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Neutron scattering investigation of the spin-flop transition in MnC12 4D20
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A detailed study of the spin-flop transition in MnC12 4020 has been carried out. The charac-
teristics of the first-order "shelf, " as determined by neutron scattering, were found to be in

good agreement with the phase diagram derived here for the appropriate monoclinic symmetry.
Experimental and theoretical analysis of the critical scattering observed at the spin-flop transition
close to the bicritical point provide independent confirmation of the first-order nature of the
transition.

I. INTRODUCTION

Anisotropic antiferromagnetic materials exhibiting
bicritical points have been the subject of considerable
theoretical and. experimental investigation. ' ' These
efforts have sought to determine the nature and ex-
-tent of the magnetic phase transition boundaries in

(A, T) space. The case of uniaxial anisotropy has
been treated theoretically by Rohrer and Thomas' us-

ing a mean-field approach and then by Fisher et al. '
using renormalization-group calculations. In the
orthorhombic case the predicted phase diagram' is

shown schematically in Fig. 1 where H~~, Hq, and

Hqi, are the fields applied parallel to the easy, the
medium, and the hard anisotropy axes, respectively.
The system exhibits paramagnetic (PM) behavior for
all field and temperature values which are outside the
critical surfaces. Within these surfaces the system
exists in an antiferromagnetic (AF) phase at low

fields and in a spin-flopped (SF) phase at high fields.
The AF-SF transition boundary is first order and is
shown as a shaded region in Fig. l. %hen the field is
tilted in the (H~„Hq ) plane, but is kept perpendicu-
lar to the H~& direction, the AF-SF transition boun-
dary exists only over a small range of tilt angles and
does not contact the critical surface. However, when
the field is tilted in the (Hu~r Hqq) plane and kept
perpendicular to the Hq direction, the AF-SF transi-
tion boundary extends to the critical surface, where it
terminates in a bicritical line. For the case of orthor-
hombic anisotropy, these predictions have been con-
firmed experimentally over a range of tilt angles in

GdAIO3, by Rohrer and coworkers. Symmetry
analysis of MnC12 4D20 (see Sec. II) indicates that

the phase diagram of this monoclinic compound
should also be qualitatively given by Fig. 1. This
analysis also indicates that the two critical surfaces
(AF-PM and SF-PM) are associated with n = I com-
ponent order parameters, while the bicritical line cor-
responds to an n =2 component order parameter.

Manganese chloride tetrahydrate has been studied
extensively. ' Zalkin ef aI. ' determined the crystal
structure and heavy atom positional parameters by
x-ray diffraction. El Saffar and Brown" obtained a
refinement of the hydrogen positions by neutron dif-
fraction. The magnetic structure was investigated by
Spence and Nagarajan" using NMR techniques and
by Altman et al."using neutron diffraction. Altman
et al. concluded that the spins were collinear and that
the projection of the spin on the ac plane was
2.8'+1.4' from the c' axis toward the c axis and the
projection of the spin on the bc' plane was 0.5' 0.5'
from c' towards b, where the asterisk denotes a re-
ciprocal axis. The crystallographic and anisotropy
axes deduced from these studies are shown in Fig. 2.
Anticipating results to be presented later, the easy
axis in the figure is taken to lie in the ac plane.
Rives and coworkers' 2 ' investigated the phase di-
agram using differential magnetic susceptibility mea-
surements with the applied field directed along the
c', b, and a axes, as well as 2.8' from the c' axis to-
ward the c axis. For the latter alignment as well as
for the c' direction, their results indicated first-order
behavior for the AF-SF transition only for tempera-
tures less than 0.37 K, whereas the bicritical point is
reported to occur at 1.22 K. Giauque and cowork-
ers" 0 investigated the phase diagram using heat
capacity, magnetization, and the adiabatic variation of
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FIG, 2. Relationship of magnetic anisotropy axes to crys-
tallographic axes.

