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Spin-glass-1ike behavior of dilute Cr-Er and Cr-Yb alloys
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Magnetic susceptibility measurements of dilute Cr-Er and Cr-Yb alloys are reported. A pecu-

liar 'magnetic behavior is observed below the Neel temperature. A model is proposed in order
to explain this behavior. The random 3d -4 f interaction is shown to be responsible for the for-

mation of a peculiar magnetic structure which has common features with a spin-glass. Critical

temperatures and magnetic properties are derived.

I. INTRODUCTION

The interest in chromium itinerant antiferromagne-
tism is well known. Extensive studies of the influ-
ence of alloying on the various properties of the
spin-density wave (SDW), such as the Neel tempera-
ture, spin-flip temperature, and commensurability,
have been carried out. Among these studies, some
are concerned with the reciprocal influence of mag-
netic impurities and itinerant antiferromagnetic elec-
trons. This problem is interesting because of its rela-
tion with the one of s -d interaction in the situation
when conduction electrons form an ordered state.

3d magnetic impurities have quite complicated ef-
fects, especially because the magnetic moment of the
impurity is very sensitive to the interaction with the
host. Therefore, the d-f interaction of the SDW
with a well-defined 4 f magnetic moment might reveal
some features which are helpful toward a better
understanding of the coexistence between itinerant
antiferromagnetism and localized paramagnetism,

The aim of this paper is to discuss the interaction
between the 3d spin-density wave of chromium and
the 4f localized magnetic moments of Er and Yb.
Our attempt, on both the theoretical and experimen-
tal side, showed that such an interaction may result
in the formation of a peculiar magnetic structure,
called "spin-glass-like structure" in this paper.

The next section is devoted to the experimental
results which shed light on the model and the discus-
sions are presented in the following sections.

II. SAMPLE PREPARATION AND
EXPERIMENTAL RESULTS

As indicated in Ref. 1, Er and Yb have a very low
solubility in chromium. To obtain homogeneous
samples thus becomes a difficult task.

The samples have been prepared by arc melting,
under pure-argon atmosphere, 99.999% pure chromi-
um and 99.9% pure Er and Yb. In order to obtain

homogeneous samples we remelted them several
times, annealed them at 1200 K for 12 h, and finally
quenched them to room temperature. Homogeneity
has been checked by comparing the room-temper-
ature magnetic susceptibility of serveral parts of an
ingot, the error for the magnetic susceptibility of the
parts of a homogeneous ingot being 5%.

Thermal hysteresis was searched for in order to
determine the solubility limit ~ For Cr-Yb we have
found this limit to lie between 0, 112 and 0.225 at. %
Yb. The magnetic properties of the last sample
(0.225 at. % Yb) differed from those of the samples
with lower Yb concentration. For Cr-Er alloys this
limit could not be defined accurately enough.

For concentration control we have used a neutron
activation method. ' For each system, three concen-
trations were thus determined. The other ones have
been obtained by comparing their high-temperature
magnetic susceptibilities.

Magnetic susceptibility measurements have been
carried out, with gneiss-Forrer equipment, between
80 and 800 K. The experimental error lies within
3%.

The temperature dependence of the magnetic sus-
ceptibility for the investigated systems, Cr-Er and
Cr-Yb, is given in Figs. 1 and 2 ~

Figures 1 and 2 show also the magnetic susceptibil-
ity of the pure chromium we used in sample prepara-
tion. The critical Neel temperature is easily recog-
nized and lies around 312 K. For T & T& the mag-
netic susceptibility has a quadratic temperature
dependence, specific to the Pauli paramagnetism.

The magnetic susceptibility of the alloys also shows
some critical temperature. The zero concentration
limit of this temperature is identical to the Neel tem-
perature of pure chromium. Therefore, we shall con-
sider this temperature as the Neel temperature of the
alloy.

