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Definition and measurement of the electrical and thermal resistances

H.-L. Engquist* and P. %. Anderson
Joseph Henry Laboratories of Physics, Princeton University, Princeton, Ne~' Jersey 08544

(Received 17 April 1981)

An ideal potentiometer and a thermometer are defined in order to show the experimental sit-

uations leading to Landauer's formula for the electrical resistance and to the corresponding ex-

pression for the thermal resistance.
PACS numbers 1977 72.10.8g BDR207

Recently, Economou and Soukoulis (ES),' and
thereafter Fisher and Lee (FL),~ 3 derived from the
Kubo formula an expression for the dc electrical con-
ductance, G, of a one-dimensional chain for nonin-
teracting (spinless) electrons G = (e'/h) T, where T is

the transmission coefficient. This result contradicts
Landauer's~ formula (LF) for the electrical conduc-
tance, G = (e'/h) T/(1 —T). This disagreement is

discomforting since LF was used in recent treat-
ments of the electrical conductance of one-
dimensional chains. %e want here to rederive LF
from an experimental point of view since the exact
experimental conditions leading to LF have remained
unclear. %e stress that the electrical resistance is de-
fined in terms of chemical potential differences, rath-
er than voltage differences. Alternative and indepen-
dent discussions of LF have recently been given in

Refs. '7 —10.
In the derivation of LF in Ref. 5 the difference

between the chemical potentials of the reservoirs at
the ends of the sample was directly related to the net
current through the sample. The chemical potential,
however, is not well defined when a net current is

flowing through the ~alls of a reservoir. To avoid
this problem, we introduce an ideal potentiometer
(Fig. 1). The in- and outgoing currents are equal
leading to a well-defined chemical potential p, . The
operational definition of the potentiometer is given

by the S matrix

currents to and from the reservoir are determined by
the phase-averaged transmission and reflection coeffi-
cients. The difference between the outgoing current
jq from the reservoir A (Fig. 2) with chemical poten-
tial pA and the current at equilibrium (p,„=o) is

p+oo

[f(E —p,„) f (E) lu—(E)6'(E) dE

where v(E) is the velocity, iV(E) is the density of
states per unit energy and length, and f(E) is the
Fermi distribution function. The energy is measured
relative to the chemical potential of the sample at
equilibrium. Since u = BE/Bp and N (E) = (1/rrt)
&& (Bp/BE), Eq. (2) can be simplified to

p+oo

j„=— (f(E —
g& ) f'(E) l dE =——p,„

h

(3)
Our aim is to relate j& and j& to the net current

through the sample j. The ingoing currents to the
reservoirs A and B consist of the transmitted parts of
j~ = (e/h ) pi and j2 = (e/h )p2 and of the reflected

ra tap tay

S= tp r& t~y

where it „~
= ~r&, ~

=Ha and (r„~ =1 —~, «( T. The
subscripts n, P, and y refer to the left and right
transport channels and to the connection to the reser-
voir, respectively, and ~ is a controllable design
parameter, the strength of coupling of the potentiom-
eter. For the following discussion we do not need to
specify the remaining elements of the S matrix except
for requiring that the unitarity conditions are fulfilled
and that it &~ =1+0(e), ir i

= [r&i =O(e"), with

n ~ —,. Since the reservoir has a finite width, " the
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FIG. 1, Ideal potentiometer (thermometer). The in- and

outgoing electrical (thermal) currents of the reservoir are
equal leading to a well-defined chemical potential (tempera-
ture). Since the reservoir has a finite width, an average
over the phases of the reflection and transmission coeffi-
cients for the in- and outgoing currents has to be taken,
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by using Eqs. (3) and (8) and the corresponding ex-
pressions for the reservoir at B .Since ( —Bf/BE)
= 5(E) at T = 0 we have rederived Landauer's4 for-
mula for the electrical resistance"

(10)

t"Aor TA jLBor Ta

FIG. 2. Measurement of the resistance. The currents j&

and j2 are impressed from left and right, respectively. The
potentiometers {thermometers) divert a small part of the
current from the channel into the reservoirs at A and B.
The difference between the currents jz and j& determines

the potential {temperature) difference.

parts of j& and j~. The transmission amplitude from
the left ingoing channel to the reservoir, tt„(E), in-

cluding terms to order Je, is

The ingoing currents at A originating from the
external currents j~ and j2 are

(4)

where r(E) is the reflection amplitude of the sample.
O~ing to the finite width of the reservoir an average
over the relative paths of the directly transmitted
wave to the reservoir and of the reflected wave from
the sample has to be taken; i.e. , T~& is given by its

phase average,

(T»(E)) =e[I+Ir(E) I'1

The expression of ES' and FL" is dubious since it
relates the difference in chemical potential over the
sample to the end reservoirs which are not in internal
equilibrium. In order to get a well-defined potential
we need to apply measurement reservoirs, for which
the zero net flow condition is applied rigorously.
This corresponds to a four-probe experiment, where
the potentiometers do not discriminate between the
left- and right-going flows.

