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Critical confluent corrections: Universality and estimates of amplitude ratios from
field theory at d =3
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We estimate, at fl =3, from @4 field theory the universal ratios of confluent critical correction
amplitudes relative to the correlation length, the susceptibility, and the specific heat above T, .
Our central values are comparable to these available from analysis of high-temperature series
and the ~ expansion. Furthermore, experiments in progress on a binary mixture are in good
agreement with one of our results, the ratio o'f the confluent corrections for the specific heat

and susceptibility which have not been previously estimated. We also present, in detail, a

derivation of the universality of these quantities in the framework of field theory.

I. INTRODUCTION

Systems which exhibit a second-order phase transi-
tion at a critical temperature T, have special proper-
ties which are responsible for singularities in some
functions of the reduced temperature r = ( T —T, )/ T, .

Let us denote by f~(r) these functions. In the vi-

cinity of T, (r 0 —) they behave as'

&& (I +af ~r~ '+bf ~r~ '+ +X), (1.1)

where X is the nonsingular terms. The A.; are the

critical exponents, f ' the critical amplitudes, af
I

and bf the amplitudes of the first and second con-
I

fluent corrections; b,
~

is the leading subcritical ex-
ponent; terms analytic in 7 have been omitted. If
one deals only with the @" theory, and neglects cutoff
corrections, then b2 = 2h&. Following the universality
hypothesis' systems are grouped into classes. Within
each class, in addition to scaling laws, the critical and
subcritical exponents together with some combina-
tions of critical amplitudes are universal numbers.
These classes are characterized by the dimensionali-
ties of both the order parameter and space (n and d).
While some efforts have been devoted towards the
determination of universal combinations of ampli-
tudes' very little is known concerning the confluent
amplitudes.

The knowledge of these amplitudes would be very
useful for the analysis of the various experimental
data' and high-temperature (HT) series. 6 Following

g = (+r "( I + a&+r""+ )

x=tt &(I+a+r "+ ),
w+

Cs ——— t (I + na(+r""+ )

(1.2)

(1.3)

(1.4)

in which v, y, o are the usual critical exponents, and

the HT series we expect the ratio of two such ampli-
tudes (susceptibility and correlation length) to be
universal (extended universality ). The field-theory
technique is an efficient tool for studying the univer-
sality and calculating perturbatively any quantity of
interest for critical phenomena. Recently the e ex-
pansion (e =4 —d) for amplitude corrections' was
calculated up to order e', but it is hard to assess the
reliability of the numbers obtained at ~ =1.

In order to eliminate some disadvantages of using
noninteger dimension, Parisi" suggested that the k-

loop contributions at fixed dimensions be computed
directly. Following this scheme, Nickel et a/. "have
performed, up to sixth order, the calculations at d =3
for $4 theory. Their results, together with the
resummation method based on the large order
behavior" provide us with an opportunity to reach
various universal quantities attached to corrections,
with a good accuracy.

As this perturbative expansion was calculated in

the massive renormalized theory, it has not been pos-
sible as yet to investigate the amplitudes belo~ T, .
In this paper, we have considered the corrections
above T, for the magnetic susceptibility (x), the
correlation length (g), and the singular part of the
specific heat (Cq). To be more precise, let us intro-
duce the notation used: we calculate the ratios
a&+/a„+, a~+/a&+ (and at+-/a„+) such that, as r 0+, we
have
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ao is the derivative of the Wilson's function at the
fixed point.

First, in Sec. II we present a derivation of the
universality of the various correction amplitude ratios
in the framework of the massive renormalized field
theory. We have tried to be as explicit as possible
because of the fact that universality was hitherto con-
sidered essentially only in the zero-mass renormal-

ized theory. 4 9 The derivation of universality in field
theory consists in showing that (i) the cutoff depen-
dence disappears from the critical behavior —this is

accomplished by the use of the renormalized theory.
(ii) Expected universal quantities do not depend on
the bare coupling constant. (iii) The renormalization
scheme does not affect the final result,

Following these general considerations, we give in

Sec. III the expressions for quantities that we have
estimated.

Finally, in Sec. IV, we discuss, without mathemati-
cal details, the results obtained from. the resumma-
tion method used.

