in the previ-
ous section can be used just as well for the dynamics.
In particular, we will show how the cell parameters in

the dynamical operator can be determined,
As is well known, 4 the dynamics of the kinetic Is-

ing model are given by a stochastic spin-flip operator
(SFO) which can be written in the form

D[a~&r'] = ——$A",a;r ce. ' '
V, [a.], (3.1)

I

D[~~a'] = ——/~i'l, W [~]~ a'
CT& CJ

l

W, [ ir ] = 1 + A i
o.; ir + A 2 rr;"

(3.5)

(3.6)

is the so-called "minimal-coupling operator. " %'e
have from stationarity

A1= —
—, tanh2K, A =A ' (3.7)

and the A,. parameters are constrained by the sta-
tionarity condition that requires that W;[ &r]P [ ir] be
independent of a;. Upon iteration of D[ir~&r'] under
the action of the RG, it is found„ to first order, that
A 2 A 3 and A 4 vanish after one iteration. Hence,
these must be higher-order quantities. This result is

in fact obvious since these parameters couple third-

nearest neighbors. The SFO determined by

where n is the characteristic spin-flip rate and

E,[o]=K $o;+a (3.2)
and it is the operator that we shall use throughout
the present work.

=1+A, cr;(r +A cr;" (3.3)

where

+ A 2 cubi + A 3 cT i (7 i + A 4 0 i

where the sum is over the nearest neighbors of i.
The function V, [o ] depends on the neighbors of ir;,
but not on cr; itself. Expanding the exponential, we

can write6

&;[ir] = V;[ir]e

B. Cell decomposition of the
SFO operator

Our goal in this section is to decompose the
minimal coupling operator in a way consistent with

the decomposition of the Hamiltonian given by Eq.
(2.2), and the expansions of K, and Ki. Once we

have, to a certain order in A. , K, and KI, we must ex-
pand D [irma. l, (or W, [o.]) in a consistent way, so
that the detailed balance and stationarity conditions

n %'
OI = ~oi+s Oi+s +,a a+1

nn %'0 . = ~ a&+s ai+s +2g 0+2
a

CT =0 ~(7 (3.4)

D [ ir
~

o'] P [ ir '] =.D [ (r'
~

&r ]P f (r ]

D [ir~ a]P[a]=0. .

(3.8a)

(3.gb)

(+s
hold at any order.

Again using the cell-site labeling, we have in gen-
eral

lV,.[a] =1+~,.[a, (~,.„+~.. .) +((,(a,„, ,
+ ~.. .„)]+S,a —1 (+0' 1&0+1

+ ((3iri a+1 iri a —I + ((4( iri a ir+. i'
i
+ iri » —i ir.

a
&

i
) + ((5&r.i+S,a —1

' i +S,a+1a' a -1' i+S,a —1 i+S,a+]a' a —1'
(3.9)

where we have decomposed cr and o-;" into intracell
and intercell pieces. At K, = Ki = K we require

I

a, —= tanh2K, and ai = tanh2KI

ac
Bi = [aia, (ai —a, ) —(a, +ai)], (3.11a)

2(a, +ai)

81=82 = A1, B3 = 84 = 8) = A2 (3.10)

ai82= [a i(ae —aai) (a +ai)], {3 1 lb)
2(a, +a, )

[see Eq. (3.7)1. Upon decomposing E;[o] in the way
indicated by Eq. (2.3) and imposing the stationarity
condition, a system of equations relating the Bi's to
E, and El is found. Taking into account the limit
Eq. (3.10) the system has a solution which is, with

3al a~3=
(a, +a, )'

1 aia, (ai2+a,')
(ai+ a, )'

a, a 3

5 (a, +a, )'

(3.11c)

(3.11d)

(3.11e)
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%'e see that only B~ contributes at zeroth order,
that is, only B( appears in the expression for Wo[(r].
This is in contrast with the assumption made in Ref.
6, where both 8] and B3 were included at zeroth or-
der. That assumption leads to inconsistencies. It is
the requirement that B, =0 that determines that

f =0 in Eq. (2.28a). We see that B2, B3, and B4
must be included at first order, but B5 starts at third
order.

