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A classical d =2 anisotropic Heisenberg antiferromagnet is studied in the presence of a uni-

form magnetic field (0) along the easy axis. Ground-state properties are determined exactly,
and expected low-temperature behavior is calculated for the antiferromagnetic state using first-
order spin-wave theory and for the spin-flop state using a modification of the harmonic approxi-
mation used by Berezinski for the classical XYmodel. Extensive data are obtained from Monte
Carlo simulations on L x L square lattices with periodic boundary conditions and nearest-
neighbor coupling J&/J[[=0.8. The phase diagram agrees with the predictions of renormaliza-

tion-group theory: The antiferromagnetic state is Ising-like, and the spin-flop phase shows

behavior similar to the two-dimensional XY model and the two-dimensional isotropic Heisen-

berg model in a field. However, the existence of biconical or bicritical points at finite tempera-
ture could not be confirmed. Spin-wave therory and the modified harmonic-approximation
theory for the spin-flop state are valid only at extremely low temperatures.

I, INTRODUCTION

The moderately anisotropic Heisenberg model is a

simple example of a system which exhibits bicritical
behavior' ' and which provides a useful starting point
for understanding the behavior of physical systems.
The simplest (uniaxial) form of the model is

X J X[(1 6)(sjgsj»+s,ysgy) +$(zsgzl +0)( $s;z
(.ig) I

where s; is a unit vector in the direction of the clas-
sical magnetic moment at site i, 4 is the uniaxial an-
isotropy, and the sum (ij) is over all nearest-
neighbor pairs. The behavior of this model has been
studied in detail using mean-field. theory' ' and in

three dimensions using renormalization-group
theory"' and Monte Carlo computer simulations. '
The studies showed that the low-temperature, low-

field ordered state is a two sublattice antiferromagnet
(AF) which is separated from the paramagnetic state
(P) by a line of second-order phase transitions. Only
the z component of the fluctuatioris becomes critical
along this line and the critical exponents are thus the
same as a system with spin dimensionality n = I (Is-
ing). At sufficiently low temperatures the system un-

dergoes a first-order transition to a canted "spin-
flop" state (SF) as the field is increased. The SF
state is separated from the P phase by a line of
second-order transitions which are characterized by

n =2 (XY-model) exponents. The point at which the
AF and P phases become simultaneously critical is
termed the "bicritical point" and has critical behavior
described by Heisenberg ( n = 3) exponents in three-
dimensional systems [see Fig. 1(a)].

In this paper we shall consider the behavior of the
anisotropic Heisenberg model in two dimensions,
General arguments would lead us to expect that the
spin-flop phase should behave like a two-dimensional
XY model (n =2) and thus show no long-range or-
der. ' This model is likely to correspond most closely
to a physical magnetic system capable of exhibiting
two-dimensional XY-like behavior since it requires
only that the system be quasi-two dimensional with
negligible coupling between different layers. A reali-
zation of a true XY (or plane rotator) model would
occur only if the single ion uniaxial coupling or aniso-
tropic exchange were sufficiently' large and of the
right sign in addition. Possible physical realization of
this model are the antiferromagnetic layer com-
pounds" of the type (CH2)„(NH3)2MnC14.

The behavior of this model in the region where the
AF and SF phases "meet" is not clear in two dimen-
sions. If a simple bicritical point occurs, it would be
expected to have the character of a two-dimensional
Heisenberg model which is now believed to be at
T =0. In this case the phase diagram looks like Fig.
1(b) instead of Fig. 1(a). An e-expansion
renormalization-group calculation indicates that a new
tetracritical biconical point is stable in systems with
spin dimensionality n ) n"-2.8 for d =2. If this es-
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trasublattice (e.g. , next-nearest-neighbor) coupling is
included.

In this paper we shall present results of extensive
Monte Carlo calculations which can be used to deter-
mine the phase boundary and to test some of the
above predictions. In Sec. II we shall describe
theoretical calculations appropriate to the low-

temperature region. Section III provides information
about the simulation techniques used. In Sec. IV we
shall present simulation results which will then be
analyzed and compared with theory.