II. UNIVERSALITY AND MASSIVE FIELD THEORY

ble vertex functions
~(L,N) g'
~ o

' (qi qL'pi pn', mo. go, A)

which are related to the correlation functions

I'0 ' (0;mo„go, A) =0 (2.4)

As mo goes to mo, singularities appear in the vertex
functions, and the naive perturbation theory in

powers of go breaks down since the effective expan-
sion parameter becomes infinite, but the explicit
dependence on A can be forgotten (A ' =—0). The ir-

relevance of this length scale in the critical domain
motivates the use of the renormalized theory.

Hence, following the standard procedure, we intro-
duce new (renormalized) variables qi, u, and m which
are defined from the bare ones yo, go, and mo

through

~(L,N) f
0

' (Pi ~ ~ ~ pL', xi, . . . , xn', mp, gp)

=
&q o(yi) bio(ZL)q30(xi) bio(XN) ) (2.3)

calculated with the Hamiltonian (2.1).
The critical behavior appears as the bare mass mo

goes to its critical value mo, defined by

The theoretical background of this part can be
found in many review papers. ' The starting point
of the renormalized field-theory approach to critical
phenomena is the Landau-Ginsburg-Wilson Hamil-
tonian

Z 1/2@

gii = um'Zi/Z3

p1 Z3m + Sm

tq0 Z3/Z4q '

(2.5a)

(2.5b)

(2.5c)

(2.5d)

+—[930(X)]'4[
(2.1)

i

aC/ks T = „d x —,
'

[—bio(x ) A q30(x) + mii qi ii(x) ] so that in the limit A ~ the bare and renormalized
vertex functions [for (L, N) A (0, 0), (1,0), and
(2,0)] are related as follows:

which is used to define the probability distribution of
the variable happ

—= }qip,i = 1, 2, . . . , n } whose mean
value is the order parameter. The subscript "0"
means that the form (2.1) is the continuous limit of a
realistic model (e.g. , lattice model) and indicates the
"physical variables" which will be related to the re-
normalized quantities.

In Eq. (2.1), A denotes the Laplace operator

d

and d is the dimension of space. Because of the non-
continuous character of the physics, we have to keep
in mind that the integrals over the. d-dimensional
space are a continuous limit of a discrete sum. This
can be taken into account by integrating only over k
momenta (conjugated to x in a Fourier transform)
such that

(2.2)

the cutoff A being fixed and finite. We are interest-
ed in the critical behavior of the one-particle irreduci-

lim r n( [q };(p };mo,go, A)

Z4(u)
Z, (u)

r'n( [q };(p };m,u)

(2.6)

m Z, '(u)P 2 (u) 0 (2.7)

in which, using simple dimensional arguments

r'n(m, u )P'L»(u) = ' =rL&(I u)
m 'N

(2.g)

DLN being the classical dimension of I",namely,

Dt g = d ——(d —2) —2L
2

(2.9)

We shall now show that, provided the exponent q

The Z s are arbitrary functions which depend on the
dimensionless coupling constant u. These functions
are given by some renormalization conditions on the
I L N. In the renormalized theory the critical domain
is defined by [see Eqs. (2.4) and (2.6)]
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verifies the inequalities

0&~(2 (2.10)

and that S'L ~'(u) are well-defined functions for any
value of u, then the limit (2.7) corresponds to In —0.

Equation (2.5b) indicates the existence of a special
value u'of gsince m 0 and gp is fixed. This fixed
point u' is the zero of the function P(u), namely,

P(u) = —a In
J OZ1

(2.11)
dLI Z

Then as previously we find near u'
r

„(0)/ y
(I )

Zk(u) =Au " A 1+ +yk p
o Au+ ~

0)

(2.16)

with

(2.17a)

(2.17b)

Near u', an expansion of this function reads

CV/4

1=m"
gp

AJ/0

1 —p corn"
gp

+ 0 ~ ~ (2.13)

+ $ p'"'(u —u')" . (2.12)
P( u) co(u —u') „o

I

Using this expansion and Eq. (2.5b) the integration
of Eq. (2.11) leads to

Together with Eq. (2.13) the result (2.16) shows that
the limit (2.7) is given by m —0 provided that
(2.10) holds.

The critical behavior of the bare theory then re-
quires the study of the right-hand side of Eq. (2.6) as
LI goes to u'. The part which comes from the func-
tions Z„ is given by (2.16) and (2.13). Simple
dimensional arguments for the I ((0), (0 };m,u)
and a Taylor expansion around u", yield

r""((0);(0};m,u)
~here A1 enters as a constant of integration. This
result shows that, if cv is positive, u goes to LI' when
m goes to zero as expected.