FIG. 1. The phase diagram of uniaxial antiferromagnets
exhibiting a bicritical point. H() HJpg and HJ~ are the corn-
ponents of the magnetic field in the easy, medium, and hard
directions, respectively. (a) The (H~~, HJ~, T) phase dia-

gram. It consists of a critical surface, a bicritical point B,
and a first-order shelf (shaded area). (b) The (H)) HJp T)
phase diagram. It consists of two critical surfaces associated
with the AF and SF phases, a shelf, and a bicritical line BD.
In the case of MnC12 4D20 the critical surfaces are Ising-like
(n =1) and the bicritical line is xy like (n =2),

2.0 K. Butera and Rutter investigated the bicritical
point region with the applied field directed along the
c axis, and directions displaced 3' and 7' toward c' in
the ac plane. They observed a bicritical point only
for the field directed along the c axis, and the varia-
tion of the X lines corresponding to the AF-PM and
SF-PM transitions in the region of the bicritical field
was in excellent agreement with theory. They report-
ed that for these fields the spins were aligned parallel
to the c axis.

In light of the puzzling results published in the
literature, we have undertaken a neutron-diffraction
investigation of the range and nature of the AF-SF
transition. Other aspects of the phase diagram will be
the subject of future studies. MnC12 4D20 was
chosen instead of MnC12 4H20 to reduce the back-
ground arising from the incoherent scattering.

II. SYMMETRY ANALYSIS

temperature with field with the applied field directed
along the c, b, and a axes. They investigated the
AF-SF transition boundary with the field directed
along the c axis and concluded that the transition was
not. first order.

Butera and coworkers '" ' have investigated vari-
ous aspects of the phase diagram with the applied
field directed along the c axis and displaced 3' and 7'
toward c' in the ac plane, using measurements of
heat capacity, (8M/8T)H andthe adiabatic , variation
of temperature with applied field. The temperature
region covered in these studies extended from 0.8 to

In this section we analyze the symmetry properties
of MnC12 4D20, construct the Landau-Ginzburg-
Wilson (LGW) model appropriate for this compound
and discuss the (T, A) phase diagram. The paramag-
netic space group of MnClz 4D20 is Go =P2~/n. The
unit cell contains four magnetic ions located at (1)
(x,y, z), (2) (x,y, z), (3) ( —+x, ——y, —+z), and (4)

1 1 1( —
~

—x, —
z +y, —

2
—z) (for details see Ref. 25).

Let S; = (S„,S&,S;,)i = l, 2, 3, 4 be the magnetic mo-
ment of the ion located a site i. Under the operators
of the symmetry group Go, the vectors S; transform
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in the following way:

S& —S2,

Si„——S4x,

S)y —S4y,

S), ——S4„

S3 ~S4
S2x —S3x

S.2y ~ S3y,

n: S&x =—S3x S2x —S4x.

The magnetic groups associated with these com-
ponents are given in Table I. Experimentally, it was
found that the A =0 magnetic structure of MnC12

4D20 is given by the y component of the vector A,
~here y defines the easy magnetic axis in the Sx —S,
plane. By applying a magnetic field along the easy
axis for T ( T~ one finds a spin-flop transition in

which the component A~ orders.
In order to construct the LOW model appropriate

for MnC12 4D20 one should examine the coupling
terms between the various order parameters of Table
I, and in particular the coupling between the magnet-
ic field H and the order parameters A~ and A~. Table
I suggests that the three order parameters Ax, A„and

TABLE I. The magnetic symmetry groups associated with

the 12 order parameters of MnC12 4D20. Order parameters
which transform according to the same irreducible represen-
tation of the paramagnetic group, have the same magnetic
symmetry and they induce an ordering field on each other.

Symmetry Order Parameter,

P2)/n
P2)/n'
P2, /n

P2)/n'

Ax, A~, Gy

Ay, Gx, Gz

F, Cx, C,
Fx, Fz, Cy

Sii = S3i S2& ~ S4

where i is the space inversion operator, 2~ is a two-

fold screw axis, and n is a glide plane. The twelve
components S;„i =1, . . . , 4, p, =x,y, z form a basis of
a reducible representation of the group Go. It is easy
to see that this representation decomposes into
twelve, one-dimensional irreducible representations,
whose basis vectors are the x,y, z components of the
following vectors:

