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Modern potentials and the properties of condensed 4He
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The Green's-function Monte Carlo method has been used to calculate the properties of the
ground-state 4He with several modern potentials. One potential, dubbed HFDHE2, by Aziz

et al. , gave very good agreement with the experimental equation of state in both the liquid and

crystal phases. Other properties such as the structure factor and the momentum distribution
also compare well with the experiment. In both phases, perturbative estimates of the three-

body Axilrod-Teller potential were computed. When they are added to the two-body energies,
the total energy is no longer in agreement with experiment. Further investigation on the nature

of three-body interactions in the 4He may be necessary to elucidate this problem.

I. INTRODUCTION

Traditionally, the properties of simple fluids have
been described by assuming that the dominant in-

teractions in the system are two-body forces. As
more information accumulates from experiments
sensitive to pair interactions, theorists attempt to find
potentials which best explain the results, and then
use such potentials in calculations. Agreement with

experiments on dense systems usually improves
when three-body interactions are also included in the
calculations. Estimates of the importance of higher
order terms' in the potential suggest that they are
minor in comparison with the two-body terms for
systems such as liquid argon or liquid helium. We
have been following this approach in investigating
simple fluids and report here our calculations using
modern two-body potentials for 4He.

The most popular two-body potential used in
theoretical studies of 4He is the Lennard-Jones (LJ)
6-12 potential

~=10.22 K, a=2.556 A

with parameters determined by de Boer and Michels'
from second virial coefficients. Variational calcula-
tions' on liquid He which used the LJ potential have
failed to reproduce accurately the energy or other
measured properties of the real system. This was at-

tributed partly to the inadequacies in the LJ potential
and partly to deficiencies in the Jastrow wave func-

tion, a product of two-body correlation factors, used
in the calculation. However, when other potentials

were used in variational studies, " ' none gave a

great improvement in the results. Recent work' has
showrr that the major shortcoming of the Jastrow
wave function is its omission of significant three-
body correlations. A reconsideration of the two-body
potential remains to be done.

Since the work of de Boers and Michels, much
more experimental two-body data have been gath-
ered. The new information has been employed to fit
new He-He potentials and also to test how well other
potentials can predict experimental measurements. .

For example, Jody and co-workers compared the
prediction of seven different semiempirical potentials
with thermal conductivity data. The comparison indi-
cated that LJ was the least realistic of the seven in
the repulsive core of the potential. Crossed molecu-
lar beam experiments' have probed the attractive re-
gion of the potential and have determined that the
position of the energy minimum r, is 2.97 +0.1 A
with a well depth of 10.7 +0.4 K. Accurate ab initio
calculations of the He-He potential indicate that the
minimum energy is 10.8 +0.1 K. These results con-
firm that LJ with well depth of 10.22 K arid r of
2.87 A is not the best potential to use in describing
the interaction of two helium atoms.

The best two-body helium potential for the gas
phase and the effective two-body potential in a dense
many-body system need not be the same. For exam-
ple, the Lennard-Jones (12-6) potential for argon fit-
ted to high-temperature second virial coefficients
does not describe all of the properties of liquid or
solid argon; and in fact, it does not fit low-temper-
ature second virial coefficients. " Recently the
properties of liquid and solid "He were simulated ex-
actly. ' The calculations used the Green's-function
Monte Carlo (GFMC) method'0 " to solve the
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II. ALTERNATIVE POTENTIALS

Based on the results of our survey using perturba-
tion theory we chose three potentials with which to
p~form GFMC simulations. One potential, the
ESMMSV potential of Burgmans and co-workers, ""'
was fitted to their elastic differential collision cross
sections for He-'He. The repulsive part of the po-
tential was derived from backward glory scattering
data and dispersion coefficients were obtained from
theory. The data were fitted to a piecewise exponen-
tial spline-Morse-Morse-spline —van der Waals form
for the- potential. The other two potentials, MS12G6
and HFDHE2, were proposed in a recent paper by
Aziz et al. " The MS12G6 potential is a modification
of the generalized Lennard-Jones potential suggested
by Maitland and Smith, "

