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The stability of uniform textures in superfluid He-A is studied with the phenomenological

equations of orbital dynamics. For a fixed applied magnetic field, the texture becomes dynami-

cally unstable at a critical current that depends both on the field H and on the angle X between

the flow and the field. In addition, the instability signals a deformation with a finite wave vec-

tor (not, in general, parallel to l) that also depends on Hand X. Beyond threshold, the un-

stable amplitude does not saturate at some nearby small deformation but instead experiences

catastrophic nonlinear growth. Comparison with recent observations suggests other possible ex-

periments.

I. INTRODUCTION

The orbital dynamics of bulk superfluid 'He-A is
rich and diverse, for it involves both the external hy-

drodynamic flow and, through the dipole coupling,
the applied magnetic field. Recent theoretical stud-
ies' have concentrated on the particular situation of
given flow, in which the system is subjected to an in-

creasing magnetic field parallel to the flow. In this
case, the initially uniform texture deforms first into a
helical one, which then becomes dynamically unstable
with respect to long-wavelength fluctuations at a criti-
cal magnetic field. Many other possibilities exist,
ho~ever, and Paalanen and Osheroff' have per-
formed experiments on the complementary situation
of a given magnetic field, in which the texture is then
subjected to an increasing hydrodynamic flow, For
small flow rates, the motion remains frictionless, but
dissipation starts to appear at a critical value that sig-
nals a significant change in the flow. Related
phenomena had been seen earlier by Flint, Mueller,
and Adams, including time-dependent shifts in the
NMR, presumably indicating persistent motion of the
texture.

To help understand these observations, it seemed
useful to consider the behavior of bulk superfluid
He-A in a uniform magnetic field H and mass

current j, which need not be parallel. If j =0, the
internal vectors I and d are parallel and in the plane
perpendicular to H. Nonzero j lifts the rotational
degeneracy about 0and orients l and d in the plane
of H and j . Section II studies the static equilibrium
for an arbitrary angle X between H and j, showing
that, in general, the uniform texture of I and d de-
forms continuously with increasing j at fixed H.
Not all these configurations can be realized physical-

ly, however, and Sec. III investigates the linearized
stability of these textures with respect to small varia-
tions in the order parameter. For increasing j at a

given small tipping angle X, the instability appears at
a critical current jp (H, X) that turns out to decrease
from the value of j p (H, X=O) approximately like
X' . Furthermore, the instability appears at nonzero

wave vector k, lying in the plane of H and j (and
hence land d), and with ~k, l

~ X'i'. Numerical stud-
ies for general X confirm these analytic expressions.
Beyond the threshold for the instability, the non-
linear terms in the dynamical equations determine
the evolution of the unstable mode. Section IV in-

troduces a general formalism to analyze this
behavior, deriving a renormalized Landau-type free
energy' for the unstable amplitude, with coefficients
that depend on the other (still stable) modes.
Although the quartic terms in the effective free ener-

gy can, in principle, be either positive or negative, an
analytic expansion for small X shows that the result-
ing instability is catastrophic (an inverted bifurcation).

II. GENERAL FORMALISM

In the hydrodynamic model of the orbital dynam-

ics, the order parameter of 'He-A may be expressed
as

2„;= d d„(4) +i h2);

where 6 is the maximum magnitude of the energy

gap, d characterizes the spin of the Cooper pairs, and

~i and Aq are orthogonal unit vectors with I —= 4i x b, 2

lying along the orbital angular momentum vector of
the Cooper pairs. For the present purpose, it is more
convenient to introduce five angles' that will serve as
the independent dynamical variables: the Euler an-

gles (n, I8, y) of the rigid orthonormal triad b, ~, b, 2, 1,

and the spherical polar and azimuthal angles (S, @)
of the unit spin vector d. Given the free-energy den-

sity f in the laboratory frame, expressed in terms of
these five variables, the dynamical equations take the
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Bn — - 5sin'p +v 7n =—
Bt Sn

BP +- gp Sf
Bt 5p

Sf Sf Sf
Sy 58 5$

(4)

are taken holding fixed the other independent vari-
ables and their gradients. In the present case, the ap-
propriate free-energy density has v, and v „as its na-
tural variables, ' with the explicit form'"

Af=
2 vsnpsvsn+v nsC cur II+fs~

(i d) —+——(d H) ——pv
1

" "
2 1

"
2 I

2 2 fl (6)

The tensors p, and C have uniaxial symmetry along
I, and f,~ is the elastic energy associated with the de-
formations of 1and d. Furthermore, the Euler angles
completely specify the superfluid velocity so that the
relative superfluid velocity becomes

v,„=v, —v„=—7y cosP'7n ——v„

with v„ taken to be uniform and along z.
The unit vectors 1 and d have the specific form

I.,= sinP(xcosn+ysinn) +zcosP,
d = sinH(xcos@+ysing) +zcosH

(8)

(9)
A A

and the remaining unit vectors b ~ and A2 may be ex-
pressed as

where v„ is the normal fluid velocity. Here, the or-
bital viscosity has been absorbed into the units of
time, and the variational derivatives