F =S) +S2+S3+S4

G = S) —S2+ S3 S4

A =S) —S2 —S3+S4

C =S) +S2 —S3 —S4

G~ transform in the same way under the symmetry
operators of the group Go. Therefore one expects
that G~ should be induced by A~ for T & T~. How-
ever, this order parameter has not been observed ex-
perimentally, which suggests that the coupling
between G~ and A ~ may be small. Similarly, in the
SF phase, the order parameter A~ induces Gx and G, .
The magnetic field A transforms, under the sym-
metry operators of Go, like the order parameter F.
Therefore, according to Table I, H induces a stag-
gered magnetic field which is coupled to the order
parameter C, but does not induce such a field for A

and C». This analysis suggests that the ( T, H) phase
diagram of MnC12 4020 may be analyzed using two
order parameters:

and

$) = aA»+ bG» (3a)

where the coefficients r~, r2, aI, a3, u», u», and u22

are functions of T and H, H2 = H~, and H ~ and H3
are the components of the magnetic field along the
easy and hard magnetic axes, respectively, in the
Hx —H, plane. This is the LGW model appropriate
for the orthorhombic case, and its (H, T) phase dia-

gram is given schematically in Fig. 1. The AF-PM
and SF-PM critical surfaces are associated with n =1
component order parameters, Q~ and P2, respectively,
while the bicritical line corresponds to an n =2 com-
ponent order parameter ($~, $2).

The symmetry analysis presented in this section
also indicates that MnC12 4D20 should exhibit rnagne-
toelectric effects. It is easy to see that by applying an
electric field E, the following terms appear in the free
energy:

H, Z, A, , H„~,A, , H,E,A, , H&~&A, ,

@2 = cA» + dG„+eG,

where a, b, c, d, e are parameters which may depend on
T and H. The order parameter $~ is associated with
the antiferromagnetic phase while $2 corresponds to
the spin-flopped phase. Note that the order parame-
ter A, which is the component of A along the hard
magnetic axis o., is also induced by A~ in the antifer-
romagnetic phase but is not observed experimentally.
Since this order parameter does not become critical, it

may be integrated out, and therefore will not affect
the qualitative features of the phase diagram. It will,
however, renormalize the various coupling constants
which appear in the LGW Hamiltonian 3C(@t, $q).
This Hamiltonian takes the form

1 2 1X = —, r~Q~ — —r2$2—(a~H2H— ~
+ a3H2H3) /~@2

—
—,
' [(s7y, )'+ (s7y, )'] —u„yt
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where the subscript i denotes the components per-
pendicular to the y axis (i.e., the a and y com-
ponents). As a result of these terms one expects, for
example, that by applying electric and magnetic
fields, one may induce the order parameter A above
the critical surfaces.

III. EXPERIMENTAL

A. Sample preparation

The samples used in this study were prepared by
reacting spectroscopic-grade manganese metal with
high-purity reagent-grade hydrochloric acid to prepare
MnC1~ 4HqO crystals. The MnC1~ 4H~O was dehydrat-
ed at 300'C under flowing dry HC1 gas. The anhy-
drous MnC1~ thus prepared was dissolved in D~O in a
glove box to prepare a saturated solution at room
temperature. Seed crystals of MnC1& 4D&O were
prepared from this solution by controlled evaporation
under an inert atmosphere. Two large single crystals
were grown using this technique. The first was
machined into a rectangular platelet 10 x 5 x 2 mm,
and the second was machined into a 6-mm-diam
sphere. The samples were coated with GE varnish to
protect them from loss of D~O or gain of H~O and
also from H-D exchange.

B. Apparatus and experimental method

After a preliminary alignment, the crystal was
placed in a He-filled aluminum container in which it
was secured by GE varnish and light pressure from a
coil spring. This sample holder was mounted in a
He Dewar, positioned approximately vertically in the