%e now define the following functions:

r

LNP(L, N) I + ~ ingl'LAt)( u),
dLI

ALI +

(2.18)

yk(u) =P(u) —lnZk(u), k =3, 4
dM

with

yk(u) = X y~"'»"
n 0

(2.14)

(2.15)

in which P' ' stands for P'L '(u').
It is then straightforward to establish the following

behavior of the bare vertex functions, as m goes to
zero:

[D +2L —(N/2) vi
—L/v)I,"((0 ) (0 } mo go A) — Dm

( N y) Ly[ dx I+ L, —— +—in 5"~'( u)
2 cu m dLI

cv/e

m" 1

gp,
+ I ~ ~ (2.19)

in which we have introduced the exponent v

v = (2 —g + 'II4)

and the constant

p(L g) g [—(N/2)v]+I (2—1/v))
x)=— 3

g JV/2 gj

(2.20)

(2.21)

Equation (2.19) is not yet the final result. The renormalized mass must be expressed in terms of the variable
t =ma —mo, [—r+O(r')] in order to obtain the expected asymptotic expansion [Eq. (1.1)]. The relation
between the variables m and mo can be obtained from Eqs. (2.5) and (2.6). Instead we shall replace one of these
equations by an equivalent differential form.' the Callan-Symanzik equation which is

m + p(u) ——y3(u) —L [y4(u) —y3(u)] I (q~, . . . , qL,'(p );m, u)
gin 9LI 2

Qm=m 0 ' I' +'~&(q), . . . , qL, (); [p );m, u) . (2 22)
gm fp Z4
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For N =2, L =0, and p =0 this equation, together with Eq. (2.6), leads to

Qm2 Z p(0, 2)
=(2 —y, ) ', , m 1+ in%to "(u)

Bm Z3 S"~~(u) 2 —y3 du
t

After some obvious manipulations which use Eqs. (2.13) and (2.16) one obtains the relation that we were
looking for, namely,

(2.23)

' eov/e

m =(Xr)" 1 — C .
' (Xr)""+

OJV+1 gp
(2.24)

where

'(2-1/v)/e ~() 2)A A3 1

p«»(u) ~ 2 —g du

(2.25)

The exponent y comes from the scaling law

y = v(2 —g) (2.26)

We are now ready to write the general form of the asymptotic behavior of the bare vertex functions in terms of
the critical variable t Using . Eqs. (2.19) and (2.24), we have

(D —(1V/2) +2L]—L )
1 ]L IA ( X)LYN(Xr )

" Llv ~ ty p(LN) 1 + g (Xr )ruv
t ' g()

!

+ ~ ~ ~ (2.27)

with Y=(A, /go) "~'(1/A3) and Xgiven in Eq. (2.25).
Finally KL~ can be expressed as

N v)"
KLg= L ——

2 OJ

1 T

N L V
in%&~ ~t(u) —Dig +2L ——rt —— C

co dM 2 V OJV+1
(2.28)

C being also given in Eqs. (2.25).
Following Ref. 4 we observe that, for the leading amplitudes, defined for different values of L and N in Eq.

(2.27), any combination among them which eliminates the factors X and Y is independent of go and, is therefore a
candidate for an universal quantity. Similarly for the amplitudes of the confluent terms we see that any ratio of
two of them (for two different vetex functions) is also independent of go since the same subleading exponent
governs the behavior of all these terms.

In order to be complete we must investigate the arbitrariness introduced by the renormalization scheme. Any
renormalized theory has to give back the same bare theory Eqs. (2.5) and (2.6). Thus, two renormalized
theories, characterized by I' " and I ', are related through

and

1"&((q j (p (;m, u) =g) " "g'f'" '((q (, (p j;m, u),
, uZt(u), uZt(u)

[Z, (u) j' [Z,(u)]

(2.29)

(2.30)

m 1 — (u) =(3m 1—Sm2. 2

m

2
Sm

( )
m

(2.31)

with

Z, (u)
Z„(u)

(2.32)
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Equations (2.30) and (2.31) may be written equivalently

EI = U(U)

and

m =X(u)m

(2.33)

(2.34)

dU P(u)
du 1+p(u)(d/du) in'(u)

which shows that when u u then u u . Following this relation one obtains readily the universality of the
exponents: co, q, and q4, and the transformations"'.