II. THEORETICAL BACKGROUND
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At T =0 this classical model can be solved exactly. '
The energy of the paramagnetic state is

3'~ = Nqj(1 ——2hll) (2)

where hll=HllrrqJ, and q is the coordination number;
and for the antiferromagnetic state

1
AF = —,&qJ

FIG. 1. Possible phase diagrams in the H~~T plane.
Second-order boundaries are shown by solid curves and
first-order boundaries by dashed lines. The phases shown
are denoted by: AF antiferromagnetic; P—paramagnetic;
SF—spin flop; BC—biconical. (a) A bicritical point occurs at
Tb', (b) a bicritical point is at T =0; (c) a biconical tetracriti-

cal point appears at T4 and a bicritical point occurs at Tb,
and (d) a tricritical point appears at T, and a critical end

point at T,E,

timate for n" is accurate we would expect that the
phase diagram should look like Fig. 1(c), where the
bicritical point Tr, could be at T =0. (We ignore here
the decoupled tetracritical point which is expected to
be valid only for n ) 11.) Another possible phase
diagram is shown in Fig. 1(d); such behavior is in

fact predicted by mean-field theory4 but only if in-

For the spin-flop state the energy is

1
2

+sF= NqJ 1 b+
2 2 —5

By comparing these energies we find that the
AF SF transition occurs at a critical field

h„=[~(2-~)j'"
and the SF P transition at

h, 2 =.2 —6

For the AF phase we can use first-order spin-wave
theory' to study the temperature dependence of the
bulk properties. %e find that the magnetizations of
the two sublattices are

r r 1/2
kT 1 —

hei 1 1
m, =1-

1 +hll A k (1 hll ) (1 4)y(k)
r 1/2

kT 1+hei 1 1m„= —1+
1 —

hll A' k (1 —h2)'" —(1 —4)y(k)

(7a)

(7b)

where
i k ~ r

I)

M = —(ml+ mtt)
1

1
m =

2
(ml mll)

(9a)

(9b)

y(k) = — X e
~ NN pairs

(iJ)

The reduced magnetization Iand sublattice mag-
netization m are then

From Eqs. (8) and (9) we find

Mll/hll(1 —mll) = 1 (10)

i.e., the ratio is independent of T, H~~, and L within
the context of first-order spin-wave theory.

The treatment of the SF phase is more complicated
than that of the AF state. In particular, if the state
does behave like a two-dimensional XYmodel, there
is no long-range order and spin-wave theory is inade-
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quate. We can, however, adapt the harmonic approx-
imation' used for the plane rotator in the following
way. We first transform the spin components into
polar coordinates:

The SF ground state obtained from Eq. (13) has

@;=0, 8; =cos ' (Hp/[qJ(2 —5) ] }. If we then ex-
pand up to quadratic terms:

and

s;, =cosH;

s„=sin 8; cos$;

sly
= sin H; sin@, i 6 sublattice 1

I

(I la)

(I I b)

(I I c)

cos(y, —4, ) = I , (—y—, y, )—'+1

cosH; =cosH —sinH(HI —8) —
—, cosH(8; —8)'+

(14a)

(14b)

Sig = COSH;

s„=—sinH, cos$;

s~ =sinH;sin@;, i C sublattice 2

(12a)

(12b)

(12c)

The Hamiltonian [Eq. (I)] may then be rewritten

X = —J g [ (I —5) sinH, sinH& cos($; —
Q&)

(ij)

sinH; =sinH+cosH(8; —8) ——, sinH(8; —8)'+

(14c)

and insert these expressions into Eq. (13) we find
that keeping only terms of second order the Hamil-
tonian becomes

X=X,+ X, ( (y, })+X,( (8,})
cosH; cosHi] Hp QcosH; (13)

where

Xp =
2

JVqJ [(1 —5) + (2 —d ) cos28] (16a)