Sf ~ Bf Bf

The specific geometry of interest involves a uni-
form hydrodynamic flow j along the z axis and an
external magnetic field H lying in the second quad-
rant of the xz plane at an angle X (see Fig. 1). A un-
iform texture requires that 1and d be spatial con-
stants, with the corresponding angles having constant
values np, Pp, Hp, $p. In contrast, the remaining Euler
angle must increase linearly with position, so that

yo= vso' r (14)

and the uniform relative superfluid velocity, denoted
vo, becomes

vo = vso vn

As a result, the free-energy density for the uniform
state is

f = —,psup —
—,pp(l vp) ——, (I d)

+ —, (H d) —
2 pcs„,"2

(16)

and the directions of 1 and d are determined by
minimizing fp with respect to the four angles
np, Pp, Hp, @p. It is easily seen that np = $p =0, and
the remaining equations are"

H' sin(28p +2 X) = sin(28p —2Pp)

—2pp(vp ~ l)(vp m) =sin(28p —2Pp)

To interpret this last equation, consider the uni-
form current (in the frame with v„=0)

j p= psvp —
pp I(l ' vp)

associated with the uniform relative superflow vo, In
general, vo and j o are not parallel, so that both can-
not lie along the z axis. To provide a specific physical
picture, imagine flow in a long channel with v„=v„z,
and transverse bounding walls. Since the physical

8)+ih2=e '"(m+in),
where

(10)

jo
m =cosP(xcosn +ysinn) —zsinP =, (11)

8
Jl

n = —xsinn+ycosn = (sinp) '

QA
(12)

they form an orthonormal triad with 1. These angular
variables allow us to rewrite the elastic contribution as

fd = , K, (m '7P+s—inPn '7n)'

+ —,K, (sinpm . 7n —n 9'p)'

+
2 Kt, [sin'p(l Vn)'+ (I 9p)']

+
2 K~[(l '78) +sin 8(l '7P)']

+ —,K,[(l x QH)'+sin'8(l x '7y)'J
FIG. 1. Orientation of the order parameter for H tipped

with respect to j o. The vector i points into the page.
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boundary conditions involve the normal component
of the current at the boundary, it is natural to insist
that j 0 lie along the flow axis, with

Po lO

j 0= jo~ (20)
2.0 Po= l 5

As a result, vo will have components along both z
and x, and straightforward algebra gives the desired
scalar products Jp

Po =45

A

v 0 ~ I = p Tl I 0
~ I =j o cosPO/pll

vo m = p, j 0 m = —josinpo/p,

Explicit elimination of 80 then yields

jo po H'sin(2po+2X)

p, pp [H' 2H'co—s(2po+2X) + I ]'

(21)

(22)

(23)

l.O

0
0 I.O 2.0

Po= 65

3.0

If the field is parallel to the flow (X =0), Eq. (23) al-

ways has the trivial solution sin 2PO =0, and the
value Po= —, w is a local minimum of the free energy

f0 for small flow. If jo exceeds the value"
'I ]/)

PsPll H
( I + H2 ) I /2

(24)
Po

the local minimum of f at Po= T~rr changes to a lo-

cal maximum. Thus the texture tilts uniformly with

cospo &0. Note that j» is small for small Hand ap-
proaches a constant value as H ~. Furthermore,
the overall coefficient p, /po is temperature depen-
dent, "decreasing from 2 at T = T, to =1.7 at
T =0.5 T, and then increasing again for lower T be-
cause the anisotropy parameter po becomes small as
T 0. Although the present analysis provides no in-
formation on the stability of the tilted texture with

Po W
&

1r, Sec. III will demonstrate that j«also
represents the actual critical current for a dynamical
instability when X =0. Thus jp (X=0) should
display the characteristic field dependence seen in Eq.
(24), and an experimental search for this behavior
would be desirable. '

Equation (23) has quite different solutions for
X &0. If jo vanishes, the stable equilibrium is
characterized by the condition I II d i H, with

pp= 80=
&

'rr —X (see Fig. I). As Jo increases from

zero at fixed H, both Po and tlo decrease steadily from

&

n—X, with po ul' timately approaching 0 and 80 ap-

proaching a field-dependent value (=0 if H « I
and Tm —X if H » I). It is not difficult to solve

these relations numerically. Figure 2 illustrates a typ-
ical case (X =1S'), showing several lines of constant
po in the Hj 0 plane, with the horizontal axis (j0=0)
denoting the value Pa=75'. The most striking aspect
is continuous variation of the orientation angles Po
and Ho, in contrast to the finite regions' with

Pp = 80 =
&

m (or 0) that occur for the special value

FIG. 2. Phase diagram of the uniform texture for given
H and j o. Here, the tipping angle X is 15', and the solid
lines denote constant values of Po. The dashed line is the
critical current found numerically in Sec. III.

X =0. In general, this paper considers the situation
for nonzero X; that for X=0 merely follows as a (not
necessarily typical) limit.