housing of a horizontal-field electromagnet attached
to the sample table of the spectrometer. Sample tem-
perature was controlled to about 1 mK and read with
a carbon-glass sensor placed in a hole drilled in the
post supporting the crystal. The Dewar was held in
the magnet by means of a ring mounted on a spheri-
cal bearing surface so that it could be tipped in arbi-
trary directions through small angles about a point
simultaneously centered with respect to the pole
faces, the neutron beam, and the sample. The spher--
ical bearing surface could be rotated in the horizontal
plane by means of a tangent screw having a sensitivi-
ty of approximately 0.01'. The magnet-pole faces
were 2 in. in diameter and the gap 3 in. The field
was monitored by a Hall probe placed close to a pole
face and remained constant to about 1 G. The field
at the sample was calibrated against the probe by
placing a rotating-coil magnetometer in the sample
position. To observe the spin-flop transition, the in-
tensity of a suitable antiferromagnetic Bragg reflec-
tion, corrected for nuclear components by subtracting
the intensity found above T~, was followed as a func-

tion of the strength and direction of the applied field
at fixed temperature. The measured intensity
depends on the angle between the spin axis and the
normal to the scattering planes (scattering vector)
and is proportional to q~, the square of the sine of
that angle. For the (102) magnetic reflection, q~ in-
creases by a factor of about 10 when the spin axis
changes from the zero-field orientation close to c' to
the b axis, in the spin-flop phase.

The spin axis orientation in the basal plane in zero
field was obtained from the ratio of the observed in-
tensities of the (102) and (102) magnetic reflections.
These measurements gave an angle of —3' from c'
towards c, in agreement with the result of Altman
et al." In measurements to be described later, the
tilt of the spin out of the basal plane was found to be
0'+0,2', which also falls within the error limits
given by the above authors.

For measurements with the field in the easy-hard
plane (ac crystallographic plane), the b axis was set
vertical by tilting the cryostat in its supporting ring so
as to maximize intensities of a set of (hol) reflec-
tions. By use of tight vertical collimation, the uncer-
tainty in this orientation could be made less than
0.05'. Precise in-plane alignment of the magnetic
field with respect to the crystallographic c' axis was
obtained in the following way: the horizontal magnet
axis was set normal to the neutron beam incident on-
the sample to establish the zero of its angular scale,
using a mechanical guide accurate to about 0.02'.
The spectrometer table carrying the magnet was ro-
tated so that this axis pointed in the direction calcu-
lated for the scattering vector of the (002) nuclear re-
flection, and the counter was positioned to accept
that reflection. The Dewar was then rotated relative
to the magnet, using the tangent screw, until the
(002) reflection was maximized, and the c' axis thus
made parallel to the field. Changes in the basal-plane
orientation of the field relative to the c' axis were
made by rotating the magnet-Dewar assembly a
known angle from the (002) reflecting position, using
the spectrometer table, and then rotating the Dewar
with respect to the magnet in the opposite direction
until the reflection was recovered.

To change the angle between the field and medium
anisotropy axis (crystallographic b axis), the magnet-
Dewar assembly was first shimmed with respect to
the spectrometer table. The Dewar was then
separately adjusted to return the b axis to vertical
orientation by the method used in the initial align-
ment.

IV. - RESULTS

A. Qualitative view of the phase diagram

The intensity of the magnetic (102) reflection was
studied at a number of temperatures and magnetic
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fields applied along the c' axis. Typical results,
corrected for nuclear contribution to the scattering,
but not for demagnetizing effects, are shown in Fig.
3. From these data. , together with a scan at 0 =0,
we have constructed a qualitative description of the
phase diagram over this region of H and T, as shown
in Fig. 4. The choice of the c' direction for the ap-
plied field is somewhat arbitrary. It differs from the
actual spin axis by —3', but it will be shown later
that this does not alter the picture appreciably,

l2
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a
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4—
AF

0 I I I I I I I

0 0.2 0.4 0.6 0.8 I .0 I.2 j.4 I .6
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B. Character of the AF-SF transition

A first-order spin-flop transition should exhibit a
discontinuous change in Bragg peak intensity at a
fixed value of the internal field, corresponding to the
change in spin-axis orientation relative to the scatter-
ing vector of the magnetic reflection. This change in

FIG. 4. Approximate phase diagram for field applied
along the c' axis, constructed from the data of Fig. 3, to-
gether with a scan at zero field,

intensity becomes linear in the applied field because
of demagnetization effects and reflects the changing
proportions of distinct AF and SF phases present in