C. Dynamic renormalizaton to first order

In addition to Eqs. (2.17) and (2.23) the coarse-
graining transformation, T[p, l(r] must also satisfy
the eigenvalue equation

in Table I. One finds that the smallest eigenvalue
corresponding to an odd eigenfunction is A.

"'
= np(1 —ap). The corresponding eigenfunction is

(3.16)

with Ã] being the normalization factor, which is pre-
cisely the function we chose for our static transfor-
rnation for the reasons discussed in Sec. II B. It is
not surprising that the same transformation is ob-
tained from either static or dynamic arguments. D
basically is a measure of the propensity of a a- config-
uration to be changed by simple spin flips driven by
thermal flucuations. Indeed, D generates the static
correlation structure for this problem through the set
of identities given by

6 T[p la) =D„T[l la] (3.12)
(D F[(r]) =0 (3.1 7)

To zeroth order, Eq. (3.12) is satisfied by the
transformation given by Eqs. (2.26) and (2.27) pro-
vided that %(a;) is taken to be an eigenfunction to
the zeroth-order SFO,

To construct Dp from D, we need, first of all, to
expand o. in the same way as K„K& are expanded in
Eq. (2.4)

a = ao(Z) + a[a —ao(I()1 (3.1 3)

It is important to realize that, while one can ex-
pand a as in Eq. (3.13) it is incorrect [and it leads to
a breakdown of the condition Eq. (3.8)] to choose a
different e for the cell and intercell parts of D .
Again, the ad hoc procedure of Ref. 6 does not take
this into account.

Using the result from Eq. (3.11a), B~~ ———
—,ao

(ap —= tanh2Kp), we can write the zeroth-order opera-
tor

for arbitrary F [a.].
To zeroth order, we thus find that the SFO for the

coarse-grained system is given by

(3.18)

Proceeding to first order we find first the operator
D„which satisfies Eq. (3.17) with T T [see Eq.
(2.30)) and then we can obtain D„by the rotation in--(~)
dicated in Eq. (2.38). The first contribution to D„
comes from the first-order term in the expansion of
o. and ap which is clearly of the same form as the
zeroth-order contribution and which when added
to it merely leads to the replacement o.p op+ X

x (An( —hap" ) [4((~ and () ap"' are defined as in

Eq. (2.7c)]. The second contribution to first order
comes from the expansion of H';, that is

(3.14) (3.19)

W„[a]= I — (r;, ((r—„+(+g.;, ()
ap

(3.1 5)

where

The eigenfunctions and eigenvalues of D [a.la. ']
are easily worked out. The complete set of eigen-
functions and the associated eigenvalues are given where o, is needed only to zeroth order and

(3.20)

W;,"[r] =B(f"(r(~((r;o+, + g.. .) +Bq" g(, (g ~ +a. , ) +B,(+S,a-] a-1'
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TABLE I. We list the solutions to the eigenvalue equation D &i&&("1 =—dna&1&;" . The d&'s are defined as dit(g) = X e&(xnan,

d'p(g) = X e' o o ~i, @p(g) = g e' o o,~q, @3(g)=$ e' 'o io a. ~i, &r, =pa o. with the short-hand notation

fJ'(,a = ~u.

1 (nl/o y(n)

10

12

13

15

16

1 —ap

1 +op

2 (1 —
ai&/ J2)

2(1 + ap/K2)

(3 —ap)

3+op

e2 ],(0)

A'3(t~, (vr/2}

N3(P& (3'/2)

lV5&P) (n. )

1

N6 &b~ 4r + (—&PP —4s)
2

iV, (P2"(m/2}

JV, C 2(3'/2)

w, c,( )

iV, &l,nn( o) / J2
,

t i

q(1 4, ((PNPl g )
'1

11 2 P 2

/V/2[ QQC I (0) + ] 3(0) ]

JV, (]~,(~/2)

JV, ],(3~/2)

1+L(p '

)V)2 [ap(P, (vr) +(b3(n. )]
p,1

—u

Xi6 r@f(0), ——&t&&n(0) —s —o,

&/2

] 1 +L(p

2(1+L(p)

(1+up )'

1 LIQ

&/2

1+up

2(1 —L(p) ] + L(p

(1 + up &/2up)

242 (1 up )

(1+L(p4 ) '/'

2(1 —
L(Q2 )

(1+uii +J2up)

2J2 (1 —
u(~) )

