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Bipolaronic superconductivity
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Superconducting properties of narrow-band electrons are examined in the strong-coupling lim-

it. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by

strong electron-phonon interaction have under certain conditions superconducting properties
which are characteristic of superfluid charged Bose systems. They represent an example of the
"molecular" superconductivity proposed by Schafroth, Butler, and Blatt [Helv. Phys. Acta 30,
93 (1957)]. The Meissner effect and the penetration depth of bipolaronic superconductors are
examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaron=

ic ones is discussed.

I. INTRODUCTION

The strong-coupling superconductivity is a subject
of great theoretical and experimental interest primari-

ly because of the high-T, . problem. '

An extensive study of transition temperature of
intermediate-coupling superconductors (A. —1) can
be found in McMillan's work' based on the Eliash-
berg equations, ' which were formulated in their
finite-temperature form by Scalapino, Schrieffer, and
Wilkins. 4

The strong-coupling McMillan's expression for T,.

shows saturation of T, beyond A.
—2. Allen and

Dynes' have shown that this T, maximum is an ar-
tifact of McMillan's expression, and that Eliashberg
theory gives T, —A.

'~' for A. )) 1.
On the other hand Anderson, Chakraverty and

Schlenker, ' and Chakraverty have pointed out that
in large h, limit [h. 2.5 (Ref. 8)] the localization of
Cooper pairs, i.e., bipolaron formation, occurs. A re-
cent series of papers9 shows the existence of a bipo-
laronic ground state in a great variety of nonmetallic
transition-metal compounds.

Bipolarons form quite naturally in such systems
due to the highly directional character of the 3d wave
functions and due to their particular lattice structures.
This leads to a kind of molecular states for the elec-
trons (bipolarons) which are broadened into narrow
bands resulting from a small overlap between dif-
ferent molecules. As far as the lattice is concerned,
these systems behave like weakly coupled oscillators
of vibrating molecules. The number of electrons per
molecule plays an important role in determining the
interatomic distance of those molecules. Experimen-
tally, changes of 10% of this distance and more have
been observed upon adding or subtracting an electron
at a given molecule. The effect of the electron-lattice
coupling is therefore extremely important for such
systems and any theory must necessarily take proper

account of this fact.
The theory of "small" bipolarons with a dissocia-

tion energy greater than the polaron bandwidth
(X » 1) has been developed by the present authors
in their previous work. '

In this paper, we use this theory to discuss the su-
perconductivity of narrow-band electrons under the
condition of bipolaron formation. By calculating the
excitation spectrum and the Meissner effect, we show
that the superconductivity in the strong-coupling limit
has more common features with the superconductivi-
ty of nonoverlapping electron quasimolecules" than
with the BCS superconductivity. The penetration
depth is different from the London one and the criti-
cal temperature falls off with A. .

II. BIPOLARONIC HAMILTONIAN

We start with the standard single-band electron-
phonon Hamiltonian

H H [ + H[yh + He] ph
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where m = (m, a), m indicating the molecular site
and o. labeling the internal degrees: the atomic site
in the molecule and the spin of the electron of Wan-
nier type which occupies this atom. T is the hop-

mm
I I

ping integral, V,'„"„n the Coulomb correlations, co- the
phonon frequency of wave vector q, and U (q)
the Fourier transform of the electron-lattice coupling.
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E; —Ek
(3)

is constructed such as to eliminate the individual in-
tercell electron transitions which tend to destroy the
bipolarons on creating real polarons. ~i ), ~k) E;, and

Ek are the eigenvectors and energy levels of an isolat-
ed cell. The above procedure is useful where the bi-
polaronic binding energy is large compared to the po-
laronic band halfwidth permitting us to discard all the
terms of H of higher than second order in (Sz) k and
to keep only matrix elements of (3) which act
between a polaronic state and bipolaronic state with

Ei —Ek = b, defining the bipolaronic binding energy.
This gives rise to the following bipolaronic Hamil-
tonian:

H =—X p, b ~~ b ~+ X [ t (m —m') b ~b ~,
rif w iif

—u(rn —m')b b b b ]