(16b)

X2= —
2

qJ(1 —6) $(8;—8) —J $ [(I —5) cos 8+sin'8](8; —8)(8J —8)
I (i,f)

(16c)

Note that in this approximation the fluctuations in the longitudinal degrees of freedom (8;} and the transverse
ones (8,} are not coupled. Hence, Eq. (16b) just corresponds to a planar model with modified exchange constant

J'= J(1 —&) [I —(h/h, 2)'] (17)

and

kT /J'=const =kTxr/(J(1 —6) [I —(h/h, 2)']}

where T," is the critical temperature of the planar model of Kosterlitz and Thouless. "
This expression cannot be correct for small fields since it shows no instability at the lower critical field h, &. Us-

ing Eqs. (15) and (16) we find that the free energy in the limit of large fields can be approximated by

f = kT ln sinH ——qJ—[(I—6) + (2 —5) cos'8] +f~l (J(1 —5) (I —h'/h, 2 ) } +f~i (J(1 —6) } (19)

where f~i (J'} is the free energy of the planar model
with coupling J'. From the work of Berezinski" we

find

l

we can rewrite Eq. (19)

f = —
2

qJ[(1 —5) +(2 —6) h /h, 2] —2kT Inconst

f~I (J'}= kT ln const + , kT in(2—7rJ'/kT)—(20) + kT In[2m J ( I —5)/k Tl (22)

and since the appearance of the spin-flop state at
T =0 means that

ln sinH = —In(1 —h2/h )2 e2
(21)

From Eq. (22) we see that the term which is linear in

T is independent of h. This means that the magneti-
zation and susceptibility will have a temperature
dependence determined by terms of order T2 and
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higher: tions. For example, the order parameter is given by

M=h/h, 2+0(T )

1

4J(2 —5)
The thermal properties are then given by

(23a)

(23b)

R .' &/2

mII =

1
mg =

2 QS~elX

(26a)

S = —k ln
2~J(i -~)

kT
+2k ln const —k, (24a)

k R ' 1/2+ gsye (26b)

C=k (24c)

U = —~ (l —6) +(2 —6) +kT, (24b)J A

2 h, 2

where ko describes the periodicity of the antifer-
romagnetic ground state and the angle brackets
denote averages. Fluctuations in the bulk properties
are used to determine thermodynamic response func-
tions

III. MONTE CARLO BACKGROUND

In the simulations we generate a Markov chain of
spin configurations using a set of transition probabili-
ties which satisfy the conditions of detailed balance.
e have studied L x L square lattices with periodic
boundary conditions. The initial spin configuration is

varied in order to allow investigation of possible me-
tastable states. and relaxation effects. Each lattice site
is considered in turn and given the opportunity to
"flip" to a new randomly chosen orientation with a
corresponding change in the energy of the system of
b, E. If e ~ exceeds a random number p is the in-

terval 0 (p (1, the change is carried out; otherwise
it is rejected. One Monte Carlo step per spin (MCS)
corresponds to the "time" required to consider each
lattice site once. In order to reduce the computing
time required, the same procedure is carried out
simultaneously using the same random numbers for
four lattices with different values of field and tem-
perature. At very low temperatures this procedure is
inefficient since most randomly chosen new spin
directiops involve an amount of energy AE which is

large compared to kT. For very low-temperature
studies we then modified the algorithm to allow a

spin%; attempt to flip to a new position S; which lies
within a cone about the original direction, i.e.,

S.ia r

S; +A)

$(S,.+ ag. )'
T 1/2 P

where a refers to the Cartesian spin component, f is

a random number lying between —1 and +1 and is
chosen separately for determining each spin com-
ponent, and 4 limits the maximum possible change,
In practice we choose 4 =O.ST. The method is
described in more detail elsewhere. t3'~ Quantities
such as the internal energy E, magnetization I, and
order parameter m are determined directly from the
average of these quantities over many spin configura-

C
k

L2
(&E') —(E)') .