(2.35)

where U and A. are known and nonsingular functions of u when the two different renormalization schemes are
precisely specified. In other words, these functions define the change of the renormalization scheme. We must
then look at the change introduced by the transformations (2.33) and (2.34) on the amplitudes of interest to us.
Since these latter are quantities calculated at the fixed point we consider the transformation for u in the vicinity
of u'.

It is easy to find the following relation, between p(u) and p(u)

1

(» dU ()) (p) d ink. «ln4

2 g El

' [(L-N/2)q-Lg41ru ' ' N/2-L r L
3 4 OLN ~(L N)

A3 A4

~(L N) dU
du

Q

E

d
l &(L»( )

dU d
l

&(L»(-) N d d d ink
du „+ du du „+ 2 du „+ du „+ du

(2.36)

(2.37)

(2.38)

In the derivation of Eqs. (2.37) and (2.38), we also
used the definitions (2.8) and (2.16). It is then sim-

ple to show that

~L iNi

L 2N2 KL
(2.39)

This result ends the derivation of the universality
of the ratio of confluent corrections amplitudes in

two vertex functions. Let us note that the change in

the renormalization scheme is not absorbed in a

change of the quantities Sand Y for confluent
corrections as is the case for the leading amplitudes. 4

III. AMPLITUDE CORRECTION RATIOS
FOR X, g, AND Cs

Nickel, Meiron, and Baker' calculated directly at
d =3 the functions Zk (k =1,3, 4) and p, as power
series in the coupling constant, corresponding to the
following renormalization condition for the renormal-
ized vertex functions. '

This allows us, using the result of Sec. II, to derive
the amplitudes of the confluent terms for the suscep-
tibility X and the correlation length ( above T, .

Equations (3.1) lead to

P(1'2) (EI) = P(P'2 ( M)

The susceptibility is defined as

X-'=rp (0, mp gp') Z3 I77'

(3.2)

(3.3)

and the correlation length as the second moment of
the correlation function:

rf' "(o;,,g, )

(d/«P") rt '"(P ')Ip.gp) II -p
(3.4)

It then follows from the Sec. II and relations (3.2)
that the universal ratio for confluent corrections of (
and X is expressed by

~x y)"(~v+ I )=2 —q+ —
)at+ p)v[(y)" —y)")/p) —y) "/(2 —r)) ]

(3.5)

r(' "(O;m, u) = m',
d
, I' "(p;m, u) l ~ p =1

(3.1a)

(3.1b)

where we recall that

=—yk(u)
du

(3.6)

r"' ((O};m,u) =m'u

r""(0 (O };m,u) = I .

(3.1c)

(3.1d)

The functions y„(u) (k =3, 4) are defined in Eqs.
(2.14) and their series have been calculated up to
sixth order" in a coupling constant v related to u
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through

t/ =DU (3.7)

relation
zd/2

u= (—n+8)
Z]

(3.10)

(2~)'
(n +8) u ~ I' (2 —d/2)

(3.8)

6Z-' )
IV "((0];,g, ) =

Ro
(3.9)

The coupling constant A. is related to v through the

where I'E(z) denotes the standard gamma function.
Since D is a constant, we can replace u by u in (3.5).
The quantities q, v, co, and v' have been already cal-
culated by Le Guillou and Zinn-Justin' so that it
remains to resum the yk"s.

The ratio (3.5) is the only ratio which can be ob-
tained directly from Ref. 12. The renormalization
scheme is not adapted to go below T, since the limit
m =0 is not defined and the functions StLN)(u) have
not been investigated apart from the particular cases
L =O, W =2 and L = I, W =2 [Eq. (3.2)].

Nevertheless, in Ref. 18 the authors have extracted
the function I'P 0' from the work of Baker, Meiron,
and Nickel, finding

C 1.[2,0) (3.11)

To obtain the critical behavior of C we cannot use
the result of Sec. II for L =2 and N =0 owing to the
additive character of the renormalization for I
but we may derive the singular part C~ of the specific
heat from the critical behavior of I'[)3 0' which is con-
sidered in the Sec. II.

%e know that

r]' "(m,go) =,r""(m,go)(,6
mo

(3.12)

An integration over mo (i.e., t) of the critical
behavior of I"t)3 0', then gives back the singular part
of the specific heat. Thus the corresponding con-
fluent correction term ac+, defined in Eq. (1.4) at
d =3, reads

The series in power of )), is given by Eq. (19) of Ref.
18. [One of the present authors (C.B.) apologizes for
a misprint in this equation: in the first line read
4.849 instead of 4.89.]