-equilibrium. This behavior is clearly demonstrated
by the data for the spherical sample in Fig. 5, taken at
0.52 K with field applied along the spin axis, i.e.,
parallel to a direction 2.74' from c' toward c in the ac
plane. The linear region is seen to extend for ap-
proximately 200 G. At higher fields the data exhibit
rounding which is most probably caused by extinc-
tion. With the uncertainty that this introduces, the
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6.6FIG. 3. Intensity of the C, 102) magnetic reflection as a
function of field applied in the c direction, for representa-
tive temperatures. AF, SF, and PM refer to the antifer-
romagnetic, spin-flop, and paramagnetic regions, respective-
ly, The data, obtained with the platelet sample, have been
corrected for nuclear contributions to the scattering, but not
for demagnetizing effects.
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FIG. 5. Spin-flop transition at T =0.52 It'. Data are for
the spherical sample with field applied along the easy aniso-
tropy axis (displaced 2.74' from c toward c in the basal
plane).
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two-phase region may be estimated to exist over a
range of fields equal to 250—300 G. This range is
comparable with the change in demagnetizing field
predicted by molecular field (MF) calculations. "
Taking XAF and XsF, the molar susceptibility values,
reported for the hydrated material and applying the
demagnetizing factor for a sphere, we have

AH(T) =
3

n [X(T)sFH2 —X(T)pFH) I
4 1

&m

=215 0 (6)

which is in excellent agreement. We conclude there-
fore that the hydrate, as well, exhibits a first-order
transition at the AF-SF boundary at very low tern-
peratures.

tion to these data yields

hH ( T) = (0.0438) (1.438 x 7400 —0.796 x 7100)

= (0.0438) (1.438 x 7020 —0.796 x 6710) C. Dependence of the AF-SF transition
field on orientation in the ac plane

=208 0

where v is the molar volume and Hi and H2 are es-
timates of the end points of the transition region.

Data for 0.80 and 1.10 K are shown in Figs. 6 and
10. As in the case of the 0.52-K data, the range of
the two-phase region is qualitatively in accord with
published magnetization data for the hydrated materi-
al. The data taken at 1.10 K, which is approxi-
mately 0.1 K below the bicritical point, . have been
corrected for critical scattering on the basis of an
analysis to be presented in a later section. It will also
be shown that this analysis provides independent
confirmation of the first-order nature of the transi-
tion close to the bicritical point.

This same MF treatment can also be applied to the
adiabatic magnetization data reported by Giauque
et al. for the hydrated material, with the field ap-
plied parallel to the c axis and perpendicular to the b

axis. These data exhibit linearity at T =0.40 K over
a field range of 200 G. Applying the MF approxima-

The intensity as a function of applied field at —0.5
K has been determined over the AF-SF transition re-
gion for several orientations in the ae plane using the
platelet sample. The dependence of the onset of the
linear region H~, on orientation in the ac plane is
shown in Fig. 7, where the angle cu is measured from
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FIG. 6, Spin-flop transition at T =0.80 K. Data are for
the spherical sample with field applied in the easy direction.

{deg)

FIG. 7. Onset of the linear region of the spin-flop transi-
tion (H~) at T -0.5 K, as a function of the angle (cv)

between the field and a reference direction, taken as the c
axis. The curve represents the expression 0& =6898/
cos (~ —~), where ~0 corresponds to the easy direction.
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the c' axis, towards c, and coo represents the direction
of the easy axis in the plane. The smooth curve is
calculated from

Ht =6898/cos(to —coo)

indicating that the shelf is flat in the region studied.
The fit is quite adequate and indicates that the SF
shelf extends at least 2500 G in the Hqi, direction, as
expected for a monoclinic antiferromagnet and sho~n
schematically in Fig. 1. It was not possible to reach
the edge of the shelf because of physical limitations
of the apparatus, but later measurements at 0.8 K,
using a different sample, showed that the shelf ex-
tended to at least 4500 G.