It will be important to know the explicit texture for
small X. The previous discussion suggests that the
polar angles Po and eo should be close to —, rr if]

jo & j+, and we therefore assume

I l
HP= —, m+58, PP=. Tm'+5P

for )xi « I,
(25)

5e =(5p-H'x)(I +H')-', (26)

5p= —j'x(j« —jo) ' (27)

This last result implies that 5P diverges as jo j«
from below; as will be seen in Sec. III, however, a
dynamical instability renders such singular behavior
inaccessible, although it does significantly modify the
X dependence from the linear form shown here.

III. LINEARIZED INSTABILITY OF UNIFORM
TEXTURES

The preceding section has determined the uniform
(but tilted) equilibrium texture in the presence of a
current j 0 =joi and a magnetic field H tipped rela-
tive to z (see Fig. I). The next step is to consider
the stability of this texture with respect to arbitrary
small perturbations (denoted by bars) of the five in-

with l58l and l5Pl « 1. An expansion of the equili-
brium conditions shows that
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dependent variables about their equilibrium values
[see Eq. (14)]

P =Po+P y = yo+y

8=8p+8,
(28)

Since the resulting linearized dynamical equations will

have constant coefficients, the small perturbations
u, P, . . . can all be taken as plane waves propor-
tional to e' " ' ", with k an arbitrary wave vector.
Correspondingly, the analysis will include a complete
set of small-amplitude perturbations that fully deter-
mine the linearized instability of the uniform texture.

It is important to notice that the dynamical equa-

tions form two distinct groups. The variables y, 8, @
obey time-independent equations (4), which, in ef-
fect, merely constrain the small-amplitude perturba-
tions. In contrast, Eqs. (2) and (3) involve the time
derivatives of u and P, in addition to the full set of
small amplitudes u, P, y, 8, and @. As a result, it is
convenient to use the linearized equations obtained
from Eqs. (4) to eliminate y, 8, and @ explicitly, lead-
ing eventually to a set of two coupled equations for n
and P that are first order in the time derivatives.

The first step in this procedure is to expand the
dynamical equations (4) for 8 and $ to first order in
the small variations. Substitution of the assumed
plane-wave form readily yields the results

cos(8p —Pp) sin8p sinpp

cos(8p —Pp) sin8psinpp+H'cos(8p+Xo) sin8psinX+sin'8pK(k)
(29)

cos(28p 2Pp)8=
cos(28p —2Pp) —H cos(28p+2X) +K(k) (30)

where

K(k) —= Kl(l k)'+K, (l x k)' (31)

As expected from physical considerations, 8 invariably vanishes as H ~, but Q does so only for X WO, since
otherwise the system is invariant under rotations of d about i.

The corresponding analysis for y is more intricate. Inspection of Eq. (6) shows that Bf/By =0, and the
dynamical Eq. (4) therefore becomes

Bf =- 5 f, =o,
B&y Bv,„

(32)

where j p= Bf/Bv, „ is again the current in the frame with v„=0. To first order in the small quantities, the rela-
tive superfluid velocity becomes

vga = vp Oy cospp 7u

so that

(33)

j p = p, (vp —9'y —cospp'7u) —
pp 1 [I vp —l ~ ( 9'y+cospp'7u) ]

+ C(sinppOu x n + 'PP x m ) —Cp l(sinppm '7 u —n '7P) (34)

In evaluating Eq. (32), the divergence operator acts not only on the explicit first-order terms, but also on
—

pp l ( l ' vp), which involves u and P through I [see Eq. (8)]. The assumed plane-wave dependence allows us to
solve the resulting linear equation for y explicitly in terms of the variables u and P.

The remaining equations (2) and (3) may be expanded in a similar way. Use of Eqs. (29) and (30) and the
corresponding one for y eventually yields the pair of coupled equations for u and P

!

sillpp + l k ' v„u+2 (k )slnppu+B( k)P =0
af

(35)

—+i k v„p+B'(k) sinppu+ C(k)P =0
Bt

(36)



24 CRITICAL CURRENTS IN BULK SUPERFLUID He-A 1185

where

A(k) =K, (n k) +K(m. k)'+Kb(l k)'

(ppjpcos/3p) [(ppp. ) '(I k)'+pp'(m k)'] —Cp (I'k) (m k)'
+

p, k2 —pp(l k)'

(sinpp) ' cos(Hp —pp) sinHp[H'cos(Hp+X) sinHpsinX+sin'Hp K(k) ]
+

cos(Hp —/3p) sin Hpsi npp +H cos(Hp+X) sinHp sinX+sin'HpK(k)
(37)

B(k) =(K, —K, )(m k)(n k)

Cp (I k)'(m k)(n k) —pp[(l vp)'(m k)( n k) +(I.vp)(m v )(I k)(m. k)]
p, /c —pp( I I& )

—i 2CO+ p[[
Cppii(l && k)

(I vp)(l k)+p, 1—
p, /c —pp(I k)'

Co/c
(m vp) (m k)

p, k' p, (l -k)' (38)

C(k) =K, (m k)'+K, (n k)'+Kb(l k)'+pp[(l. up)' —(m up)']

Cp (I k)'(n k)'+pp[(l vp)(m k) +(m vp)(l k)]'
p, k —pp(I k)

cos(28p —2/3p) [K(k) —H cos(28p+2X) ]
+

cos (28p —2/3p) +K ( k ) —H' cos (28p +2X)
(39)

A

are known functions of the wave vector k. Here, I,

m, and n have their equilibrium values, and their dot
products with vp are given in Eqs. (21) and (22).
Since Eq. (34) involves only Vy, the case k =0 re-

quires slightly different treatment, but the resulting
values A (0), C(0) are not needed here [B(0) van-
ishes].