((M') —(M)')

L
T

(mii ) ~

(27a)

(27b)

(27c)

LXq+= (m~ )T
(27d)

IV. RESULTS AND DISCUSSION

A. Results in the HIIT plane

A ntiferromagnetic state

The behavior of the antiferromagnetic (AF) phase
and the transition to the paramagnetic (P) state were
studied along paths of constant field and along paths
where Hq/Twas held fixed. Typical runs were made
by averaging over 400 MCS obtained for a given
starting configuration and then repeating the calcula-
tion using one or two additional starting configura-
tions. In order to study the zero-field critical
behavior, however, it was necessary to average over
at least 2000 MCS in the vicinity of the transition.
Data for the order parameter (staggered magnetiza-
tion) are shown in Fig. 2 for three paths of constant
field. The behavior is qualitatively similar in all three
cases. At low temperature the order parameter falls
off slowly with temperature in agreement with first-
order spin-wave theory. However, the decrease in
the order parameter with increasing temperature
quickly becomes much more rapid that the spin-wave
prediction. At higher temperatures still the order
parameter shows a rapid dropoff for all lattice sizes,
indicative of a phase transition to the paramagnetic
state; the ratio of T, at which the transition occurs
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FIG. 4. Temperature dependence of the magnetization
along paths of constant field. Data are shown for L = 10

(A); L =20 ( ~); L =40 (5); L =100 (X). The dashed
lines show the predictions of first-order spin-wave theory for
L =40. Arrows indicate our estimates for T, (H).

FIG. 2. Temperature dependence of the antiferromagnet-
ic order parameter along paths of constant field. Data are
shown for L =20 (); L =40 (4); L =100 (J). Solid
curves show the estimated infinite lattice behavior. The
dashed lines show the low-temperature spin-wave predic-
tions for L =40.

-0.5 H(, =0

decreases monotonically as the field increases.
Above the transition the finite system size gives rise
to a short-range-order "tail" which decreases with in-

creasing system size. The variation of the internal

energy with temperature is shown in Fig. 3 for the
same three paths of constant field. The low-

temperature behavior of the internal energy is virtu-

ally identical for all three paths. Here too the predic-
tion of first-order spin-wave theory is valid only at
extremely low temperature. Inflection points appear
at T, (H) but the curves show no dramatic features.

Results for the magnetization along constant field

paths are shown in Fig. 4. Again first-order spin-
wave theory is sufficient only at very low tempera-
tures; the transition is marked by inflection points.
Finite-size effects are not marked for either the inter-
nal energy or the magnetization.

In Fig. 5 we test this spin-wave relation given in

Eq. (10) for three field values. Although the data do
all apparently lie upon a single curve, they do show
deviations from the prediction even at low tempera-
tures.

The critical behavior in zero applied field is exam-
ined in Fig. 6. The asymptotic behavior of the order
parameter is well described by the Ising exponent

P = —and a critical amplitude B =0.75. Farther away

from T, the order parameter deviates above the
asymptotic form. Fluctuations in the high-
temperature ordering susceptibility were quite pro-
nounced. Outside a region very close to T, where
finite-size effects were pronounced, the data are quite
consistent with the Ising exponent y = —with a criti-
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0.20—
H„()-m„)

oo+
0 ~t0

0

FIG. 3. Temperature dependence of the internal energy
along paths of constant field. Data are shown for. L =10
(k); L =20 (); L =40 (5); L =100 (X), The solid

-curves show the infinite lattice behavior. The dashed line
shows the prediction of first-order spin-wave theory for
L =40. Arrows indicate our estimates for T, (H).