D. Width of the AF-SF shelf in the

HII —Hj plane at T 1.100 K

Previous experimental studies" "'""have failed
to yield evidence of a first-order transition at the
AF-SF boundary for temperatures greater than 0.4 K,
This may have been due to a lack of precise align-
ment of the applied field perpendicular to the medi-
um anisotropy axis (b axis). As we have seen, this
orientation is expected to be far more critical than
alignment in the ac plane. To obtain an estimate of
the allowable degree of misorientation, we measured
the intensity of the (102) reflection as a function of
applied field at T =1.100 K, using the spherical sam-

ple, for tilt angles relative to the ac plane of —0.93',
—0.40', 0.00', 0.06', 0.22', 0.52', 0.81', and 1.52'.
These data are shown in Fig. 8,

For the larger angles, the behavior was clearly gra-
dual and it was possible to fit the data on the as-

sumption that the staggered magnetization rotated
continuously from the ac plane towards the b axis as
a function of increasing field. Referring to Fig. 9(a),
in which MsT is the staggered magnetization and 6&O2

is the scattering vector of the magnetic reflection,
the intensity is given by I —Msr sin'@
=Msr (1 —

eats, Msr/Msr ), inasmuch as Msr has

components only in the easy-medium plane and K-, oj
lies in the easy-hard plane. In terms of the angles (
and 0, this can be written

I =A sin'(+B
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(9)

where P, the angle between the field and the easy

with A = Ms2, cos'8 and B = Ms2r sin28. The angle $

can be expressed, approximately, in terms of applied
field, using the mean-field expression ' derived for
low temperatures and for tilt angles in the easy-
medium plane which are large compared to that cor-
responding to the edge of the first-order shelf:

IO 000
69 7.0 7.1 7.2 7.3 7.4

H (kG)

FIG. 8. Field dependence of the AF-SF transition at
1.100 K for various angles of tilt (ltI) of the field with
respect to the easy axis, in the easy-medium plane. Intensi-
ties refer to the (102) reflection in the spherical sample.
Solid lines are fits to the low-temperature, mean-field ex-
pression given in Eq. (9). The data for I&I (0.40', con-
nected by dashed lines, cannot be fitted in this way because
of the pronounced linear behavior, and provide a conserva-
tive upper limit to the width of the first-order shelf.
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easy
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0
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range and amplitude parameters characterizing the
critical scattering provide independent confirmation
of the first-order nature of the spin-flop transition at
1.10 K.

The intensity of the critical scattering is given by

the expression

z(easy

(a) (b)

K Kp
K2 x.p(q)F.s(q. ~)

FIG. 9, Defintions of angles connecting the staggered
magnetization (MsT), the scattering vector for the (102) re-
flection (~&02), and applied field (H) with the anisotropy

axes.

axis is shown in Fig. 9(b). The solid lines drawn
through the data of Fig. S for )P( ~0.40 indicate that
satisfactory fits can be obtained in this manner. This
is not the case for ~p~ & 0.40, however, inasmuch as
the data exhibit pronounced linear regions which can-
not be well represented. Considering the domain of
applicability of the mean-field expression, we con-
clude that the first-order shelf has a half-width which

may well be appreciably less than 0.40'.
This behavior is consistent with the characteristics

of the first-order transition predicted by the MF
treatment of Rohrer and coworkers' for the region
where ~P~ & P, . One can estimate the width of the
spin-flop shelf using the anisotropy data reported for
the hydrated material and the MF expression given
by Rohrer and Thomas. The value of the critical an-
gle at T =0 K has been estimatedzb to be p, ( T =0)
—6.5'. An upper limit to the value of P, (T) at T
=1.100 K can be estimated using the expression

Q, (T) = P, (0)(Tb —T)/Tb

given by Blazey et al. together with the value of the
bicritical temperature ( Tb =1.21 K) for the hydrate
reported by Butera and Rutter. " This calculation
gives 4I, ( T = 1.100 K) ~ 0.60' which compares favor-
ably with the result of this study.