1 f(1 + L(p }(1+ L(p )]'
2 (1 -+ L(Q)(l —

L(p )

L(p(1 + L(p )

(1 —u2)2

and we find from Eq. (3.11)

B)"' ———'ap2a(

B2 = ——aj~(]) I

B3 = aIap(1)

(3.22a)

(3.22b)

(3.22c)

tained:

D "'lp,
~/

'] = ——$A"',/; p, R, +R,/, ' g/, '

I

(3.23)

B4 = —asap2
(3.22cl) Ri = apace+4%i (3r +s)apa& (3.24a)

The averages indicated in Eq. (3.20) are carried out
straightforwardly, and the following result is ob-

),(I)82= — — -a
O!p

(3.24b)
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p 2
0!pQg Qp (1 —ap)1+ap

(3.25)

Expanding everything consistently and introducing
the quantity

one can find an expression for $ in terms of R (z).
As usualp @(q,z) decomposes into a static and a

dynamic part. The static, or mean field, part being
independent of z

we have

[pl p ] = —XA„'„p~t p
I

@(q,z) = pt "(q) + @'~t(q,z)

@
' (q)C(q) = —(cr qD aq)

P'dt (qz ) C (q) = i [ ((—D o q) R (z) (D o q) )

(3.33)

(3.34a)

x b, g&" —X"'2vfut'tpt' Xp,„'+„
a

(3.26)

Clearly, then, D[p,
~ p, '] is of the form (3.6), to this

order. %e can identify the new coupling

—((D o q)R(z)crq)

x C '(q, z) (tr qR (z)D trq)]

(3.34b)

The quantity P"(q) C(q) is the Fourier transform
of

u =2v/utt (3.27)
I",t = (aiD tr;) =. —u(cr;rrt 8';[o.]) (3.35)

which is consistent with Eq. (2.40). The most impor-
tant point is that the form of the SFO is preserved.
The new relaxation rate is given by

1

n'=)E ' +A. hA, ' + A.
'~ —hap' np

Np
(3.28a)

(3.28b)

D. Memory functions and exact results

Before proceeding with the recursion relations for
the dynamic correlation functions, it is necessary and
important to discuss some of their general properties.
The time-dependent correlation functions are defined
as'

D
Cp(t) = (Strte So, )

where 5a; = o; —(o;) is just o; above T, The.
Fourier-Laplace transform of Ctt(t) is

(3.29)

C(q, z) = (a. ,R (z) o., )

trq=iV '" $e ' 'o.

R(z) =(z —iD ) '

(3.30a)

(3.301 )

(3.30c)

where R (z) is the resolvent operator. It is very con-
venient to introduce the memory function @(q,z) by

the equation

[z+i@(q,z)]C(q, z) =C(q) (3.31)

where C(q) =—C(q, t =0). By judicious use of the
operator identity

zR(z) =1+R(z)iD (3.32)

I

Explicit evaluation of the rotation taking T ~ T
shows that it has no effect on D [p, l p, '] and so we ob-
tain to first order in h. the result D [p,

~
p, '] = D[p~ p, '].

T =N-'~' ~&e"
'

if I I (3.38)

The high-temperature series starts out at order A 2

that is, at fourth order in the standard high-

Since W';[a ]P[a] does not depend on a;, I"
&

must
be diagonal. %e have, as a consequence, the exact
result for $"C

@'"(q)C(q) —= I = u[1+4A tq(1, 0) +4Azq(1, I ) ]

(3.36)

which is a rather rapidly decreasing positive
function of the temperature. Near T', therefore,
@'"(q) is dominated by the behavior of C (q).
Considering the characteristic frequency of the prob-
lem for small q, z, co, = @(0,0), we have if we take,
near T„cu,ng * that, when $'d' is neglected
z =zp = ylv which is the conventional result. Stabili-
ty considerations, coupled with the fact that
p'qt(0, 0) can be shown [from its expression Eq.
(3.34b)] to be nonpositive imply that zp is a lower
bound for z, as is well known. More importantly,
we see that in order to obtain a value of z, z & zp, it is
required that ptqt(0, 0) precisely cancels $t't(0) as
T T„a very subtle effect, which in any approxi-
mate method could easily be missed.