Equations (35) and (36) have simple exponential
solutions of the form e '. Direct substitution leads to
the eigenvalue condition for 0 =—~+i k v„

(Q+A)(Q+C) —iBi'=0 (40)

Q&'~ = —
—, (A + C) —[ —,

'
(A + C)'+ ~B)' —AC]'/'

(42)

The real expressions A and C are generally positive,
so that Q&2~(k) is always negative and the corre-
sponding normal modes are stable. On the other
hand, the root Q ' (k) has the sign of ~B ~' —AC.
This quantity turns out to have a maximum value for

with the real roots

Q"&= —
—,
' (A+C) +[—,'(A+C)'+~B~' —AC]'",

(41)

some nonzero k. If jo is small, this maximum will be
negative, so that the associated uniform but tilted
texture is stable with respect to arbitrary small pertur-
bations. As jo increases at fixed H, however, two
things happen. First„ the vectors I and d rotate uni-
formly in the plane of jo and H, maintaining the
equilibrium configuration derived in Sec. II. Second,
the maximum of ~B(k) ~' —A (k) C(k) increases
and passes through zero at the critical value jo, of the
current; this represents the onset of a dynamical in-
stability with finite wave vector k, . For jo & jo„ the
normal modes associated with the eigenvalue
Q"'(k) will display exponential growth for wave
vectors in some small region around k, . This
behavior is typical of a bifurcation, familiar in hydro-
dynamics, '5 '6 but nonlinear corrections (Sec. IV) are
required to determine the precise character of the
instability.

In practice, the expressions in Eqs. (37)—(39) are
complicated functions of the wave vector k and the
current jo for a given magnetic field H and tipping
angle X. Thus the maximization of ~B(k) ~'

—A (k ) C( k) presents a difficult problem that must
be treated numerically. If X is small, however, an an-
alytic expansion becomes feasible. Since the resulting
critical current also serves to check the numerical
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analysis, the small-X expansion will be presented in
some detail.

One important simplification is possible, for nu-
merical studies indicate that the local maximum of
IB I' —AC occurs for k in the xz plane, so that n . k
vanishes. Furthermore, if X=O, the instability can
be shown to occur at long wavelengths (k, ~0), with

k essentially along the x axis. Consequently, I k, I for
IXI « 1 is expected to be small, and its polar angle

Q relative to z shouid be near
2

2r. If this angle is

written as Q
=

2
rr +8lcI with 8$ small, the quantity

A ( k ) has the approximate form

A (k) = (Kb+Kl )k2+
ps pll J» J()

kc

e

ltc

(o) (b) (c)

of Eqs. (27) and (44) shows that

8P=-X/8,

FIG. 3. Relative orientation of order parameter and criti-
cal wave vector for small Hwith X=(a) 1', (b) 5', and (c)
15',

Pp J»
x 1+—

pll j» —Jo,

where j, is the critical current for X =0 [see Eq.
(24)]. Since the critical current jo, for small X

should differ only slightly, it is natural to write

PsPll
jo =j'(1 —8) = , (1-8),

pp 1 +H'

(43)

(44)

and the assumption that 8P « 1 requires the addi-
tional condition X « 8 « 1. Use of Eq. (48) and
setting 8$ = 28P leads to the following quadratic ex-
pression for k'

IB(k) I' —2 (k) C(k)

H 4= —Xk + 1'k' —Z, (49)1+H2 (1+H2)2
~here

where 8 « 1. As a result, Eq. (43) reduces to

H' Po X
A (k) = (Kb+Kl) k +

1+H2 pll ~2
(45)

X= (Kb+Kl) [K2, +Kl(1+H2) 2]

r

9P.Pll X' 6H XY= —,—(Kb+Kl) 8+
p Q2 (1+H')' 8'

(50)

apart from corrections of relative order 5. Similarly,
B(k) and C(k) have the approximate forms

1

po X' E———,Eb+-
pll 8' (1+H')'

ikjo
B(k) = [3Co8P+(pll Co)8lll]

Pll
(46) po X 6H' XZ= ——5+

pll 82 (I +H2) 2 82
(52)

C(k) = Kb+ 2, k2
(1 +H2)'

Since Xand Z are positive, the maximum occurs at
the nonzero wave number

po+, 8+—(28P-8y)'
1+H pll

Y H~

2X 1+H' (53)

4

+ (8P)' .(1+H')' (47)