The temperature dependence of the magnetic sus-
ceptibility of an alloy is quite different from that of
pure chromium. Above the Neel temperature, a
Curie-gneiss dependence is present, showing the ex-
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The last term in Eq. (2) describes a tripletlike in-

terband interaction. Intraband and singletlike interac-
tions were neglected. As shown in Ref. 3, the exper-
imental results concerning pure-chromium magnetic
susceptibility4 possibly indicate the coexistence of a
singlet coupling in pure chromium, which however,
becomes important only at low temperatures.

For the localized spin Hamiltonian we choose

KL= —gjtLpH XSf 2 X B(Rj —Rf )Sj Sj . (3)
.f .f).f2

The second term shows a possible RKKY coupling
between the impurity spins Sf. We shall consider
B(R) ) 0 and only weakly R dependent in order to
discuss the competition between a homogeneous fer-
romagnetic coupling of impurity spins (which might
occur if the critical impurity concentration for fer-
romagnetism is surpassed) and the random interac-
tion with the SDW.

The interaction Hamiltonian is written as

3:LC= X $(&R'jlUIR'. j)+&&.jl~l&'j)SJo p)e ~gKf
I f p aK, aaK

a, p, i,j

where the following notations were used: i j C (1, 2} are band indices; aK —= aK and aK, =—bK , Ua'nd J
describe the potential and spin scattering. In Eqs. (2) —(4) E, Q, and Rf are vectors

To solve Eq. (1) we replace H by two effective Hamiltonians for the systems of conduction electrons and local-
ized spins. To obtain the effective Hamiltonians we shall use a local self-consistent mean-field method, rather
than that of unitary transformations. Thus, the Hamiltonian (1) is equivalent to

3'.ffc =&c+ &geLC) L

+effL +L + (+LC ) C

where ( ) L and ( ) c are partial mean values obtained by mediating localized spin operators and, respectively,
conduction-electron operators. In first order, mean values are computed with unperturbed Hamiltonians DCL and

Higher order is obtained by iterating this process.
We consider now the case of a —, impurity spin. Taking the external magnetic field along the Oz axis, we may

consider' Q ~ ~
Oz, and choose the frz representation for the conduction-electron spin operators. In order to obtain

Eq. (5) we shall stop the iteration at the first significant order for each coupling constant.
In first order we get

(+Lc ) c 2 XJj' (0) X ( jfK, f fjK l ) $S/ —J,p ( Q) X—Sj cosQRf
l K

(6)

where nK = (aK aK ) and 5/ V = XK pfT'p(aK bK+fzp). The next iteration would produce a correction to
the RKKY coupling, considered in Eq. (3), which we neglect.

The second term of Eq. (6) shows an interaction between localized spins and the SDW, discussed previously in
Ref. 6.

To obtain (geLC) L we go to second order in J, while for U the first order will be significant because of the spe-
cial band structure considered. Thus the repeated scattering on impurity potential is neglected. For the high-
temperature limit, the linearized local response of the spin is

where (S') = I/X Xf (Sf), '%being the impurity concentration and Bfj——$ f B(R )j. For the second-order term
in Jwe obtain

1 1 i(K K +K
&

K2)R j(El, l [J iE2, lrj ) (IC, I
i
J iE,j ) e fT frpp(flK 'a ) aK paK p

K1K2,K,K'
l, m, i,j, a, p

where I, m, i,j E }1,2} are band indices and k is the Boltzmann constant. The second-order term in J is the
"mean-field" equivalent of the Kim Hamiltonian. ' Differences occur because of the two-band system and the o-'

symmetry considered.
Performing an impurity mediation we get finally
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(+LC)L X (+Uo Ho fr )aK, aK, + $ (JtUb Hbfr )bK+g, bK+g
K, a K, a

X S(S+1)
ab(Q) I $ fraabK+g, aaK, a C C

K, a

where U, = (K, 1 (U~K, 1); Ub= (K, 2( U~K;2); H, =/LaH + J, (X/2) (S ); Hb = psH + Jb(X/2) (S );
J, = (K, 1 ~iF ~

K, 1); Jb = (K 2 [J ~
K 2); J b (Q) = (K, 1

~
J

~
K + Q 2). The presence of the temperature as a coef-

ficient in the Hamiltonian is a characteristic feature of the mean-field method we used.
If U, = Ut„and that happens if the. SD% is commensurable, the first significant term is the second-order one,

We shall not consider this case, since the effect of the second-order term has been discussed several times (see
for instance Ref. 9).