The computation of @t t(q, z) C(q) is, of course,
very complicated. A high-temperature series expan-
sion, however, can be carried out. It is trivial to see
that the term in D o-~ proportional to A] does not
contribute and that hence I'dt(q. z) —= qht+(q, z) C(q) is
proportional to A2

I'"(q,z) -=y'"(q, z) C(q)

iAz [(T qR(z)Tq) (T'qR(z)o'q)

x C '(q, z) (o qR (z) T, ) ]

(3.37)
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temperature expansion parameter u
—= tanhA. The

ieading term can be calculated by replacing RP(z) for
R (z) in Eq. (3.37). One obtains

and the functions f (q), g~(q), g, (q) were defined in
Eq. (2.48). The recursion relation for the dynamic
structure factor, C(q, cu) is obtained from Eq. (3.43)
by the use of the relation

I'"(q,z) = I u—'A,'
z +3l0! (3.39)

C(q, &o) = —21mC(q, z = rp+io+) (3.45)

The quantity I t~~(0, 0)/o. , in this approximation,
remains very small in absolute value at all tempera-
tures. We then expect I'"' to have very little effect
on the dynamics, except possibly near T, .

The important point, which we discuss extensively
elsewhere, ' is that the asymptotic dynamic critical re-
gion is very narrow. It appears that there is a broad
region where the static behavior is controlled by its
asymptotic critical behavior but where the dynamics
is still conventional ~ It is this nonuniversal feature
which has led to great difficulties in determining the
asymptotic value of z for kinetic Ising models.

As in the static case, in the q =0 limit the inhomo-
geneous term in the recursion relations vanishes

4 2

c(o,z) = ""c'(o,z') . (3.46)

F. Determination of the parameters

ap, b

In order to proceed any further, the zeroth-order
cell parameters must be specified, which we do in the
next section.

E. Collective variables and dynamic
recursion relations

The recursion relation for the dynamic spin-spin
correlation function is given to lowest order, as
shown in Ref. 6, by

V2C,(z) =—'(C,,'(z')+8,, $(I —8„,)
n z+ is&"'

(3.40)

cx = Ecl = (lp( I ap) (3.47)

In addition, we need a long-time condition for
determining b, . This follows directly from Eq. (3.46)
which in the z 0 limit reads

Just as in the static case (Sec. Il D) the quantities
/J, (E) and n (pnI) tm, ust now be determined. First
of all„one must notice that these two parameters are
not independent. It follows from Eq. (3.28) taken at
zeroth order that

where 6 = n'/n, z' = z/6 and the sum on the last
term extends to all odd eigenfunctions of the opera-
tor D, except for p"'= IIJ. We have defined

X 4&1 X

y(0, 0) ~ y'(0, 0)

Taking into account Eq. (2.46) we have

(3.48)

v„(a) = (trl, ,pi'"'(rr) ) (3.41)
(3.49)

or the Fourier transform

C(q, z) = vtC'(2q, z')f (q)

+$(I —8 t)
"

( )
.(q)

n z+ I) '"' (3.43)

where

f„(q) = —$[ v„'(a) v„(a) +2v„'(a) v„(a +1)g, (q)

+ v„'(a) v„(a +2)gz(q)] (3.44)

In the equal-time limit, the completeness of the set
{P1can be used to show that Eq.. (3.40) reduces to
Eq. (2.45) [note that C, . =Iim, zC, , (z)1. It

is sometimes convenient to use the time and space
representation

C, , (r) = vice(r')+gi
i,a;j,a

x $ ( I —8„))v„'(a) v„(a') e " " ', (3.42)

A direct calculation, making use of the relation Eq.
(3.37), shows that $'+ does not contribute to the ra-
tio on the right-hand side of Eq. (3.49) to lowest or-
der X. We, therefore, are led to

I +4Aie(1, 0) +4Aza(1, 1)
4vzt 1+4At'a'(1, 0) +4Az e'(1, 1)

(3.50)

where we have taken into account Eqs. (2.46) and
(3.36).

Naturally, this implies that to this order we obtain
z =y/v. The corrections to this result would appear
oniy at higher orders in X. From the fact that @'"'
must indeed be very small at any T ) T„ it is clear
that the determination Eq. (3.50) should yield good
results for the correlation functions at all T ~ T, .