Near T„ the hydrodynamic parameters satisfy the re-
lation Co= pll, in which case 8$ appears only in
C(k). The corresponding maximum of IBI —AC
with respect to variations in 8$ then occurs for
8$ =28P; hence the direction of the critical wave
vector k, near T, differs from that of I, for k, is ob-
tained by rotating precisely twice as far from the x
axis [see Fig. 3(a)]. More generally, it is convenient
to approximate Co —pll=0 and 8$=28l8 for small X

throughout the A phase, because the quantity Co —
pll

is always small.
The remaining problem is to determine the magni-

tude of kthat maximizes IBI' —AC. A combination

if Y )0, and the corresponding maximum value is

(54)

Y —4XZ =0 (55)

which is a quadratic form in the variables 5 and
(X/8)'. Hence it is natural to assume that 8, at the
onset of instability has the form

S, =)X'"

Equation (55) then becomes

X2~'( Y —4XZ) =0,

(56)

(57)

(IBI AC)max=
2 2 ( Y 4XZ)1+H' '

For negative Y' —4XZ, all normal modes are stable,
so that the onset of instability is determined by the
condition
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yield the behavior shown in Fig. 4; it is evident that
A. is nearly independent of H and of order 1.

It is now possible to determine the physical quanti-
ties that characterize the onset of instability of the
uniform texture for small X. First, Eqs. (44) and
(56) give the critical current

PsPII H (1 — 2/3)joe (58)

which is reduced from that for X =0 by a nonanalytic
correction of order X . Second, the vectors d and l
are rotated from the x axis by the small angles [see
Eqs. (26) and (48)]

88, =SP,(I+H') '= —X'"X '(I+H ) ' (59a)

SP, =—X'")-', (59b)

respectively (the minus sign means a rotation toward
the z axis). Third, the instability occurs for a small-

i k ~ r

amplitude plane-wave perturbation ~ e ', with a
wave vector k, lying in the xz plane at an angle
=25P relative to the x axis [see Fig. 3(a)] and a
nonzero magnitude given by

Y H'X'
k~ = . 2, X(&1

2g 1+H' (60)

Here, the coefficient Y/X varies slowly with Hand is

of order 1. Finally, the quantities A (k, ), IB(ks) I,
and C(k, ) are all of order H2X2'(1+H2) '. There-
fore, the normalized eigenvector

(])' C(k, )
u"'(k, ) —= —Ii) =(C'+iB{') ' '

P —B'(k, )

(61)

l.6—

I.4
X

l.2—

I.O
0

I

I.O
I

2.0 3.0

FIG. 4. Dependence of the parameter A. [see Eq. (56)] on
the applied magnetic field.

where quantities with a circumflex are obtained from
Eqs. (50) —(52) with the substitutions 8 X and
(X/5) ' X 2. For given values of the hydrodynamic
parameters, Eq. (57) determines the constant X as a
function of the applied field H. In particular, the
weak-coupling values .

I 2

Pll PO 2 Ps +I 3 +b

associatt:d with the normal-mode eigenvalue
Qt" (k, ) =0 has both components of order unity.
The unstable mode introduces the perturbation

Sl(t) ~ Re{[C(k,) n B"—(k, )m]exp(i k, r )]
x exp[0 ' (k, ) t] (62)

lying in the plane perpendicular to I. Since B(k,) is

pure imaginary but ~B(k, ) ~
A C(k, ), the tip of the

vector Sl traces out a slightly deformed spiral with its
axis oriented along the direction k, . It is notable that

k, can differ considerably from l, which confirms the
importance of including full three-dimensional per-
turbations with general k, as opposed to a restricted
set, such as longitudinal or transverse with respect to
a particular direction

The preceding analysis shows that the case X =0
(H parallel to jz) is special, for the instability then
occurs at k, =0. To study this situation in detail, it
is necessary to impose a large but finite quantization
length L on the allowed wave numbers
k =2mL '(n~, n2, n3), with L && I (measured in

units of L', see Ref. 9). For given H, the texture
remains uniform with pp =Hp =90' for all jp & j, [see
Eq. (24)]. Precisely at j», the vectors land
d start to rotate away from the x axis, remaining uni-

form and in the xz plane. This deformation does not
proceed very far, however, for when cos'Pp = (SP)'
is of order L 2 [see Eq. (25)], the uniform texture
becomes dynamically unstable with respect to a
plane-wave deformation with k, =2m L (x+25Pz).
Since L && 1, these two closely spaced transitions
will typically remain unresolved in most experiments,
and the uniform texture with X =0 and l = d =x will

appear to become dynamically unstable at jo = j+.
Numerical studies for several nonzero values of X

confirmed these analytic expansions. In particular,
the instability invariably occurs at a finite wave vector
k, that differs in direction from I (see Fig. 3). When

X is small, the directions of k, and l at the onset of
instability are essentially independent of H, in agree-
ment with Eq. (59) and the discussion below Eq.
(47). For larger X (15', for example), pp at k, in-

creases appreciably with increasing H. The dashed
line (the critical current) in Fig. 2 illustrates this

behavior; it is clear that this curve crosses lines of
constant Pp, but the net change is small in going
from H=O (where Pp =48') to H=3 (where