%e can use a similar procedure to derive the for-
mula for the thermal resistance. The potentiometer
is replaced by a thermometer defined by the same
scattering matrix (I). The temperature is determined
by the Fermi distribution function, for which the in-

and outgoing heat currents are equal at the reservoir.
The temperature is the only variable since the chemi-
cal potential is constant in a heat conduction experi-
ment. %hen the temperature of the unperturbed
sample is Tp, the extra heat current from a reservoir
at temperature T is

P+oo

[ft (E) fy, (E) ]E—4E.

2 2 '(T —T, )
3h

and

r

e—pi Jl [1+ir(E) i'] — dE
h BE

1

e—p, , Jl it(E)i' — dE .
h — 9E

Since j~,r, (1 —2e) is the part of the heat current from
the reservoir at A that is reflected back, the condition
for zero net heat flow through the walls of the reser-
voir is

JA 1h
= Jg th ( I

r

+. ' '
Jt [I+ir(E)i']E — dE

p

P+oo

j„=jq ( I —2e) + e—p, &

l

r

tl+ ir(E) i']—
1

+e—P2 t E 2 — dE

The difference in chemical potential between A and
8, Sp,&z, can then be related to j,

r 1

J ir(E) i'—
(jE

5Ijt wa = J
it(E) i' — dE

9E
1

Since jz(1 —2e) is the part of the current from the
reservoir at A that is reflected back, the condition for
zero net flow through the walls of the reservoir is

t

ir(E) i E — dE
3h 9E

2/27

J it(E)i E2 — f 4E

. (13)

The Wiedemann-Franz law

R,[

R,

r

m2 ka

3
Tp (14)

1

+e ' '
J it(E)i'E' — f dE . (12)

hTp 9E
1

If we exchange the subscripts I and 2 in Eq. (12), we
obtain the equation determining ja,h. By using Eqs.
(11) and (12) we readily derive the thermal resis-
tance of the sample
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FIG. 3. Extra potentiometer (thermometer) on the sample. The resistance between two points in the channel depends in
general on the scattering properties of the total system; i.e., no "local" resistance can be defined.

is valid when I
r (E) I' =

I
r (0)

I
for energies near the

Fermi level. Since the reflection coefficient is a rap-
idly varying function of energy in one dimension, we
do not expect the Wiedemann-Franz law to be satis-
fied even for elastic scattering. This is in contradic-
tion to the usual relaxation-time approximation for
elastic scattering.

We now apply a potentiometer (thermometer) to
the sample (Fig. 3). The transmission amplitude for
electrons from the left to the reservoir at C is to or-
der Ke,

ltd«) l~'" (1+ lr2(E) le '
t)r E = e

i tt13(E)
1 —Ir t(E) llr2«) le' '

The subscripts 1 and 2 refer to the scatterers to the
left and to the right of the measurement point C.
Since the reservoir has a finite width the current
from the left channel to the reservoir at C is deter-
mined by the phase-averaged transmission coefficient

(16)

(T, r (E)) is given by Eq. (16) with the subscripts 1

and 2 exchanged. Since e (( It(E) I', the applied
potentiometer (thermometer) does not change the
transmission coefficient of the sample. The potential
difference between A and C, 5p, &&, in terms of
5p, &~, is then

I

Ir(E)I2 —'f dE

Similarly, the ratio of the temperature difference between A and C to the total temperature difference, T&s, for
thermal conduction is

02'.s
I

"-- 1 —lrt(E) I'Ir2(E) I' &E, "'-- eE

The measured resistances for sections of the chain
add linearly. Because of long-range phase coherence
for each energy, however, they are determined by all
scatterers in the sample, not just those between the
measurement points. The "classical" case of local
resistances corresponds to a complete phase randomi-
zation of the reflection coefficient for each energy,
i.e., Ir(E) I' = (lr(E) I2). Only when the inelastic

scattering is strong enough to destroy phase coher-
ence between the measurement points can local resis-
tances be defined.
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"The finite width of the connection to the measurement
reservoir means, of course, that it has many, say, N chan-
nels. Thus we have )t „;]= )t»;i=Ca/JV and

~rv, ~

= 1 —e/N for each channel y;. Since Eq. (3) is

jz = (Ae jh) p,z, the relevant Eqs. {9), (13), (17), and
(18) are independent of A'. Hence we limit ourselves to a
single-channel connection to the measurement reservoir,
We expect corrections to the relation 5p, = e5 V to be of
the order AD/L, where 5 & is the difference in the average
electrostatic potential between the measurement reservoirs
(voltage difference at zero current through the sample
have already been subtracted), AD is the Debye screening
length, and I. is the linear dimension of the reservoir.
Since the reservoirs have to be macroscopic, these correc-
tions are negligible.


