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Elastic neutron scattering investigations of new high-pressure phases of KCN
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Two recently discovered high-pressure phases of KCN were studied with elastic neutron

scattering techniques. For phase C we found the space group Aa which is the space group of
strained KCN at 165 K at zero pressure as expected, but the orientations of the CN molecules

follow a staggered and ordered pattern pointing in between t100) and [110] directions of the ori-

ginal NaC1-type structure. We determined the lattice parameters of phase D, of the cubic phase

Fm3m under pressure, and of the well-known orthorhombic low-temperature phase Ininrm. Our

measurements excellently confirm the phase diagram of KCN which was determined earlier by

Raman spectroscopy.

I. INTRODUCTION

From a physical standpoint the alkali cyanides
behave very similarly to the alkali halides, but con-
trast by their variety of temperature-, pressure-, and
material-dependent ordered and disordered phases,
owing to more or less correlated orientations of the
CN molecules in the crystal lattice. Hydrostatic
pressure drives the alkali cyanide crystal into a higher
coordinated phase analogously to the alkali halide
crystal where simple geometric considerations
describe the stability limits of a crystalline structure
and explain the equivalence of increasing pressure
and increasing cation radius as structure determining
parameters. ' It comes as a surprise that the same
correspondence exists in the noncubic ordered low-

temperature phases of the alkali cyanides, allowing
the discovery of new high-pressure phases of KCN by
using Raman spectroscopy as a probe for phase
transformations. '

The Raman spectrum of a crystal is sensitive to
changes in the structure of the crystal. A drastic
first-order reduction of the symmetry or changes in
the size of the unit cell are especially easily determin-
able. The, different phases of KCN perfectly fulfill
these conditions, and it was possible to obtain the de-
tailed phase diagram by this method (see Fig. I). In
addition to the cubic disordered high-temperature
phase Fm3m and the two orthorhombic low-
temperature phases A (lmmm) and 8 (Pmmn) at
zero pressure, two new high-pressure phases C and D
were found. Hatching indicates the possible coex-
istence region for two adjacent phases but note that
pure phases can be obtained in these regions by a
suitable sample treatment. X-ray investigations' of
highly strained KCN crystals had shown the existence
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FIG. 1. Phase diagram of KCN {Ref. 2).

of a new phase of space group Aa in a small tempera-
ture region around 165 K at zero pressure and it was
obvious to identify the new high-pressure phase C of
KCN with this phase. From cell dimensions the
orientation of the CN molecules was concluded to
be a body diagonal ([111]direction) of the original
cubic lattice in contrast to a [110] orientation in the
orthorhombic zero-pressure phases. To obtain cer-
tainty about the crystal structure of the new phases of
KCN, scattering investigations with neutrons were
made, since neutron scattering techniques are partic-
ularly able to give complete information about the
orientation of the CN molecules. In this work we
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FIG, 2. Debye-Scherrer diagram of KCN in phase C,

report on Debye-Scherrer elastic neutron measure-
ments of KCN under hydrostatic pressure and at low
temperatures. We established the existence of the
two new high-pressure phases C and D, see Fig. 1,
and found the space group of phase C to be Aa as ex-
pected. For phase D we have some indications about
the structure. Additional refined data on the lattice
parameters of the cubic disordered NaCl-type phase
Fm3m as well as on the orthorhombic phase Immm of
KCN were obtained.

diagrams rules out the possibility of a mixture of two
phases at these temperatures and pressures. A well-
expressed mixture between phase C and D was
indeed found in the coexistence region of the phase
diagram, Fig. 1.

Intensities and scattering angles of the different re-
flections were determined by line-fitting techniques
from the powder diagrams and corrected with respect

II. EXPERIMENTS
295K

0.202 GPa

150K

0.424 GPa

We measured the Debye-Scherrer diagrams using
the DlA spectrometer of the Laue-Langevin Institute
(lLL) at Grenoble. Our high-pressure equipment
consisted of an aluminum cell which we built after
plans given in Ref. 5 and the He-gas compressor
and a cryostat of the ILL. The sample was precipitat-
ed from aqueous solution by ethanol. Temperatures
down to 90 K and pressures up to 0.45 GPa were
reached. The scattering density was measured in 0.1'
steps of the scattering angle 28 between 5' and 160'
in about 10—15 h with neutrons of a wavelength of

0
1.9073 A. Figure 2 shows the Debye-Scherrer dia-
gram of KCN in phase C as an example. Major parts
of the diagram are covered by the pressure-depen-
dent strong peaks of the Al cell which also produces
a less prominent but disturbing background. To illus-
trate the structural difference of the phases of KCN,
Fig. 3 shows the first group of reflections in the
range 28 (40'. The reflections 111 and 200 of the
cubic phase (space group Fm3m) split into four well-
separated reflections in the orthorhombic low-
temperature phase (space group Immm), but into five
more or less overlapping reflections in the new
phases C and D. We think that the simplicity of the
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FIG. 3. Debye-Scherrer diagrams of the different phases
of KCN in the range 25' ( 28 & 40'.
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TABLE I. Crystal data for different phases of KCN.