The function I P 0' is related to the specific heat C

(», /gg )- 3 (y("-y]").(-+ I )a+=C
OJV —A Ql(GAP+1)

(30)( )
(2 —v))((su+ I) du

(3.13)

In order to express 5 3 0'(u) in term of known functions, we use Eqs. (3.7)—(3.10), (3.12), (2.5), and (2.6b)
to find

St30)(u) =—
)

n 4i'I ~(2 d/2) (—d —4) (Z4)' Z5 '
d Z5 '

1+A. ln
2(27/)" (Z ) ~ )). d)).

(3.14)

Thus we can obtain two other universal ratios ac+/a&+

and ac+/a»+ with only one more function to resum,
namely ( d/du ) [In 5" '( u) ( «].

in which a is independent of the series in contrast to
bo and e. The quantity a depends only on the spatial
dimensionality d and on the form of the Hamiltonian.
In our case and for d = 3 we have

IV. RESUMMATION AND DISCUSSION
OF THE RESULTS

a = (0.147 774 22)9
n+8 (4.2)

The series of interest for us have been summed
using a method developed and discussed at length by
Le Guillou and Zinn-Justin. ' %e shall just recall, at
a practical level, how the free parameters necessary to
the method are introduced. The reader interested in
a theoretical justification of such a technique can
refer to the work cited above.

Let us denote by S(u) = Q„Skv" a renormalized
perturbation series that we deal with. At large order
K we know' that

The free parameters (b and p) are introduced
through the following transformations on the initial
series S(v) to give resummed quantities Sb „(u):

(i) Define first the series at order L by

Sk

I'»(k +b + I)

(ii) Introduce a new expansion parameter

(I +ax)' ~ —1u(x) =
(I+ax)'i +I

S» —K!(—a) "K 'cb
(4.1) with a given in Eq; (4.2).
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(iii) Call Sb „(u) the sum (term by term) of the
series in powers of u obtained from the series Sb(x)
[in which x is replaced by its expansion in u from
point (ii)] multiplied by the series of the function
(1 —u)t', all these transformations are carried up to
order L.

(iv) Finally consider

e-&xb
Sb „(v) = „dx Sb „[u ( vx ) ]

1 —u vx)"
Sb „(v) would give S(v) for any value of b and p,

provided that one deals with an infinite number of
terms in the initial series. In the case of restriction to
a finite number of terms (L orders) we learn from
Ref. 13 that S(v) would be approximated optimally
for some particular range of values for b and p, . This
fact necessitates the use of criteria for the determina-
tion of the error estimates. Since our series are
shorter (five orders for y[", y)" and four for

(rf jdu) [Pt3 a'(u)]} than those considered in the
references cited above we have adopted some dif-
ferent criteria. We want to show now that they lead
to reliable error estimates for the quantities of in-

terest in the present paper.
If we were interested in a central value for a series

to a given order, then the best choice for parameters
6 and p, would be that which gives the best conver-
gence for the series. This choice at each order L sup-
plies values which vary smoothly with L. In order to
determine the upper and lower bounds of the error
estimates we have looked at the oscillatory (OC) and
smooth (SC) curves in L for a large range of values
of b and p, . We have retained as the range of the un-
certainty, the amplitude of the last oscillation of the
smallest OC which encloses at least a SC.

The central value is then given by the best conver-
gent SC provided that the OC are symmetrically
disposed with respect to it (see Fig. 1 and 2). When

0.2S -'

0.2I

0
0.23

%de».

0.22

0.21

FIG. 1. Typical oscillating and smooth curves obtained for —(rf/dv)y4( „for n =1 and v =1.416 as a function of the or-

der L. The solid and dashed curves correspond, respectively, to the summation of the direct series, and of the inverse series.
Different values for the free parameters band p, are labeled as follows: + b =3, p. = —3; 0 b =7.5, p, = —3; ~ b =5.5, p, =2; a
b =9, p, =0. The values obtained by the Pade approximant applied to the sequence of estimates at b and p, fixed for the whole
range of variation of these parameters is indicated by an arro~. The error estimate chosen for n =1 and v =1.416 is drawn.
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0.25

0.24

0
II= 0.23

Pade-

0.22

0.2&

0.20
2

FIG. 2. —(d/dv)y4~ «obtained from the inverse series for n =1, v'=1.416. The symbols correspond to, for p. =2: +
V~V

b =3.5, 0 b =4.5, * b = 5.5, 4 b =6.5 and Q b =9, p, =0.

that is not the case, the last value of the SC is not re-
lated to the central value but gives the upper or lower,
bound of the error bar according to the asymmetry
(see Fig. 3).