0.100 I I I

kT/J
I

0.5

FIG. 5. Low-temperature behavior of the antiferromag-
netic state. Data are for H/J =0.5 (); H/J =1.0 (+);
H/J =1.5 (0). The arrow shows the spin-wave asymptote.
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50

FIG. 8. Temperature dependence of the critical magneti-
zation MII.

cal amplitude of C+=0.2. %hen a small uniform
field is added the Ising exponents continue to provide
an adequate description of the critical behavior, but
as the field increases the order-parameter amplitude
goes down and the susceptibility amplitude gets
larger. The variation of the critical temperature with

applied uniform magnetic field is shown in Fig. 7.
The low-field variation is well described by

0,2- [T,(H =O) —T, (H)] . (28)

The corresponding values of the critical magnetiza-
tion M' at the AF P phase boundary are shown in
Fig. 8.

2. Spin-flop state

20

io

0
X Z T 8

00 0.5
kT/J

FIG. 7. Phase diagram in the HII —T plane. Closed circles
show the AF P transition and open circles the SF P tran-
sition. The solid lines show fits to asymptotic high-field and
low-field behavior.

The properties of the spin-flop state and the transi-
tions to the paramagnetic state were studied along
paths of constant field. The transverse order parame-
ter showed substantial fluctuations and decreased
steadily with increasing lattice size even at low tem-
peratures. %e interpret this behavior as indicating
the absence of long-range order in the therrnodynam-
ic limit. Since order in the spin-flop state is described
by a two-component order parameter, simple univer-
sality arguments suggest that the SF state belongs to
the universality class of the XY model. Since the
two-dimensional XY model does not show long-range
order the observed behavior is no surprise. The tem-
perature dependence of the internal energy for two
field values is shown in Fig. 9. The low-temperature
behavior is well described by the harmonic approxi-
mation prediction of Eq. (24). The data show only a
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FIG. 9. Temperature dependence of the internal energy
for the SF state along paths of constant field. Data are for
L =20 ( ~ ); L =40 (b, ); L =100 (X). The dashed lines

show the low-temperature theoretical prediction of Eq. (24).

slight increase in slope at higher temperatures sug-

gesting that the specific heat is nondivergent. The
magnetization shows essentially no effect at all at the
phase boundary [as shown in Fig. 10(a)]. A careful
study of the low-temperature behavior of the magnet-
ization shows that deviations from the predicted con-
stant value [see Eq. (24)] occur rapidly. We have
also investigated other properties of the spin-flop
state to see if they are consistent with the harmonic p = R exp( 2p/kT)— (29)

approximation. Equilibrium spin configurations were
examined for indications of vortex behavior in the
XY plane. in Fig. 11 we show the projection of the
spin onto the XY plane of a 20 x 20 section of a
L =40 lattice with H/J =4.0 and kT/J =0.3. This
figure shows substantial spin-wave "noise" with no
obvious vortexlike behavior. %'e have adopted a pro-
cedure suggested to us by Thouless, " and since used
by Chester and Tobochnik, ' to analyze the spin state
for vortices. The vorticity in a given region is deter-
mined by traveling around a closed loop (in practice a
square of nearest-neighbor sites) and adding the rela-
tive angular difference between spin directions
around the loop. A net difference of 0 indicates no
vorticity whereas net differences of +27r and —2m in-
dicate positive and negative (anti) vorticity, respec-
tively. Since the nearest-neighbor interaction is anti-
ferromagnetic it was necessary to add a phase angle
of m to successive corners. The small circle shown in
Fig. 11 is the center of a vortex-antivortex pair which
is easily located using this prescription. Figure 12
shows the change in vortex behavior with increasing
temperature: the number of vortices rapidly goes up
and in addition to pairs larger clusters begin to form.
Eventually the vortex pairs begin to unbind as the
number of vortices continues to increase. According
to the Kosterlitz-Thouless theory" this unbinding sig-
nals the phase transition. The theory also predicts
that the low-temperature density of vortex pairs p is
given by