Pp =55'). In addition, {k,{ increases with increasing
H at a given X and also with increasing X, although
the dependence for large X is more complicated than
in Eq. (60). Most interesting is the critical current

jp (H), which is shown in Fig. 5 for several values of
X. As anticipated from Eq. (58), jp, at fixed Hini-
tially decreases with increasing X, but the behavior
for larger X is more complicated (for example, the
curves for X =5 and 15' cross near H =1). The con-
clusion both of the expansions and of the numerical
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2.0

joe i 0

about the uniform equilibrium texture

F = F(P) +F(&) +F(2) +. . .

where [see Eq. (16)]
Fio) Vf 0

F '= V' '[ f~u;(p =0) +f v, (p =0]

5p, p, [&jk(P(, P2)u;(P))uk(P2)
P). P2

(6S)

(66a)

(66b)

I.O 2.0 3.0

j~(P~ P2)uj(pi)v, (p2)

+~.k(pi, P»v. (pt)»(P2)],

FIG. 5. Dependence of the critical current on magnetic
field for several values of the tipping angle X.

studies is that the uniform texture in a magnetic field
undergoes a dynamical plane-wave instability with a
finite wave number. The present linearized theory
cannot predict the long-time fate of the unstable nor-
mal mode, which instead requires a detailed non-
linear analysis.

(66c)
with summations over repeated indices. Here, the
coefficients in the first-order terms are the first
derivatives of the free-energy density [Eq. (6)]
evaluated at equilibrium

Bf
Oui ~va

p

(67)

The quantities P;, (p~, p2) appearing in F" are given
by

pjk( Pl P2) fjk+ tp2k fj kk

IV. NONLINEAR DYNAMICS NEAR THE INSTABILITY + ip lk fjk, k p 1 k p 2&a fj k.kII, (68)

2

sinPoo,
u =

f

'y

v= 8 (63)

with components labeled by the index i,j, . . . , and

a, b, . . . , respectively. They include only the devia-

tions from the uniform equilibrium values, as given
in Eq. (28). To simplify the resulting expressions,
spatial gradients of u and v will be denoted by
Greek indices, for example u;k= Bu~/Bx&. In addi-

tion, it is natural to introduce plane-wave expansions
of the form

u;( r, t) = V '" $e" ' " u;(p, t)
P

with u;( —p) = u, (p)". Finally, the total free energy

F = Jl d'r f may be expanded in powers of u and v

(64)

To study the nonlinear dynamics of the texture, it
is convenient to rewrite Eqs. (2)—(4) in a more com-
pact form by introducing two separate column vectors

BujBuk
fj,kk fkk.j

~uj ~ uk', p

$2f
fjk, kp, j

~ujg~ukp, p

(69)

and similarly with uj replaced by v,
The exact dynamical equations follow from Eqs.

(2)—(4). It is useful to introduce a diagonal matrix

,
sin'p 0

M = (sin'po) ' (70)

and then to expand it in powers of u

1

~ij ~ij+~ijk uk+ 2 ~ijkl ukul + (71)

The Fourier components of u and v obey the equa-
tions of motion

where the Greek indices again represent spatial com-
ponents, and the coefficients are second derivatives
of f, evaluated at equilibrium

0=- OF

Bv, (—k)

—+iv„kkk u;(k) + V 'j' QMj(k2 —+iv„„pk u, (p) uk(k —p)
Bt Bt

(72)

1

+
2

V $ MjkI +iv„&p& u(p) uk(q)ut(k —p —q) +
Bt

P

(73)
Bu;(—k)
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which explicitly recognize the different roles of u and v. The zero-order contributions require that the quantities
in Eq. (67) vanish, which are just the equilibrium conditions (17) and (18). To treat the first- and higher-order
contributions, however, it is simplest to solve Eq. (72) directly for 2»~( k) as a power series in ui. Since F is sta-
tionary with respect to 2», this solution may be substituted back into Eq. (65) to yield an effective free energy that
depends only on the dynamical variables u;. A detailed calculation leads to the expansion

p= Vp'"+ ,
'

X—5-„+-, Nj(pl, p2)ui(pi)~j(P2)
Pi. P2

+ V $ 8 + 4. p Nijk(Pli P2i P3)III(pl)tij(P2)ttk(P3)P]+P2+P30 J
P ]» P 2» P 3

+
24

V X gp 4. p + p 4. p Njki(PI P2 P3 P4)tli(Pl)tlj(P2)ttk(P3)ttl(P4) +
]' P2' P3' P4

(74)

x [p(—p, p) '] &p& (—p, p) (77)

Here the matrix indices a and b run over the values
1,2,3 if p W 0, but only over 2 and 3 if p =0 [com-
pare the discussion below Eq. (39)]. The resulting
dynamical equations for u can be simplified with the
substitution

uj(p, t) =exp( —i2»„„pkt) u, (p, t) (78)

but the overbar will be omitted. In this way, the
modified two-component column vector obeys the
same dynamical equation (73) with 2»„=0 and with
the right-hand side evaluated for the effective free
energy in Eq. (74).