The effect of the molecular fields H, and H~ has been studied previously. ' However, the second-order term is

important, since in the paramagnetic state (S ) is proportional to the external magnetic fields.
The conduction-electron Hamiltonian, thus obtained, is not spatially homogeneous but, up to terms in J', the

off-diagonal terms are nonzero only if K —K' = Q.

IV. MAGNETIC PROPERTIES OF THE CONDUCTION-ELECTRON SYSTEM

To keep the same mean-field approximation we shall rewrite the electron-hole coupling term as in Ref. 3, set-
ting H =0:

+effc X +i(K) K a K a 5 X 0' pbK+gaaK p
K, a,i K, a, t8

where (aKt) = e(K) —5~+ U,3l; ez(K) = —a(K) —5„+UbX; 5„=p,
' —p, ', and 6 = 5[1

+(X/4V) (Jab(Q) ~
S(S+1)/3kT] Denoting .(=e +X(U, —U„)/2 we may write the gap equation as

V X e aa [f[5 + ((2 + g )1/2] + /[5 ((2+ Lrt )1/2]]
2 ( g2 + Lrt ) 1/2

where 5„=5„—X( U, + Ub)/2 and where f is the Fermi function.
For the Neel temperature it follows:

Tb/ 1 p(p, —X(U, —Ub)/2) —p(p) 1 ~~ J b(Q)~ S(S+1)
ln +

Tb/ Vp(/L) p(p) Vp(p, ) 8 V3kTbi

52

8k2T2
(9)

ln Eq. (9) only the first significant order in J and 5„was considered. 5„might be evaluated by considering the

change in the particle number with alloying.
Within the rigid-band model we get 5„=%z/4p(p, ) where z is the change in the number of 3d electrons per

impurity atom.
Relation (9) shows that the effect of the interaction with the randomly distributed impurity spins is to augment

the Neel temperature. This effect occurs if the ferromagnetic correlation between localized spins is absent. As

shown in Ref. 10, ferromagnetic correlations, or to be precise, a ferromagnetic molecular field, have the tendency

to destroy the electron-hole coupling.
It must be also underlined that the whole treatment breaks down for T 0 because the linear response of the

impurity considered in order to obtain Eq. (8), is no more appropriate.
To obtain the magnetic susceptibility we may use standard results" by replacing the renormalized gap

x(T) =x, —'+ —'J d
2kT

~

2
' 1/2'

e +5
4k2 T2

To obtain the Pauli susceptibility Xp we consider T ) Tbi and use instead of approximation (8) the following

decoupling in the equation of motion for the Green's function

[co —et(K)] ( (aK aK ) )„= + —(bK+g bK+g ) ( (aK aK ) )
2m 2

Using a similar equation for ( (b„+g bK ~g ) ) one gets



SPIN-GLASS-LIKE BEHAVIOR OF DILUTE Cr-Er AND. . . 1355

H. + , V—Hb.f'(g+ SP,)
(ab lab f) —(aff tab f) = 2f'—($ —Sp)

I ——V2f'(g —Sp)f'(g+Sp)

V

4kT

Neglecting the enhancement, specific to the second order, and using the similar formula for (bff+o fbff+g l)—(bff+O lbff+O f ) we finally get for T » T~ but T && TF (the Fermi temperature):
f f

U, —Up XL J, +Jb
Xp =4@,ap p, —Q

2 p, g 4
(10)

where XL is the magnetic susceptibility of the localized spin system and p, ~ the Bohr magneton. The last two
terms in Eq. (10) show the influence of the interaction with the impurity and of the interband interaction. Com-
paring the most significant terms of Eqs. (9) and (10) we get a useful relation

1
ln

Tbf, Vp(p) Xp

where Xp is the Pauli susceptibility of pure chromium.

