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Low-energy density of states for disordered magnetic chains
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We extend earlier calculations of the low-energy density of states of a disordered magnetic

chain to a third and intermediate class of random nearest-neighbor exchange interactions. In

this intermediate class the probability of a zero-exchange interaction tends to a nonzero con-

stant. We calculate the density of states for systems belonging to this intermediate class using

the coherent-potential approximation and compare the results with those of exact numerical cal-

culations on finite arrays. The existence of a logarithmic correction predicted earlier is estab-

lished.

I. INTRODUCTION

In a recent paper Bernasconi, Schneider, and Wyss'
derived, among other quantities, the density of states
for a disordered one-dimensional chain where the
disorder is characterized by random nearest-neighbor
exchange interactions. The authors considered a
model system which is equivalent to that described by
the following infinite set of linearized equations of
motion for the spin-raising operators associated with
the Heisenberg Hamiltonian —2 X„J„,„+tS„S„+&.'

i
" =2J„ t „S(U„)—U„)+2J,,„+)S(U„+t—U„)dU„

dt

Here J„„+~= J„+~„are independent non-negative
nearest-neighbor exchange interactions between sites
n and n +1 distributed according to some given prob-
ability distribution P(J), S is the spin, and
U„=s+/S'i2 is the (normalized) spin-raising operator
at site n.

The authors of Ref. 1 solved the above set of
equations for U„(~), the Laplace transform of U„(t),
by considering an electrical network analog. The
density of states N(e) is then given by

class (ii);

P(J) = (I —~)J-, 0(n(1, O~J~I
0, otherwise (4)

Notice that as J goes to zero class (i) P(J) goes to
zero whereas class (ii) P(J) go to infinity. Most dis-

tributions P(J) of interest for physical problems be-

long to one of these classes.
At low energies it was found that systems belong-

ing to class (i) show universal behavior resembling
an ordered system in that N(e) = e 'i whereas class
(ii) systems show nonuniversal behavior with

N(e) =a 'i' ', i.e., N(a) for a class (ii) systems
depends on the parameter o. characterizing the proba-
bility distribution for J.

In this paper we consider a disordered magnetic
chain characterized by a probability distribution for J
which is intermediate to classes (i) and (ii): class
(iii); P(J) such that

limP (J) = const = Po W 0J~
We solve for the density of states for systems belong-

ing to class (iii) using the coherent-potential approxi-
mation (CPA) and compare the results with data ob-
tained from exact numerical calculations on finite ar-

rays. '

N (a) = Im[ ( Uo( —a+i 0+) ) ] (2)

where the average ( ) is defined with respect to

the distribution of the J„„+~. The authors considered
two classes of probability distributions for J: class

(i); P(J) such that

dJJ 'P(J) ( ~
&0

II. CPA APPROACH

The coherent-potential approximation, as devel-

oped by Tahir-Kheli, 3 and Foo and Bose,4 can be
used to calculate an analytic approximation to the
density of states of a disordered magnetic chain
characterized by a class (iii) distribution for J. Huber
and Ching' have recently applied the CPA to systems
belonging to classes (i) and (ii) and they have ob-
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tained a low-energy density of states for each class
which is in excellent agreement with the exact results
of Bernasconi et al. '

In the CPA we consider a magnetic chain to be
described by an effective Hamiltonian which retains
the symmetry of a perfectly ordered chain and is
characterized by a coherent energy-dependent ex-
change interaction J,(s). The coherent exchange in-

teraction is calculated by requiring that the net
scattering from a single scatterer J„„+~inserted in the
chain must vanish. That is, we require the average
(T) of the t matrix to be zero.

This leads to a self-consistent constraint equation
for J,(e),

0
O.O I O. l I.O IO

FIG. 1. Results of a numerical solution to constraint Eq,
{12)for J,{e). (a) (Re(J,)];(b) Im(J, ) X10,

lim, Re{J, ) =
2

. Im( J, ) =0 for ~ & 3.18.

and hence at low energies we have

From the complex root J,(e) of Eq. (6) we obtain
the density of states,

—inc (14)

N(e) = 1m[fr' —4sJ, (s)] '']

Pp, 0«J «bP(J) =
0, otherwise

(9)

From constraint Eq. (6) we have

,

&~ dJPO[(J J,)2f —1+1]—
1 —(J-J,)2f (10)

Pp, dJ
2f "o J —(J, +I/2f)

Integrating we have

In(b —{J,(s) + [2f(s)] ' ))

Consider now a particular distribution belonging to
class (iii):

Notice the anomalous logarjthmic correction to the
~ ' ' behavior characteristic of the density of states of
systems belonging to class (i). This Ine correction to
the density of states had been predicted earlier by
Bernasconi et al. on the basis of approximate calcula-
tions. ' Equation (14) can be shown to be valid for all
class (iii) systems in the low-energy limit provided
the appropriate Pp is used. Ii is interesting to note
that for class (iii) systems the density of states at low
energies depends on the particular P(J) only through
its limiting behavior near J =0.