Another interesting consequence of Eq. (3.50) is
that the recursion relation (3.46) can be solved exact-
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ly with the result

C(0,2) =
z + iy" (0)

(3.51)

200—

(a)

Therefore, the time-dependent correlations at q =0
are trivially obtained from X which, of course, is ob-
tained from its own recursion relation Eq. (2.46).

We now have all the ingredients we need to solve
the static and dynamic recursion relations. This we
do in the next section.

I00—

IV. NUMERICAL RESULTS

The recursion relations can now be straightforward-
.ly iterated to obtain the physical quantities of interest.
The general procedure was described in Ref. 6. We
wish to focus our attention here on the differences
between the results obtained by the use of the
present systematic procedure, and those obtained in

Ref. 6, and will not discuss in any detail those cases
where there is no significant difference.

We consider first the static quantities. A very sim-

ple calculation involves the determination of the criti-
cal values of the short-range correlation functions
e(2, 0) and e(1, I) which satisfy the recursion rela-
tions (2.51) and (2.52), respectively. We easily find
for e(2, 0) at 7; the value to be 0.5988. This com-
pares very well with the exact value I —4l~'
-0.5947. The approximate value for a(1, 1) is found
to be 0.6198 which is to be compared with the exact
value 2/n =0.6366.

In Fig. 2 we have plotted the magnetic susceptibili-

ty X. At the scale of Fig. 2(a), our results are indis-

tinguishable from those obtained using the best nu-

merical estimate. "'~ In Fig. 2(b) we show that very
close to T, a slight difference actually exists. Howev-

er, the present results are appreciably closer to those
of Ref. 12 than the results of Ref. 6. The maximum
discrepancy between our present values of X and the
best numerical estimate is 6% in the range
0.400 & u (0.413, and it falls to less than 3% out-
side of that range. We find the value of the ex-
ponent y is 1.760, in good agreement with the exact
result (y=1.75).

In Fig. 3 we display the static structure factor
C(q) [from Eq. (2.47)] at temperatures close to T,
for several small values of q. For comparison, the
results of Ref. 6 and the best numerical estimates
from series expansions' are also exhibited. The po-
sition of the maximum in C(q), and its variation
with q are now in very close agreement with Ref. 12.
Overall, the agreement is rather better than that ob-
tained in Ref. 6, even though the value C(q,„) is a
little lower. The critical exponent q is now 0.240
(exact result: q=0.25). We see, then, that the
agreement between the RG and the series methods is

50—

O. I 0.2 0.5 0.4

(b)

10000

F000

] Il00
5 6 7 8 9 lo Il l2

FIG. 2. X vs u —= tanhK in two temperature ranges. Solid

line: this work. ln (b) the dashed line is the result of Ref.
11, and the u axis S, 6, etc. , indicate 0.405, 0.406, etc.

somewhat improved by the use of the systematic ex-
pansion.

We turn next to the calculation of the specific heat
using the recursion relation given by Eq. (2.56). We
note immediately the C does not diverge at T, . We
obtain that C =7.5826 at T, . We have then that the
exponent o. =0. In Fig. 4 we plot our approximate
specific heat versus the exact result, Despite the fact
that our simple approximation does not reproduce the
logarithmic singularity at T, the overall agreement as
a function of temperature is quite acceptable.
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13). Solid line: present results in the critical limit. Dashed
line: present results in the hydrodynamic limit.
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fixed q as a function of co for several temperatures.
The analysis of the critical region is identical to that
of Ref. 6. All scaling relations are satisfied. Some of
them are, in fact, trivial. It follows for example from
Eq. (3.51) that C(q =0, ru) at T= T, diverges as ru

'
in agreement with the proper scaling behavior
C(0, ru) uru "+' ~'r' since z =2 q in our c—ase.

It is also necessary to recalculate the shape func-
tion' in the hydrodynamic regime. This can now be
done analytically with the help, again, of Eq. (3.51)
and the result, which is Lorentzian, is plotted in Fig.
7. The shape function in the critical regime (which is
little changed from Ref. 6 is also plotted).

In conclusion the results of this systematic study of
the RG cell expansion are extremely satisfactory.
The static results appear to be extremely close to the
best series-expansion results. The dynamic results
satisfy all expected scaling relations and have the
correct high-temperature limit. For the first time,
dynamic results for the correlation functions have
been obtained within a consistent expansion method.

—u= 0.10
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