(4)

b~, b ~ are annihilation and creation bipolaron

In the strong-coupling limit the narrow-band elec-
trons are coupled by the local lattice deformation into
the intracell pairs —bipolarons —which by tunneling
motion, caused by the virtual transitions into po-
laronic states, form a bipolaronic energy band. '

The bipolaronic Hamiltonian 0, describing bipo-
laronic motion and their interaction is obtained by
two successive canonical transformations SI and S2.
SI is the familiar" displaced oscillator transformation

S)= X at 'n [dt U ( q ) —dq U (q)], (2)
tn q

entirely decoupling the electrons from the molecular
vibrations of the molecule which they occupy. This
leads to a change in the interatomic distance of the
molecule associated with a change of the electrons
into small polaron operators and the appearance of an
attractive interaction between two such polarons on
the same molecule. On the other hand, it introduces
a nonlocal short-range electron-lattice coupling lead-
ing to such mechanisms as an electron jumping from
one molecule to another and carrying with it the
molecular distortion manifest in the well-known po-
laronic band narrowing effect. Thus S~ is essentially
different from the transformation employed in order
to obtain the BCS Hamiltonian, in the case of which
the linear electron-lattice coupling is eliminated for
the entire lattice. Keeping only terms of second or-
der in this coupling constant gives rise to long-range
interaction between the electrons which in this case
are of Bloch, rather than Wannier type.

(s,),,The second transformation e

operators defined as

b+ = XA,c c
1 t

p
aa lit a fifa

aa

1b@=— I- XA ic c
aa Ra Ra

aa

p is the number of atoms in the cell. A, is the uni-
aa

tary matrix, which determines the p function of the
localized intrace11 bipolaron, and p, is the bipolaron
chemical potential.

For sufficiently strong electron-lattice interaction,
b coincides with the electron-electron intracell attrac-
tion constant Vo (Refs. 8 and 10) and the condition
4 » W is the same as X = N (0) &o » 1. This con-
dition leads to the high stability of the bipolarons and
thus for sufficiently low temperature T (& 5, only
the subspace b~ }0),}0)z is important, where all the
electrons are coupling into the bipolarons.

The effective bipolaron hopping t(m —m') is de-
fined by'

t(rn —rn') = X A a (rn —m')
ap aa

aa
PP

xA a (m —m')
aP PP

where the value of a (m —rn') =PT (rn —m')
aa aa

determines the polaron band halfwidth W andT,(m) is the bare-electron hopping integral.

/=exp —Xro-'~ U ( q ) ~'[1 —cosq(R~, —R, ,)]
q

is the polaronic band narrowing factor. "
The expressions (4) and (6) are obtained for the

case of the small overlap of the atomic functions. In
the other cases, the contribution to Eq. (6) from the
simultaneous two electron intercell transitions may be
important, so in general one can consider the values t
and v as phenomenological constants.

The ground state of the Hamiltonian (4) depends
on the ratio of the effective bipolaron interaction v to
the halfwidth of the bipolaronic band t and on the
number of electrons n. Under the condition e ) t
and n & n, = N (1 —[(u —t)/(u+ t) ]' z } the ground
state is a charge-density wave (CDW) of bipolarons. 'a

Here u =zu(a), t =zt(a), z is the number of
nearest-neighbor cells, N is the total number of cells,
and a is the lattice constant. Since t decreases with A.

[Eq. (6)] and u, in particular, depends on the direct
Coulomb repulsion which does not involve A. we have
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in general v & t in the very strong-coupling limit. In
this sense, the ground state of narrow-band electrons
in the limit X ~ is CDW insulator.

(ii) the Holstein-Primakoff transformation

X exp[i(k —k') m]b~ b
~/ k k

k, k

III. SUPERFLUIDLIKE EXCITATION SPECTRUM
OF BIPOLARONS

Xe '" '-(b-+b'-),
k

(12)

In what follows we discuss the properties of the
homogeneous state, which is the ground state for all

values of n in the case of v & t or for n ( n, . if v & t.