Phase P (GPa) T (K) Space
group

a(A) 6 (A) ( (A) P (deg) Z V/Z (A ) D„(Mg'm )

KCN I

C
D

KCN V (A)

0.2

0.424
0.424
0

295

150
100
103

Fn~3n~

monoclinic
setting

Aa
?

Imn~n~

Neutron data, this work

6.495 (2) 4 68.50

68.50
65.915
65.388
67.405

9 185 4 593 7 955 125 26 4
9.103(6} 4.606(3) 7,433 (4} 122.22(12) 4
9.464(10) 4,269(2) 7.943 (8) 125.4(2) 4
4.221(1) 5.205 (2) 6.136(3) 2

1.579

1.579
1.641
1.654
1.604

KCN I'
Strained
CN (I)b

KCN V (A)'

0
0

293
163

167

Fn~ 3 n~

Aa

Imn&ni

6.51
8.97

4.23

Earlier x-ray data

4.53

5.08

7.47

6.14

122 ~ 32
4 1.57

1.64

KCN V (A)~
KCN V (8)'

KCN IIId

KCN IVd

0
0
2.2
2.2

90
6

347
339

Imn~n~

Pmnrn

Pm3n~

Cns 5.2662

Earlier neutron data

4.21(1) 5.20(1) 6.11(1)
4.18(1) 5.24 (1) 6.07 (1)
3.8080
5.5166 3.7579

2

2

1

2

66.9
66.5

54.49
1.64
1.985

' Reference 7.
Reference 4.

'Reference 8.
"D. L. Decker, R, A. Beyerlein, G. Roult, and T. G. Worlton, Phys. Rev. B 10, 3584 (1974).

to the usual diffraction angle-dependent factors.
Starting from an indexing of the first five reflections,
the parameters of the unit cell were refined by a
least-squares method using the program pULvER.

For phase D we only used the first five reflections to
derive the lattice parameters since the diagram is

quite diffuse at higher scattering angles. Some cau-
tion has to be taken with respect to a possible cell
doubling or to a slight reduction of the symmetry in

this case. Technical details of the analysis and struc-
ture determination are specified in the following sec-
tions. Tabl'e I summarizes our results for the lattice
parameters of KCN in various phases including some
earlier data for comparison. V/Z denotes the volume
per KCN molecule in the lattice. The numbers in
parentheses indicate the standard deviations associat-
ed with the last digits throughout this work. Our lat-
tice parameters for the cubic phase I'm3m and the
orthorhombic phase Immm agree with earlier x-ray

0
data, showing only a slightly larger b =5.205 A in the
latter case. The lattice parameters of our high-
pressure phase C are very similar to those of highly
strained KCN at zero pressure. Only for phase D
were we unable to derive a space group so far,

III. CRYSTAL-STRUCTURE ANALYSIS

A. Phase C: 0.424 GPa, 150 K

About 40 reflections were used to refine the lattice
parameters [mean error of the angle o(28) =0.025']
and to determine the crystal structure. The systemat-
ic absences: hkl for k+I odd, h0/for h odd, and
Ok0 for k odd restrict the possible space groups to Aa
and A 2/a. The space group A 2/a is structurally im-

probable because the four carbon and nitrogen atoms
in the unit cell would be in a special position in this
case, which would not allow the physically true C—N

0
bond length of about 1.1 A. 4 Thus. the space group
must be Aa, which is noncentrosymmetric and has
only the general fourfold position.

Starting from a distorted NaC1 structure, the crystal
structure of phase C was successfully determined in

subsequent refinement cycles using Fourier and full
matrix least-squares techniques. The final reliability
factor was R =0.058. Scattering lengths of b&

=35, b(-=66.1, and b&=94.1 pm/atom were
assumed for the respective nuclei. For iostropic ther-
mal parameters for all atoms and using the physically
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TABLE II. Positional and thermal parameters for phase C. 5 E

Atom x/a y/b z/c V (A2)

K
C
N

0.0'
0.143(4)
0.254(3)

-0.082(6)
—0.086(8)

0.082(6)

0.0'
0.429(5)
0.494(5)

0.002(7}
0.065(8)
0.068(6)

'Restricted.

TABLE III. Bond lengths in A for phase C.