V. MAGNETIC PROPERTIES OF THE LOCALIZED-SPIN SYSTEM

Using Eqs. (6) and (10) we may write the effective Hamiltonian for the impurity spins as
f

XeffL g +
2

(J~ + Jb) I — fbBH XSf —
2

'X(S') p(p, )(J~ + Jb) +
01 XSf

.f

J,b ( Q) —XSf' co—s( QR f)
.f

(12)

In Eq. (12) we observe the Zeeman term with the
expected g shift, a "molecular-field" term due to
conduction-electron polarization and to homogeneous
spin-spin interaction, and a last term, impurity-
spin —SD% interaction, which destroys the homo-
geneity of the system.

However, for T ) T&, the last term disappears and
one can easily show that the magnetic susceptibility
of the system of localized magnetic moments has the
Curie-gneiss form

(13)

~here

C = psg [I +p(p, ) (J, + Jb) ]S(S+1)
3k

and

Po Bo
2k po 4k

P IJI o

8k po

(14)

where po is the magnetic moment of the free impuri-
ty atom.

To solve the problem for T & TN we shall use
some methods utilized for spin-glasses. " To be pre-
cise, we shall use the idea of replacing the effect of
the nonhomogeneous molecular field H(R f)
-=J, (Qb)(h/V) cos(QRf), which depends on the ran-
dom variable Rf, by the action of a local, fluctuating
field H, acting on each impurity spin but being spa-
tially homogeneous.

For an incommensurable SD% one can easily show
that the distribution function of such a field is

For J, = Jb we find a useful connection between 8
and the effective magnetic moment per impurity
atom

fb g IbB l I + 2Jp( p, ) 1'JS (S + I ) - ti

The first term of 8 describes the spin-spin interaction
considered in Eq. (3), the second one might be as-
cribed to an effective spin-spin coupling via intraband
polarization of electrons and holes, and the last term
is related to a similar effective coupling via interband
polarization.

8(Hp —H )
~(H2-H')'f' '

where Hp =J,b(Q) b,/ V.

The magnetization is defined as"

M(H)= t' ~(H, H)~(H)dH .
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Thus, the magnetization becomes

M(A) =&pa —Jt, tanh
f 0 dH A+H
-"o (H,' —H')'» 2kT

(15)

A =0.5

A =gp&
2

, H + [p( p ) (Jb + Jb ) + Bp/X] 2
X (S")

(c(1 —(c) = Ho

80

If IHo/Bol ((1 then (c =1 —(Ho /Bo) Thus the
effect of the random field is to lower the Curie tem-
perature. Equation (16) has no positive solution if

g =g[1+—,
' p(p)(J, + Jb) l being the renormalized g

factor.
To discuss the possible solutions of the self-

consistent Eq. (15), let us start from the situation
when the effect of the interaction with the SI3W is
absent, it is J, b( Q) = 0. In this region the system of
localized spins becomes ferromagnetic below the Cu-
rie temperature Tc, because of the homogeneous,0'

ferromagnetic spin-spin interaction.
Let us couple gradually now the spin-SI3% interac-

tion by augmenting J,b(Q) and consequently Hp. In
order to see what happens with initial ferromagnetism
let us analyze the behavior of the Curie temperature
Tc. In order to do that let us develop Eq. (15)
around M =0. Thus we get for (c =4kTc/Bp
= Tc/Tc

0

B=1.5
8=1

8= 0.5

FIG. 3. Temperature dependence of the magnetic suscep-
tibility as given by relation (18) with A =J,b {0) / & and
B = {2/m) [XL{TN)/XP].

"spin-glass-like" magnetic structure mentioned in
Sec. II.