Previously' using the Anderson semiclassical pseu-
dospin approach, ' we have shown that the excitation
spectrum of this ground state is superfluidlike for
zero temperature. In order to estimate T,. and to cal-
culate the Meissner effect, we first of all generalize
the pseudospin approach to the finite temperature
with the aid of Holstein-Primakoff transformation.

In the subspace involving only the bipolaronic or
empty states of the cell the Hamiltonian (4) is fully

equivalent to the anisotropic Heisenberg one

H = —X —tt, S

2t N
k

(iii) the Bogolubov transformation

b
k

= u
k p-„+u-„p+-„

b —= u-p —+ u-p+
k —k k k

with the result

& = Ft + X"k PkP k

where

cu-k = t —$ kt ( u -sin 8 —t cos 8)

+ g k t (u sin'8 t (1 +co—s'8))

(13)

(14)

(15)

+ X t (m —rn') (S",S" +S",S' )
N W lIf

—u(rn —m') S",S-'-'

~-k is the pseudomagnon energy,

Nt ' v
E& = —' —— 1+ 1+—cos 8 +2 +Nkv-'

4 t

u-2 =1+v2-
k

where S' are the set of Pauli —,-spin matrices and

S~ ———'(bi +b~), S" = —(b- —b-)
and

= —1+1

2

t + —, g-k[u sin'9 —t (1 +cos'8) ]

tt, = —( u + t ) COSH

where H~ is the local pseudofield and the angle 8
between S ~ and the z axis is determined by the
number of electrons:

)
N—

(10)

Provided the number of excited pseudomagnons is
small, the anisotropic Heisenberg Hamiltonian (8)
can be diagonalized in three steps: (i) the rotation
transformation

S'=S cos8 —S sinH

S =S cosH+S sin0

S"=S

The chemical potential p, is determined by the con-
dition S~ (( H~

Z
—t $ ~ik n

) n )=a

From Eq. (10) we obtain for the angle tt using Eqs.
(11)—(13)

cosO =
n

1 ——
N

1 ——Xu- ——X(u-+u-) f-2 2 2 2 2

N k N k k ~ k
k k

(17)

where f-„=(exp'-k/T —1) ' is the energy distribu-

tion of pseudomagnons, which are described by the
Bose operators p and pt.

%e see that the quantum-mechanical treatment of
the bipolaronic Harniltonian gives two additional con-
tributions to the definition of cosH Eq. (17): the
quantum-mechanical zero-point fluctuations, which are
small just as for the Heisenberg antiferromagnets
(second term in the denominator) and the
temperature-dependent pseudomagnons contribution
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(the third term).
The spectrum Eq. (15) is superfluidlike with the

linear dispersion in the long-wavelength limit

t(u+t)
sin28

'
1/2

k n)
/n/-u,

Hence sin'8 plays the role of the density of con-
densed bosons. The critical temperature of super-
fluid (superconducting) transition T, is determined
by

~here the "sound" velocity s is proportional to the
value of sin 8 (tt = c = I )

(23)

where N(g) = X-„5(g—(-„) is the electron density

of states.
It is well known that the Holstein-Primakoff

transformation [Eq. (12)] is valid oniy if the number
of excited magnons is small. Hence, we restrict our-
selves to the low-density limit n « N. In the limit,
T,

' « t and only the long-wavelength region where

g —1 and N(g) = Cdl —( gives the main contribu-
tion to Eq. (22). With

tl
dgN($) =N

we find C =3 x 2 / N. Substituting this density of
states in Eq. (22), we obtain

& 2/3
' 2/3

T= 2 =0.4t-n
si n8( T) =0 (20)

at which point the spectrum [Eq. (15)] becomes
identical to the electron spectrum in the tight-binding
approximation:

Owing to the polaronic band narrowing effect con-
tained in the expression for t, the critical temperature
falls off with A..

co- = t ( I —g-„)k (21)
IV. BIPOLARONIC MEISSNER EFFECT

with a critical velocity v„=min(cu/k) =0.
It will be shown below that the Meissner effect

vanishes under the same condition. Hence, from
Eqs. (17) and (20), we obtain for T = T,

N(4) n

exp[t(1 —g)/T„] —1 2
(22)

Let us now come to illustrate the existence of the
bipolaronic Meissner effect.