To first order in u, these equations become

Iiu;( k, t)
+N,j( k, k) uj(k, t) =0-

Bt
(79)

which merely restates the linear Eqs. (35) and (36)
found previously, since it is easy to show that

Nil( —k, k) =A(k), Nl2( —k, k) =B(k)

N22( —k, k) = C(k)

The introduction of normal coordinates (i(k, t) can
simplify the subsequent analysis. " Construct the
(time-independent) modal matrix e(k) from the
two eigenvectors of N( k, k) and then write—

where the coefficients are totally symmetric under the
interchange of any pair of indices

NiJk ( P1 i P2& P3i ~ ~ ~ ) NJik
' ' ' ( P2i P li P3i ~ ~ ~ )

(75)

and satisfy the complex-conjugation relations

Nij (Pl P2 ~ ~ ~ ) Nij ( Pl P2 ~ ~ ~ )

(76)
Their detailed form is quite complicated, and only the
leading one is needed

NIJ( —P, P) =PIJ( —P. P) —P'( —P P)

I

As is familiar from classical mechanics, the modal
matrix here turns out to be unitary and it also diago-
nalizes the matrix Ni through the relations

[e'(k) e(k) ]„-=8,
[e (k)N( —k, k)e(k)] l. =—Sjn ' (k)

Thus Eq. (79) assumes the more transparent form

Bgi(k, t) = n ' (k)(,(k, t)
Bt

(81)

(82)

If the current jo is near the critical value jo„ then
the eigenvalue nt" (k) has a local maximum at k,
(see Sec. III) that is positive or negative according to
the sign of jp —jp, . Thus nt 3(k) in the vicinity of
k, has the approximate form

nt "(k) = n"'(k, ) —(k —k,),(k —k, )„n„,+
(83)

where 0» is a positive-definite real symmetric ma-
trix. For small positive jo —jo„ the condition
ni'3(k) =0 defines an ellipsoidal region in k space
whose typical dimension will be denoted e( « 1).
Correspondingly, nt'3(k, ) is of order k', and the
substitution k = k, +kw brings Eq. (83) to the form

n (w) 6 (sn —w kwi»nk)l» (84)

iri(w) =—kgl(k, +ew) (85)

where the explicit factor e reflects the small ampli-
tude beyond a normal bifurcation. " Since Q(w) is
expected to exhibit a slow time dependence, it is also
helpful to introduce the scaled time variable' ' '

where s =sgn(jp —jp, ); this expression holds both
above and below threshold, assuming only that
I jp —J'p, i

= O(e2jp ). In contrast, modes for i = 2 or
with k far from k, have nti3(k) negative and of or-
der 1.

To clarify the behavior of the unstable modes
(l(k, t) for k near k„ it is useful to give them a spe-
cial symbol

(80) t=e t (86)
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+— $ y(w )y(w )
~t ~ll
W J W

xy( —w+w +w )', (87)

where I' depends only on k, to lowest order" in e

INi), (—k., —k„2k.) I2I' =—
Qt'~(2k, )

INii„( —k. , k. , 0) I

+2
Qt~'(o)

—N))))( —k„k„k„—k, ) (88)

and XIJk denotes the projection of W;,k onto the
appropriate eigenvectors. Note that the first two
terms of I are positive definite because QtJ~(2k, )
and Qt" (0) are negative (modes with k far from k,
are stable). The last term in Eq. (89) can have either
sign, however, and I can therefore, in principle, be
positive or negative.

Suppose that e is so small that only the single
mode at k, has become unstable. The sum in Eq.

t

(88) then reduces to a single term with w = w
= w =0, and the resulting equation for y(0) exhib-
its a normal (inverted) bifurcation if I' is negative
(positive). In the former case, the solution y(0) =0
is stable below threshold (s = —1), whereas the solu-
tion ( y(' = VQ/) I'( is stable above (s = 1). More
unusual is the case of positive I", when the solution
y(0) =0 is again stable below threshold, but only for
initial conditions ~y~' & VQ/1. Above threshold
(s =1), in contrast, y(0) in this approximation in-

creases without limit for any initial conditions, and
the present expansion of the free energy through
fourth order in u is incapable of determining the
long-time behavior of the unstable normal mode. It
is interesting that both of these situations arise in the
study of helical textures' ' in 'He-A, subject to an in-
creasing H field parallel to the external flow. For
small H, the uniform texture is stab1e. At a critical
value Ho, it undergoes a normal bifurcation to a heli-
cal deformation with finite wave number. In this
case, the first term of Eq. (88) vanishes identically,
and the remaining contribution ensures that I & 0.
The periodic texture then evolves with increasing
H —Ho until a second critical field H~, when the
helix itself becomes unstable with respect to long-

The remaining modes with i = 2 or with k far from
k, would decay spontaneously in the linearized ap-
proximation. For the nonlinear theory, however,
they are driven by the unstable modes y(w) and
turn out to be of order e'. Systematic elimination of
these other modes' ' leads to the final form

By(w) = (s Q —wow„Qq~) y( w)
Bt

wavelength perturbations (k, 0). In this latter
transition, it is not hard to verify that the first term
of Eq. (88) predominates, with the remainder being
of higher order in the small parameter k, .