Concerning the behavior of the localized magnetic
moments, if Eq. (17) is not true, one might imagine
a sort of ferromagnetic behavior affected by the pres-
ence of the random field. The detailed features of
this state will be discussed elsewhere. '

The total magnetic susceptibility of the spin-glass-
like magnetic structure, containing itinerant and lo-
calized contributions, is

t/2

X = Xp —+ —
Ji de/2kT/ch' e +6

3 3 0 4k T

Bp&2
Ho=—J.b(Q)

V
& (17) + 0Ig psS(S+ I)

3k(T et)—
If Eq. (17) is true the ferromagnetic state is no
longer possible, nor is the state of the impurity spins
a paramagnetic one since, in the absence of the
external magnetic field, the local mean values of the
spin projection are nonzero. We conclude that Eq.
(17) becomes thus a necessary condition for the

where

2 t"o dx 1

ch x/2kT (H —x )'~

If we choose the limit el/T (( 1, we may approxi-
mate Eq. (18), for T T~, by

&g psS(S +1) Tb —T
X = Xp+ XL (Tjy) +

N N

J,b(Q) Ng pa2S(S +1)
4/ 2T2 3 3kT

Using the known development" of 6 for T TN,

5 = m kT~

r '1/2 ' '1/2
4 TN —T

we get up to terms in [(TN —T)/T~ j'

x(T) =x(T~) +
TN

n 2 J.'b(Q)
X, (Tb, ) —

7 ( ) 3 XP+
~

X (TL)b
2 V~

(19)
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The linear temperature dependence below Tg is

very weak around some critical concentration for
which the bracket is zero. Using Eq. (15) one gets
for T=O

x(0) = —,x, +0.23 [ V/J„(Q) j XL( +IV )

which indicates that Eq. (18) does not exhibit impor-
tant changes as a function of temperature. Figure 3
shows the results of a numerical analysis of relation
(18).

250 —3.5

VI. DISCUSSION AND CONCLUSIONS

The theoretical results obtained are in agreement
with the experimental ones. Figures 4 and 5 show
the concentration dependence of the Neel tempera-
ture and of the high-temperature limit (T ~) of
the magnetic susceptibility (Xp) for Cr-Yb and Cr-Er
alloys, respectively. As is known, Xp contains
temperature-independent contributions such as orbi-
tal paramagnetism, ionic diamagnetism, Pauli

paramagnetism of s and d electrons, etc. If all the
contributions, excepting the Pauli paramagnetic sus-
ceptibility of 3d electrons Xp, are only weakly affected
by alloying, we may consider AXp == 4Xp. Thus ex-
perimental Xp values might be used instead of Xp in

Eq. (11). Full lines in Figs. 4 and 5 are given by Eq.
(11). The fit values of Xo are plotted with dashed
lines.

The plot In(T~/Tz ) vs Xa, Fig. 6, shows that the

linear relationship predicted by Eq. (11) is only
roughly fulfilled for Cr-Yb but quite accurate for Cr-
Er. This difference might occur because of the
concentration-dependent terms in Eq. (10) since the
concentrations corresponding to the same Xp are
higher for Cr-Yb than for Cr-Er.

0 1 2 3 4 5y10&

FIG. 5. Concentration dependence of the Neel tempera-
ture and of the high-temperature limit of the magnetic sus-

ceptibility Xp, for Cr-Er alloys. The full line is a fit with Eq.
(»).

The agreement between Eq. (11) and the experi-
mental results indicates that the main mechanism in

the Neel-temperature shift is the potential scattering
by the impurities. Analyzing from this point of view

our experimental results concerning 3d impurities in

chromium, ' ' we may conclude that Fe and Mn as
the impurity do not exhibit this property while Co
does.

For T & T~ experimental results are compared
with a Curie-Weiss law (full line in Figs. 1 and 2).
The paramagnetic Curie temperatures, for both sys-

tems, are given in Figs, 7 and 8. An effective mo-
ment per impurity atom was determined and
displayed in Figs. 7 and 8. The high values of the ef-
fective magnetic moment are not to be taken for the
magnetic moment of an impurity atom but, rather,
for the ~hole paramagnetic response of the region
surrounding the impurity and interacting with it. It is

300
0.0—

200,
0

l

10

-3.0
)

15 q. i04

FIG. 4. Concentration dependence of the Neel tempera-
ture and of the high-temperature limit of the magnetic sus-

ceptibility Xp, for Cr-Yb alloys. The full line is a fit with Eq.
(»).