E. Critical scattering and the
first-order phase transition

In the vicinity of the bicritical point, the spin-flop
transition is accompanied by appreciable critical
scattering. This scattering increases with field as the
transition is approached from below, reaching a rnax-
imum at the onset of the transition, and then de-
creases with the increase of the percentage of spin-
flop phase present in the two-phase region. In this
section we treat this critical scattering theoretically
and present an approximate procedure for separating
the critical and Bragg components of the experimen-
tal data. Finally, we show that the behavior of the

K,2+ 1 — *, X„(q),
K

(12)

where x, y, and z refer to the hard, medium, and easy
axes. Noting that the scattering vector used in the
experiments (102) is very nearly parallel to the z

axis, we obtain

I —x (q)+x~(q) (13)

As the bicritical point is approached, the susceptibili-
ties along the easy [X„(0)]and medium [X««(0) j
axes diverge, while X (0), the susceptibility along
the hard a axis, remains finite. One may therefore
neglect X (q) in Eq. (13) and obtain

AF phase: 1 —X«A«"(q) = Xq (q)

SF phase: I —x «" (q) = xb"(q )
(14)

In the following section we show that on the coex-
istence line one has Xsb"jXq~" &( 1, and therefore the
contribution of the SF phase to the critical scattering
intensity is much smaller than that of the AF phase.

%e consider a simple microscopic mode1 for uniax-
ial antiferromagnets, and study it within the mean-

1
field approximation. Let S; be a spin-2 vector locat-

ed on the site i of, say, a tetragonal lattice. Consider
the following Hamiltonian:

3!= -1 $S, S,- it $S„'-0 $S„
(IJ&

(is)

where the sum $&,J&
is over nearest-neighbor sites

(ij ), the coupling J is antiferromagnetic, J (0, and

where K is the scattering vector, X &(q) the static
susceptibility corresponding to a momentum change
Aq referred to the magnetic reciprocal-lattice point as
origin, F(q, co) a shape factor for the energy (tea)
dependence of the scattering and a, P denote com-
ponents relative to an orthogonal set of axes, which
we take to be the anisotropy axes of Fig, 9(a).
Making the usual assumption that the z component
of the spin is a constant of the motion, so that cross
terms in X ~ vanish, we have, in quasielastic approxi-
mation

T

X (q)+ 1 — X„(q)
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the anisotropic term favors an ordering along the z

axis, K )O. This is the simplest model which exhi-
bits a bicritical point in the TH plane. Let M1 and M2
be the magnetic moments associated with the sublat-
tices 1 and 2, respectively. Within the mean-field
theory, the free energy @ associated with this model
is given by

where

r

r)=2 1+—pJz — pK—+1 — 1

4 2

(pH)'

4
4(1 ——pJ z ——'pK)'

2 J

rz=2 I+
&
pJz+3 (pH)'

4(1 ——PJ z ——PK)z
4 2

P@/N = —PJzM, M, —PK(M,', +M,', )
—PH(M„+M„)

2

+ —X[(I +M, ) ln(1 +M;)
i 1

+ (I —M, ) ln(1 —M;) ], (16)

where p = I/ks T, N is the number of sites in each
sublattice, z is the coordination number, and

(pH)'
011= 6—

4(1 ——PJ z ——PK)'
4 2

(PH)'
36(1 ——„PJz ——PK)'

(pH)'
Q12 =—

6(1 ——pJ z ——pK)'
4 2

The bicritical point is located at

f1=f2=0

and the AF-SF coexistence line is given by

(2la)

=M +I i=l 2 (17)
f 2 f 2

r1, r2 (0
911 M 22

Along this line we find

(22)

Here we assume that in the SF phase the sublattice
magnetization lies in the y-z plane, namely, M„=O.
Let

2

( gSF)
—1

8~y ~,-0

' 1/2

(23)

F =M1+M2, A =M1 —M2 (Is) and

To fourth order in F and A, the free energy takes the
for.m:

(u, z
—2Ju„u„).