III. EXACT NUMERICAL SOLUTIONS

Starting with the linearized equations of motion for
the spin raising operators Eq. (1) and assuming a
harmonic time dependence ~ '"' for a finite magnetic
chain with M spins we are led to the symmetric tridi-
agonal system of equations

—ln( —[ J, (e) + [2f(~) l
' )) =

0

Un =~n, n U. +~a,n+i Un+i Un-i.

where

(15)

The above equation can be solved numerically for the
complex root J,(e) as a function of energy. The
results are shown in Fig. 1.

For low energies, e & 5 x10 3, Eq. (12) can be
solved explicitly for J,(s),

J,(s) '=Poine,

~. =2~(JN. +1+J -1, )

~n, n+] = —2SJn, n+1 =~n+), n

~n-l„n 2~Jn —1,n ~nn-$

We can solve for the energy eigenvalue spectrum
of the above system of equations by using Sturm-
sequence techniques developed by Dean. ' As out-
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lined in Ref. 7 we consider the sequence

r i 2Jn, n+1 Jn-l, n

2Jn n+1

(17)

tained from the CPA by multiplying by the interval
size 4m=0. 1 and renormalizing to M =50000 sites.
The Sturm-sequence results shown are the averages
and standard deviation of fifteen calculations using
different sets of the Jn, „+1.

IV. RESULTS AND CONCLUSIONS

Here we are considering unit spins at M sites.
The Sturm-sequence property of Eq. (17) implies

that the number of changes of sign in the sequence
p(e), . . . , pM(e), call it n (e), is equal to the
number of eigenvalues less than or equal to e,

Therefore n (eb) —n (e, ) is the number of eigen-
values in the interval [c„eb] and hence we have for
the density of states

In Fig. 3 we plot both the CPA and the Sturm-
sequence results for N(e) in the asymptotic region
Q + 5 & 10 '. The Sturm-sequence histogram has
been converted to data points at the centers of the in-
tervals in order to accommodate the inc abscissa.

The equation of the best-fit line through the
Sturm-sequence data points leads to the equation for
the density of states

a, + a, n (e.) —n (eb)
2 M

1(2
M AE —in&

(7.39 +0.47) e
(19)

%e have carried out calculations in different energy
regions for chains of up to 10 atoms assuming the
distribution of Eq. (9) with Po= l. The results for a

chain with 50000 sites are plotted as a histogram in

Fig. 2. The solid line is the corresponding result ob-

where in this case the number sites is M = 10 and

x 10~
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FIG. 2. Histogram of the density of states of a disordered
magnetic chain with M =50000 sites. The his&ogram is the
average of 15 calculations of N(e)MA~ with the error bars
being the standard deviation of t n(~+4~) —n{e}]for each
interval. The solid line is the corresponding CPA result
multiplied by Mh~ where the interval size is Ae =0,1.

FIG. 3. Low-energy density of states of a disordered mag-
netic chain with 106 sites, The Sturm-sequence histogram
results have been converted to data points at the centers of
energy intervals. The 50% error bars are obtained from the
standard deviations of twenty-two calculations of
[+ ( &)M ~ &] 6 with different sets of J„„+1.The solid line is

the best-fit line through the Sturm-sequence data points.
The dashed line is the corresponding asymptotic CPA result.
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the interval size is 4e =2.5 x 10 4. The correspond-
ing result for the CPA is

i/2

N( ) twhe —lne
m Se

(20)

from which we see that there is good agreement
between the CPA and the exact numerical result.
One should note that the CPA is only an approximate
theory and therefore we need not necessarily expect
perfect agreement with the exact numerical calcula-
tion in any limit. Another reason for the slight
discrepancy in the denominators in Eqs. (19) and
(20) may be that we are not at low enough energies
for the analytic asymptotic form of the density of
states given in Eq. (14) to hold. The difficulty with

pushing the exact calculation to lower energies lies
with the problem that as the energy intervals become
smaller the number of sites in the magnetic chain
must be iricreased in order to have appreciable statis-
tics in any particular interval. We are eventually lim-

ited by computer time as to the maximum size of the
chain.

The most important result of this paper is the
demonstration of the existence of a logarithmic
correction in the low-energy density of states of sys-
tems with a class (iii) distribution for J. As noted,
the presence of such a correction had been predicted
earlier on the basis of approximate calculations. It
has been confirmed by our numerical experiment.
As in the case of class (i) and class (ii) systems the
CPA yields a remarkably good approximation to
N(e) at low energies.

Note addedin proof Equ. ation (14) has also been
derived in a recent article by Alexander et al. IS.
Alexander, J. Bernasconi, R. Orbach, and W. R.
Schneider, Rev. Mod. Phys. 53, 175 (1981)].
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