(a)
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& ~b,)Qkh ~ ~
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J
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~ —=3.0J
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J
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FIG. 10. Temperature dependence of the magnetization for the SF state along paths of constant field. Data are shown for
L =10 (b ); L =20 ( ~); L =40 (b, ); L =100 (X). The dashed line shown in (a) shows the approximate location of M~'] vs T.
The arrows in the high-resolution low-temperature results shown in (b) shows the predictions from the modified harmonic ap-
proximation IEq. (23a)].
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FIG. 11. Projection of spins onto the XY plane for
HlljJ =4.0. and kTjJ =0.3. Results are for a 20&&20 seg-
ment of a 40 x40 lattice and the circle shows the center of a
vortex-antivortex pair.
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where 2 p, is the energy needed to create a vortex
pair. In Fig. 13 we have plotted log~op vs T ' and
find that Eq. (29) is valid for the spin-flop state but
with a value of 2p, which is field dependent. The
modified harmonic approximation model developed
in Sec. II relates the behavior of the spin-flop model
to that of a plane rotator with modified coupling

FIG. 13. Vortex-pair density in the SF state. The insert
shows the variation of the pair creation energy 2p, normal-
ized by the effective interaction J' =J(1 —b, ) [1 —(h jh, 2) ]
{see Sec. II). The arrow shows the pair creation energy for
the XY model.

J'= J(1 —6) [1 —(h//t, )2]; hence we have normal-

ized the values of 2p, by dividing by J'. These nor-
malized values, which are sho~n in the insert in Fig.
13 suggest a slight increase in 2p, with decreasing
field. All of these creation energies are much less
than the value of 2 p, —10 estimated for the plane ro-
tator. This is not surprising since the spins in the SF
state may simultaneously tip into the +Z directions
awhile forming a vortex. This has the effect of reduc-
ing the vortex core energy below what would be
needed if the spins were contrained to the XY plane.
Our results are much closer, however, to the corre-
sponding result which we obtain for the XY model for
which reduction of core energy is also possible. The
Kosterlitz-Thouless theory" predicts that the high-
temperature susceptibility diverges as

OO
4

pe
0 xT =A exp[ —b(T —T, ) "]

kT/J =0.4

~8 0 ao

0 Q ~ g
I!

kT/J=G45

FIG. 12. "Snapshots" of vortex behavior in SF state for
L =40, H[ljJ =4.0. Open and closed circles depict vortices
and antivortices, respectively.

with v' =0.5. In Fig. 14 we test the high-temperature
behavior for H~~/J =4.0 with respect to Eq. (30). The
data show extremely pronounced finite size rounding;
this observation is consistent with a correlation length
which diverges exponentially fast as predicted by
theory. For kT/J «0.5 the data are well described
by Eq. (30) with b =1.21 and A =0.23.
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FIG. 14. Behavior of the high-temperature transverse
susceptibility for H~~/J =4.0. Data are shown for L =20
( ~); L =40 (~).

3. AF~ SF transition?

In Fig. 1 we show several possible phase diagrams
which show either a first-order AF SF transition or
two second-order transitions: AF P followed by
P SF. In three dimensions the first possibility was

identified as the correct one based on our observation
of relaxation time effects at and near the transition.
In Fig. 15 we show magnetization isotherms obtained
upon going from the AF to the SF state by increasing
the field and by then reducing the field to reenter
the AF state. Hysteresis is seen at all four tempera-
tures although it becomes particularly pronounced at
low temperatures. By repeating this procedure but
with both the number of MCS initially discarded as
well as the observation time doubled, we see that the
hysteresis loops become narrower. (Upon reentering
tha AF phase in an L =20 lattice at kT/J =0.1 we
found a metastable biconical state appeared in which
one of the sublattices was canted. Here the hys-
teresis loop did not close up. Data for L =40 showed
this to be a finite size effect). Relaxation effects
were studied for much longer times for kT/J =0.1