()Ay g ~ 2Ll11

(24)
Inserting Eq. (23) into Eq. (24) we finally obtain

P@/N = —PHF, + (I —
~ PJ z —

z PK) F,

+(I+ ,'PJ z ,'PK)A—,'+(1—+——,'PJ. )A,'

I r

XII" K + 0 K
OAF

(25)

+
6 (F, +Ay +A, +6FzA,~

+ 2F,zAyz + 2AyzA, z) (i9)

By studying the Hamiltonian (15) at T =0 one finds
that the critical field HsF for the AF-SF transition
and the critical field HF for the SF-PARA transition
are related by

Minimizing $ with respect to F, we find

r

HSF

HF

2 I

K +0 K
Jz Jz

(26)

. (20)
6(1 ——'PJ z — PK) + (6A,'+2Ay—')

Inserting Eq. (20) into Eq. (19) we finally obtain the
following expression for the free energy:

P$/N = $0+ r(A,'+ rzAy~+ ut, A,~——1 2 1

For MnC12 4D20 one has'

H SF 03
HI;-

and hence

XSF„„=0.09
OAF

(27)

(2s)

+ u)zAyzA, + uzzAy +0(Ay6, A,6), (21)
Therefore the contribution of the SF phase to the
scattering intensity on the coexistence line is much
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smaller than that of the AF phase. Note that the fact
that Xq" is inversely proportional to the small param-
eter (K/Jz) may provide an explanation for the large
critical scattering observed on the coexistence line
below the bicritical point.

F. Treatment of experimental data

The observed magnetic scattering in the ordered
region close to the bicritical point consists of a sharp
Bragg peak superimposed on a broad, Lorentzian-like
base produced by critical scattering. The latter com-
ponent is given by a convolution of the cross section,
X(q), with the instrumental resolution function,
With a given functional form for the cross section,
the correlation length, which appears as a parameter,
can be obtained from a least-squares fit of the convo-
luted cross section to the wing portions of the reflec-
tion. Using the final form of the cross section, the
convolution can also be computed in the region
under the Bragg peak to obtain corrected values for
the Bragg intensities.

From mean-field theory, X(q ) can be expressed in

the form

x(q) =
K'+ g(q)

P2t/n, the manganese atoms are located at 0,0,0;
(), —,, —, ; —, , 0.16, —,, and —, , —, +0.16, 0). With these

1 1 1 1 1 1

simplifying assumptions, we have

(q) J&q2&2+ J (q 2&2 +q&62 +q2c2) (30)

where Ji and J2 are first- and second-neighbor ex-
change constants. The spin assignments for atoms in
positions listed above are +, +, —,—;respectively, as
in ordering of the first kind for fcc crystals. This
similarity suggests" that Ji is negative and J2 posi-
tive. The value of the ratio (IJ~I+J2)/J2 was fixed
at 18 by least-squares fitting, although the results
were rather insensitive to the exact choice.

Data for the 1.100 K Bragg peak, corrected for crit-
ical scattering is shown in Fig. 10. The closed circles
represent the correction, applied to the raw data, and
indicates the general behavior of the critical scattering
with field.

It is interesting to look more closely at the field
dependence of the critical scattering, and, in particu-
lar, at the expected behavior of the inverse range
parameter ~ and the normalization constant A. As
the transition is approached from below and the sys-
tem is wholly within the AF phase, the normalization

in which K is the inverse correlation range parameter
and g(q) is the Fourier transform of the exchange
interaction. The transform can be evaluated approxi-
mately by treating the unit cell as orthorhombic and
the manganese atoms as face centered. (Choosing
the origin at x =0,25, y =0.17, z =0 in space group
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FIG. 10. Spin-flop transition at 1.100 K. The open circles
(left-hand scale) give intensities for the (102) magnetic
peak, in the spherical sample, corrected for critical scattering
as explained in the text. The actual corrections to the Bragg
reflection are given by the closed circles (right-hand scale)
and demonstrate the peaking of the critical scattering at the
onset of the spin-flop transition.
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FIG. 11. Results of the analysis of the critical scattering
associated with the spin-flop transition at 1.100 K: (a) in-

verse range parameter, (b) normalization constant. The
lines in the figure are intended as visual aids.
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constant should remain constant and the inverse
range parameter should tend toward zero. In the
two-phase region, since the internal field is un-

changed, K should remain constant. The normaliza-
tion, on the other hand, should decrease because the
scattering from the SF phase is much weaker than
that from the AF phase. While we do not claim
quantitative accuracy for the least-squares results,
they do exhibit the expected behavior as shown in

Fig. 11. In contrast to this behavior, a model in
which the spins turn continuously with field, would

be expected to show a minimum in ~ and a continu-
ously falling normalization constant.
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