To be more explicit let us consider the characteris-
tic cases that we have encountered.

For the quantity (d/du)y4~ «(=y(')) at p, =—3,
we found at least one OC which encloses at least one
SC. In Fig. 1 we present the OC and SC which have
the best convergence. We note that for the inverse
series the selected OC and SC correspond to different
values of p, and lead to the same determination of
y4' as obtained from the direct series. Let us stress
the fact that in all cases we have considered the direct
and inverse series to check the consistency of the
choice. In order to lighten Fig. 1 we present in Fig. 2
the evolution of the OC for the y4' obtained from
the inverse series as b is varied. We have adopted
the OC with b = 5.5 as the result of a compromise
between the best convergent OC, the best enclosure

of a SC and the agreement (see Fig. 1) with this
analysis applied to the inverse series data. In Fig. 2
only one SC appears although there are others (for
different values of p) but they would be so close to
one another when drawn that they would be indistin-
guishable. The unsatisfactory behavior for the series
y3 which is already responsible of the relatively large
uncertainty in the value of q has led us to sum as a
global quantity the combination (y4' —y3' ) which
naturally arises in the confluent correction terms.
We present in Fig. 3 some curves to illustrate this
case which appears to be the most tricky. We find a
situation in which the asymmetry goes upward and
that is why the error estimate is shifted upward.

It is clear that all the above considerations are
based on a careful inspection of many curves for dif-
ferent values of b and p, . The above criteria have
thus been applied to the resummation at correspond-
ing u" (Ref. 13) of the unknown quantities of in-
terest for n = 1, 2, and 3.
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0.3i-

0.29

II

0.27

I

0.25

0.23

Or2&"
2

FIG. 3. Oscillations displayed in the resummation of the series —(dldv)Iy4(v) —y3(u) li ~ are not symmetrically disposed
lJ ~ll

with regard to the smooth curves (asymetric case). This figure corresponds to n =1 and v =1.416. The solid and dashed
curves represent, respectively, the direct and inverse resummed series. The parameters b and JM, are labeled as follows: +
b =1.5, p, = —1; 0 b =8, p, = —1; 0 b =4.5, p, =3; b =4.5, p, =3; 4 b =9, p, =1. The error estimate chosen is indicated.

Taking into account the uncertainties in v', in the
critical exponents and in co from Ref. 13 we obtain
the values of the universal ratios presented in Table
I. One of these ratios (a&+/as+) has been investigat-
ed already from high-temperature expansion for n =1
(Ref. 7) and n =2 (Ref. 20); and from an e expan-

sion ttp to s2 (Ref. 10). As it can be seen in Table II,
the agreement is good with HT series. It is remark-
able that the ~ expansion gives such a good estima-
tion when we perform a naive sum.

The ratios relative to the specific heat have been
calculated only at the leading order in e by Aharony

TABLE I. Values of the ratios of confluent critical ampli-

tudes obtained from field theory at c/ =3, for different
values of the number (») of components of the order
parameter.

TABLE'll. Values of ratio a&+/a& obtained from the

high-temperature expansion (HTE) and the e expansion

(e«„) for» =1, 2, 3. For this latter case, the series is

known up to ~2. The numbers presented in this table corre-
spond to the Pade approximants ([2,0],[1,1],[0,2]).

1 2 3

) (1.416 + 0.005) (1.406 + 0.004) (1.391 + 0,004)
Metho

HT
1

0.70 + 0.03
2

0.6+ 0. 1

a+/a+f X
g+/g+C
a~/a„'

0.65 + 0.05
13.2 +1
8.5 + 0.9

0.60 + 0.04
9.8 + 0.6
5.9 + 0.5

0.59 + 0.06
7.8 + 0.6
4.6 + 0.5

0.65
0.43
0.71

0.63
0.42
0.67

0.62
0.42
0.64
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and Ahlers. ' They obtained

ac+/ax+ =2(n +8)/(n +2) +O(e)

ac/a&+ =4(n +8) /(n +2) +O(e)

An experiment" in progress on a binary mixture

(4.3)

This result is in a very good agreement with ours.

(water-triethylamine) has permitted a determination
o«c/~x as

, =7.9+1.2 .
&x
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