%e use the gauge-invariant generalized form of the
linear-response function obtained by Ranninger and
Thirring'4 which gives for the static magnetic suscep-
tibility X

K
1 —4mK

(i ~c'c, [z) (z~c'c, [i)

tntn
I tz Z

I
nn

where in the site representation

F"",(x, x') = —,[qp (x)llqp, (x')] —p (x)p .(x')

p, (x) =u, (x)'Vu (x) —u (x)Vu (x)
(25)

u,„(x ) is the Wannier function and the average is made over a grand canonical ensemble p;.
In a superconductor K = —I/4mh. Hq for q 0, where h, tt is the magnetic penetration depth. We show that the

bipolaronic contribution to Eq. (24) has precisely that behavior, hence the bipolaronic Meissner effect exists.
Using the definition of the bipolaron operators (5), we find after the Sz canonical transformation

5
e2c c te 2= ''

b b
S f —S mm f

m m p m iif

0

Xo,( m —m')A A, ,b b
Qp pp ap a p @ i8

pp

(26)

Only the last term of Eq. (26) corresponding to the hopping of bipolarons gives a contribution to It' since
I t t

Fnlt Fnn
mm mm mm



1168 A. ALEXANDROV AND J. RANNINGER 24

&(q) =—

n, n &n

Finally, expressing the bipolaron operators in terms of pseudomagnon operators yields

u- — —2

e @ sift 8
g X

k k ' [, ( )]I
2 62~2m 2q2

m, i'' &i' " k

(27)

I'" ",= X „dx „dx'exp[i q (x —x')]F"",(x, x')A A, , A .A, , rr, ( m —m') rr, (n —n')
I Iaa yy

PP 88

(2g)

m = (m, n), n = (n, y), and the canonical transfor-
mation S~ is made which leads to the appearance of
the polaron band narrowing factor @2 after averaging.

In the derivation of Eq. (27), we consider the con-
tribution from the condensate which is proportional
to sin28. The contribution from the uncondensed
pseudomagnons shows only the normal diamagne-
tism. Note that the temperature dependence appears
only through sin28( T), as in the case of the weakly

interacting bosons. '

The translational symmetry gives

/t(q) =— 1

4m'„2q2
(30)

with A. H =A.LK, where

I""" =exp[i q (rn —n)]I'(m —rn', n —n', q)

(29)
Summing in Eq. (27) over m' and n' we finally ob-
tain for q 0

i/2
1 Psin8 3&

I dx &u (x+rn
IlÃ

PP

and Ar.
——(m/42rne2)ri2 is the London penetration depth.

For simplicity, we suppose the cubic lattice symmetry. To estimate

a. (rn) = crt ((rn( =rr)

) x u (x) +u, (x+m)u. (x)
Qx a

K we take T =0 and:

(31)

In this case, we have from Eqs. (6) and (17)
rt=, sin 0= 1—4o- . 2 2n n

N 2N

so that

6(1 —n/2N)
J d x —, u ( x + rn) x u ( x ) + u ( x ) u ( x + rn)

] re /=a Qx

i &/2
I —n /2/V -a/ao

a mb,

(32)

where ao is the size of the atomic function.
The corresponding estimations with the experimen-

tal value b, show that K ) 1. The penetration depth
is proportional to (sin8) ' so the Meissner effect
vanishes for T = T, .

V. CONCLUSION

To conclude, we have shown that the superconduc-
tivity of narrow-band electrons in the strong-coupling
limit A. )) 1 is similar to the superfluidity of charged
Bose particles and thus differs considerably from the
BCS one. The main differences are: (i) the low-

lying excitation (pseudomagnons) have Bose statistics
and the gapless spectrum. (ii) T„ is determined by

the width of the bipolaronic band Eq. (20) and falls
off with &, and (iii) the penetration depth is different
from the London one.

We would finally like to remark that the appropri-
ate materials for the bipolaronic superconductivity are
the nonmetallic transition-metal compounds, in par-
ticular M„&202 (M is an alkali metal, Ag or Cu),
LiTi204, Ti407, K03Mo03, and others, for which
there is a strong experimental indication of bipo-
larons. 9
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