The preceding formalism applies directly to the in-

stability studied in Sec. III. In general, determining
the sign and magnitude of I requires a lengthy nu-
merical investigation, since it involves the full set of
third and fourth derivatives of the original free-
energy density, evaluated at the threshold for the in-

stability (with the finite wave vector k, ). Fortunate-
ly, however, the situation becomes much simpler for
small tipping angles X between H and the applied
current jo~. In this case, it is not difficult to see that
Q ' (k =2k, ) and Q ' (k = 0) are of order k,' for
both values of j. Furthermore the quantities Win
Eq. (88) approach finite limits as X (and hence k,')
tends toward zero. Consequently, the first two terms
in Eq. (88) predominate, and I becomes large like
X '3(1+H '); this result immediately implies that
for small tipping angles X, the instability associated with

the critical current jo, in Eq. (58) represents an inverted
bifurcation, with the amplitude of the unstable modes
subject to rapid and catastrophic growth beyond
threshold. The ultimate behavior depends on
higher-order terms in the free energy and may not
even be accessible through any finite-order expansion
in the (assumed small) displacement u;.

V. DISCUSSION

The present paper has considered the dynamics of
bulk uniform superfluid 'He-A in the presence of a
uniform magnetic field H and then subjected to an
adiabatically increasing hydrodynamic flow j 0. If H
is parallel to j 0, the instability of the uniform con-
figuration (i = d =x) occurs for long wavelengths at
a critical current

J =(X p p /p )' H(1+H )

here given in conventional units, with H measured in
units of H"=(Xo/X~)'t =30 Oe. The correspond-
ing critical velocity is j~/p, . A very different situa-
tion occurs if H and j 0 have a nonzero angle X

between them. Although a uniform texture is again
stable up to a critical current jo„ the instability now
appears at a wave vector k„with finite magnitude of
order X' 3H(1 +H') ' ' for X « 1, and lying in the
plane of H and j 0, but not along I. Furthermore,
the critical current for nonzero X is reduced from'that
for X =0, by an amount proportional to
X''H'(1+H') ' for X «1. Finally, a detailed
analysis of the nonlinear dynamics beyond threshold
indicates that the instability for X « 1 is an inverted
bifurcation, in which the amplitudes of the leading
unstable modes grow rapidly with time rather than
saturating at some nearby state. The present calcula-
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tion cannot decide whether this rapidly changing tex-
ture will eventually attain a new static equilibrium or,
instead, continue to execute some complicated
dynamical trajectory with a corresponding continuous
dissipation of energy.

Several experiments have studied the hydrodynam-
ic properties of superfluid He-A in an applied mag-
netic field. Bagley et al. "used a torsion pendulum
with a relatively large flow velocity ( & 1 mm/sec)
and an unspecified residual magnetic field following
demagnetization. Since these flows probably exceed-
ed the critical velocity, they presumably observed
only the dissipative regime beyond threshold. More
recently, Dahm et al. ' used a capacitance method to
drive the fluid through a superleak with an applied
perpendicular magnetic field of = 100 Oe. Unfor-
tunately, the predicted evolution of the texture in
such a configuration (H z v, ) is quite different from
that considered here, so that these experimental data
cannot be compared with our calculations. The most
pertinent experiments are those by Paalanen and Osh-
eroff, ' who used large 0 parallel to the superflow
(X=0). They indeed observed a critical velocity u,
in superfluid 'He-A, but the magnitude is only about
0.6 of the value (XDp~~/p, po)' found here in the
limit H && 1. Above v„a pressure head appeared,
indicating the presence of dissipation. It is natural to
ask whether these observed phenomena have any re-
lation to those predicted by the present theory. In
this context, several remarks are relevant.

(1) The observed u, depended on magnetic field,
decreasing for 0 & 40 Oe, but more detailed studies
would be needed to check the predicted
H (1 +H') ' ' dependence.

(2) The critical current at small tipping angle X

could provide a decisive test, for it is predicted to
display a characteristic dependence on X and H. (The
velocity is less simple, because the anisotropy of p,
rotates v, away from j o.) Observation of such,
behavior would confirm the basic theoretical picture;

in that case, the lack of numerical agreement for v,
in parallel field and flow would presumably have
some less basic origin.

(3) It would be valuable to study the specific dissi-
pative mechanism that appears above threshold. If

A A

the vectors I and d undergo some precessional
motion, then it might be detectable through the an-
isotropic attenuation of zero sound. " Controlled ex-
periments with well-defined flow rates would be
desirable, both for X=O and for finite X. Another
possible way to study the motion of / is through
NMR, ' but the resulting data are likely to present
difficulties in interpretation. Theoretically, it is feasi-
ble to predict the NMR for a given texture, but the
inverse problem of determining the texture is much
less tractable.

An additional aspect of the present calculation is
the development of a general nonlinear formalism for
the hydrodynamics of an arbitrary system described
by a free energy. In several cases of interest, the
resulting nonlinear equation for the growth of the
unstable modes beyond threshold allows a clear de-
cision whether the transition occurs smoothly to a
new nearby static texture or catastrophically-to some
other, qualitatively different (and perhaps time-
dependent) configuration. The latter behavior is that
predicted here for small X once the current exceeds
the critical value, but the situation might be different
for larger X of order 1. Experiments could help
answer this intriguing question.
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