Atom

C
N

2.727(31)
2.815(40)
2.844(40)

[3.369(27)j

1,155(22)

2.801 (26)
3.189(33)
3.196(33)
3.197(33)
3.218(26)
1.155(22)

plausible condition of their equality for carbon and
nitrogen, we find a site occupation of C and N which
shows a preference of 89% for a definite position.
This means that the structure is ordered and distin-
guishes head and tail of the CN molecules which is
also indicated by the different bond lengths K+—C
and N —K+. The mean distance between the K+ ion

0
and C is 2.80 A compared to that between K+ and N

0
being about 3.12 A. Carbon has four nearest neigh-
bors (3K+N), and the bond distances and angles
suggest a high degree of covalency. The resulting po-
sitional and thermal parameters as well as selected
bond distances are listed in Tables II and III. The
form of the isotropic, temperature factor is
T =exp( —2m'Ujd'), where U is the mean-squared
atom displacement perpendicular to the reflecting
plane of interplanar distance d.

The crystal structure of phase C is shown in Fig. 4.
Treating the CN groups as a single entity, K+ is
coordinated to six CN as is expected for a distorted
NaC1-type structure. A-face-centered sheets of K+
ions are alternately displaced from the origin of the
unit cell by an amount of +0.38 A along [010],
which corresponds to a [110] direction of the original
cubic KCN structure. This is an essential result al-

ready qualitatively proposed earlier4 for the crystal
structure of strained KCN at zero pressure. The dis-
placements of the K+ ions lead to different cation

Q3 K C N

::OO
FIG. 4. Structure of KCN in phase C.

separations of 6.101 and 7.151 A in the (001) plane
giving space for the CN groups to arrange in
between the more distant K+ ions in a staggered
orientation by means of the a glide plane. With re-
gard to the original cubic KCN lattice, each CN
group lies in a (100) plane and is tilted about 20' out
of a [1001 direction in this plane. We feel that the
structure of strained KCN (Ref. 4)' is different from
the structure of phase C in this respect. The rms vi-

0
brational amplitude of 0.26 A for the CN group is
quite large, but very small for the K.+ ion. We think
that this supports the absence of dynamic disorder in
phase C since large uncorrelated orientational jumps
of the CN ions would cause a relaxing of the K+

ions and result in a considerable movement of these
ions,

B. Phase D: 0.424 GPa, 100 K

The density of phase D calculated from the lattice
parameters on the basis of four molecules per unit
cell is much smaller than the density of the eightfold
coordinated phases of KCN with a CsCl-type or dis-
torted CsC1-type structure, respectively called KCN
III and KCN IV in the literature, see Table I. This
shows undoubtedly that phase D has a distorted
NaC1-type structure with a sixfold coordination as
was already concluded from light scattering experi-
ments. ' The small period of translation b =4.269 A
indicates that the ordering of the CN molecules oc-
curs not in [100] directions as in phase C but prob-
ably in a [110] direction as in phase A (Immm) or
perhaps in a body diagonal of the original cubic cell
as was proposed for the strained crystal. The Raman
band of the CN stretching vibration shows a
Davidov-splitting in phase D. Thus a relatively
strong interaction between two CN molecules per
unit cell must occur.
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TABLE IV. Positional and thermal parameters for phase
Imnznz '(A).

0
TABLE V. Bond lengths of phase Immm in A.

Atom

K

C or N

Position

2(a)
4(h)

x/a y/b

0

0.1088

z/c

0
1

2

U (A')

0.016(S)
0.030(2)

Atoms
C —N

K—C or N

Bond length
1.133(14)

2.933(1) (4 x )
3.120(1) (2 x )

C. Phase A: KCN V (A), zero pressure, 103 K

We refined the structural parameters of the
orthorhombic low-temperature phase of KCN at zero
pressure from the intensity data of our neutron-
diffraction powder diagram measured at 103 K. We
confirmed the crystal structure to have the space
group Immm. Only four parameters had to be refined
because C and N statistically occupy a fourfold posi-
tion, for which we used the average scattering length
of bcN =80.1 pm. The final reliability factor for 31
reflections was R =0.053. The result of the structure
analysis is summarized in Tables IV and V. Our
results are in excellent agreement with earlier x-ray'
and neutron scatterings results of this phase, see
Table I.

IV. CONCLUSIONS

side the uncertainty range of postulates depending
only on the. analysis of cell dimensions from x-ray
data. Neutron spectroscopy is highly suitable in this
case, since the scattering intensity in the Debye-
Scherrer diagrams is very sensitive to the orientation
of the CN molecules. The head-to-tail order in
phase C, which is a "ferro" order came as surprise to
us and the neutron scattering technique was essential
for its discovery.

The complete order and the staggered orientation
of the CN molecules in phase C raises the question
again as to what orientation the CN molecules in the
low-temperature phase (or phases) of RbCN may
have. The phase diagram of the alkali cyanides sug-
gests ordering as in phase C and/or D of KCN. ' It
should be easy to determine the structure of RbCN
below 130 K with neutrons at zero pressure, and we
are confident that it will agree with our suggestion,
especially since agreement is indicated by Raman
measurements. '

Comparing earlier speculations4 about the CN
molecular orientations in strained KCN with the stag-
gered orientation in the high-pressure phase C, we
feel sure that both phases have the same structure.
Apparent differences are not great enough to lie out-
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