and the results are shown in Fig. 16. A similar study
for the equivalent three-dimensional model showed
that when we crossed the phase boundary the equili-
brium magnetization was reached by a rather distinct
two-step process. In contrast the present data show
only a very weak shoulder for the AF SF transition
and no hint of a step process for the SF AF transi-
tion. We interpret these data as supporting the idea
of two second-order transitions which lie very close
together and which give rise to extremely long relaxa-
tion times. We nonetheless cannot exclude the possi-
bility that a biconical tetracritical point occurs but
with the biconical phase existing over a very narrow
field range. Because of long relaxation times the true
equilibrium behavior may be very difficult to ob-
serve.
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FIG. 19. Temperature dependence of the high-

temperature transverse susceptibility xhi& for L =60 plane

rotator (+) (taken from Ref. 16); and for an L =40 XY
model (0). The data are plotted using kT, /J =0.9 for the

plane rotator and kT, /J =0.725 for the JY model.

FIG. 20. Phase boundary for the isotropic (6 =0)
Heisenberg antiferromagnet in a uniform magnetic field.

IOO—

Although the qualitative features of the XY model
and plane rotator transitions are the same, it is there-
fore not surprising that quantitative differences do
occur.

IO I

D. Behavior of the isotropic Heisenberg
antiferromagnet in a uniform field

%e have also studied the behavior of the isotropic
(5 =0) antiferromagnet in uniform fields between
H/J =0.01 and 7.0. This is a model which has a bi-

critical point (at H =0) which is of strictly isotropic
Heisenberg character. The character of the bicritical
behavior changes when 6 0 since the AF phase
disappears but the SF state stays the same. In all

cases vortex behavior was observed which was quali-
tatively identical to that seen in the XY model and
5 =0.2 SF phase. From the vortex-pair unbinding
we have estimated the transition temperatures plotted
in Fig. 20. The results for H/J =0.01 indicate that
T, (H) approaches zero extremely slowly as H 0.
In Fig. 21 we show the temperature dependence of
the vortex-pair density. The normalized vlaues of
vortex-pair formation energy 2p, /J' show a definite
maximum as a function of 8 and then decreases

IO-

I 0'
I

2p.= 5.0

J
kT

FIG. 21. Temperature dependence of the vortex-pair den-
sity for the isotropic (5 =0) Heisenberg antiferromagnet in

a uniform field. The insert shows the variation of the pair
creation energy 2p, normalized by the effective interaction
J'= J[1—(h/h, ) l (see Sec, II). The arrow shows the pair

creation energy for the XY model.
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dramatically as H 0, A comparison of Fig. 21 and
Fig. 13 shows that the dependence of 2p/J' on
H/H, 2 is quite similar.

V. CONCLUSIONS

The behavior of a simple model Hamiltonian for
classical two-dimensional anisotropic Heisenberg anti-
ferromagnets has been investigated by extensive
Monte Carlo computer simulations. We find a low-
field AF phase with Ising-like critical exponents. The
low-temperature properties of this phase are
described by first-order spin-wave theory but devia-
tions become important at extremely low tempera-
tures. The SF state shows behavior which is general-
ly described by the Kosterlitz-Thouless for the two-
dimensional planar model. We find no long-range
order but instead vortex-pair excitations involving the
transverse spin components. We have developed a
harmonic approximation theory which maps the SF
phase onto the plane rotator theory of Berezinski.
We find that this approach is unsatisfactory and at-
tribute its deficiencies to the neglect of fluctuations in
the z components of spin. This is borne out by simu-

lations on the XY model. The nature of the transi-
tion between the AF and SF phases is still unclear.
Our data show a distinct umbilicus but we cannot ex-
clude the possibility that it terminates at a biconical
tetracritical point instead of a bicritical point. For
comparison, we have carried out studies on the field
induced SF state in the isotropic Heisenberg model
including near the H =0 bicritical point. The SF
phase in this model is similar to that in the anisotro-
pic antiferromagnet. The transition temperatture ap-
proaches zero very slowly and the vortex-pair creation
energy also decreases as the field approaches zero. A
more definitive description of the "spin-flop line"
will require extremely long simulations on quite large
lattices and will be reported later.
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