—0.6 I

3.0
l

3.2
I

3.4
I

3.6 3.g
~~~p-oemulg)

FIG. 6. ln(T&/TIt/ ) vs Xp for Cr-Yb and Cr-Er alloys.
0
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30
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FIG. 7. Concentration dependence of the effective mag-
netic moment p,

'
per Yb atom and of the paramagnetic Cu-

rie temperature for Cr-Yb alloys.

FIG. 9. Paramagnetic Curie temperature vs effective
magnetic moment per impurity atom for Cr-Yb and Cr-Er
alloys,

100- Cr- Er

-1000

—500

also possible that alloying causes a slight localization
of chromium 3d electrons. Thus, the computation of
a magnetic moment "per impurity atom" has only a
formal sense in those situations when strong interac-
tions with the host occur.

Relation (14) indicates the usefulness of a plot like
the one shown in Fig. 9. The high negative value of
Hp and the almost linear dependence of H, as a func-
tion of p,

'
indicate that the most important term in

Eq. (14) is the one related with the f dinteraction. -

The second term in Eq. (14), it is the f finteraction, -

is negligible. This fact shows that the impurity con-
centrations are small enough to consider the ob-
served magnetic behavior as a one-impurity effect.

The good agreement between Eq. (14) and experi-
mental data allows the evaluation of the electron-hole
coupling constant V out of the slopes of the curves
shown in Fig. 9. The values obtained are Vc„~b

=0.20 eV and Vcr —Er=0.23 eV.
To try to explain the concentration dependence of

the Neel temperature, or H, and p, ', is a hard task
since it supposes the complete knowledge of the
density-of-states function and of the spatial behavior
of thef dexchang, e-integrals (J). Thus, we consider
universal relations like Eqs. (11) and (14) useful in
the attempt to decide whether or not an interaction
mechanism is present in the studied system.

Concerning the temperature regions with T & T&,
Figs. 1 and 2 show a very weak, quasilinear tempera-
ture dependence. The paramagnetic behavior of the
impurity spins is suppressed. As shown in Sec. III
such a behavior might occur if random impurity-
spin —SD% interactions are considered. The agree-
ment between the prediction (19) of the considered
model and the actual magnetic behavior of Cr-Er and
Cr-Yb alloys indicates the conclusion that these alloys
have a "spin-glass-like" magnetic structure.

Because of experimental difficulties we could not
obtain samples with lower or higher concentrations
than the reported ones. Thus, the limits of this mag-
netic behavior could not be defined for the investi-
gated systems. Low-temperature measurements are
also required in order to complete and verify the
statements of this paper.

Concerning the model we might conclude the fol-
lowing.

(i) The interaction between the randomly distribut-
ed 4 f spins and the 3d electrons leads to an enhance-
ment of the order parameter

0 1 2 3 4 5 5104

FIG. 8. Concentration dependence of the effective mag-
netic moment p,

'
per Er atom and of the paramagnetic Curie

temperature for Cr-Er alloys.

The potential scattering of conduction electrons on
impurities has an opposite effect.

(ii) The random interaction impurity-spin —SDW
leads to an interesting and peculiar magnetic behavior
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of localized magnetic moments which has common
features with the spin-glass state. Thus if Eq. (17) is
true the configurational and thermodynamical mean-
value of the local spin projection Sf' is

( (Sf) }—= „!" P(H) (S;)dH

ta+oo HP(H) —tanh dH =0
OO 2kT

The Anderson order parameter for spin-glasses is

( (S )') =— P(H) (S )'dH
t T

r n/2 Hp
dxtanh sinx AO

2kT

The order parameter vanishes for Hp 0. In this
case the last integral might be performed

IJ. (Q)l'~, ~
(4kT) V (4kr)

Thus, the "spin-glass temperature" of the investigat-
ed magnetic structure is identical with the Neel tern-
perature for itinerant electrons.

However, it must be underlined that the magnetic
behavior investigated in this paper is not the
behavior of a spin-glass system mainly because the
random i'nteraction is not a spin-spin one but a spin-
SDW one. The "spin-glass-like" magnetic structure
is also not reducible to an antiferromagnetic one
since there are no antiferrornagnetic correlations
between impurity spins.
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