V(r) =e 6 r n

n —6 r n —6

r

rm
(2.1)

where the new parameters are

a=10.9 K, n =12+6 ——1, r =2.967 A
rm

The parameters e and r, were determined by fitting
the potential to high-temperature viscosity data,
second virial data, and thermal conductivity data.
The HFDHE2 potential is derived from a potential
form proposed by Ahlrichs et al. ,

'

Schrodinger equation with results subject only to sta-
tistical sampling errors and to small size corrections.
A striking conclusion of that paper was that the LJ
potential could describe a many-body 4He system
reasonably well. The remaining discrepancies
between the simulation results and experiment can be
attributed to the potential. We have recently em-
barked upon a survey of some alternative potentials
to LJ. Our strategy was to predict to first order the
value of the energy in the many-body system when
another potential was used by employing Rayleigh-
Schrodinger (RS) perturbation theory. That is, we
perturbed our LJ GFMC energies and used the radial
distribution function from our LJ results to calculate
corrections to the energy. First-order perturbation
theory has been shown by further GFMC calculations
to be an excellent tool in investigating the effects of
other potentials, as will be documented below,

where

F(r) =

2
Dr

exp —1

1, —&Dr

rm

(D
Im

Aziz et al. fitted the potential to the self-consistent-
field Hartree-Fock (SCFHF) calculations of
McLaughlin and Schaefer" restricted to the range
4.0—5.0 a.u. , to second virial data, and to thermal
conductivity data. The dispersion coefficients were
modified within the bounds given by Tang et al. '

The values of the parameters for the HFDHE2 po-
tential as reported by Aziz et al. are

A =0.5448504 & 10
n =13,353 384
D = 1.241 314
r =2.9673 A

e/re=10. 8 K

C6 = 1.377 324 12

C8 =0.425 378 5

Cip =0.178100

III. METHODS

Aziz et al. compared the predictions of these poten-
tials and several others with a large accumulation of
experimental two-body measurements. They con-
clude that the HFDHE2 potential gives the best
overall agreement with experiment. The MS12G6
potential compared almost as well as HFDHE2 and
ESMMSV gave an acceptable agreement; none of the
potentials agreed with all the experimental data.

Our initial GFMC calculations indicated that the
HFDHE2 potential gives excellent values for the en-
ergy of a many-body system. We therefore used the
HFDHE2 potential to calculate the equation state of
liquid and solid 4He. Our work with LJ 4He showed
that we cannot distinguish between the fcc and hcp
phases in the ground state, so we again studied the
fcc phase. We conclude that the HFDHE2 potential
gives a very good account of the properties of con-
densed 4He. Furthermore, our calculations show that
the ESMMSV and the MS12G6 potentials are unsa-
tisfactory when used in a many-body system.

In the following section, a brief review of the
GFMC method is given. We shall discuss how we
obtained the wave functions we used to initiate our
Monte Carlo iterations and give a description of sim-
ple perturbation theory. Section IV will contain the
results of our calculations for both the liquid and
crystal states.

V(r) =e IA exp
rm

ts F10
fm rm rm

C6 —+ C8 —+Cip-
r r r

lF(r) ',
r

(2.2)

The simulations of the many-body 4He system with
HFDHE2 pair potentials were carried out by using
the Green's-function Monte Carlo method. In this
method, the Schrodinger equation is transformed into
an integral equation by a Green's function for the
Hamiltonian with a shifted energy scale. The integral
equatiori is solved by a Neumann series, and the
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iterations are carried out by Monte Carlo. A detailed
description of the technique is given in Ceperley and
Kalos"" and Kalos, Levesque, and Verlet
(KLV)."tb' A thorough discussion of errors and the
application of the method to the LJ He is given in
Whitlock, Ceperley, Chester, and Kalos (WCCK) 'Ptb'

and Whitlock, Kalos, Chester, and Ceperley
(WKCC). '

The iteration of the Neumann series to solve the
integral equation is initiated with a trial wave func-
tion ptp'(R), R being a pomt in configuration space.
In our calculations we have chosen a trial wave func-
tion of the Jastrow form

1

(3.1)

0= (ejl&leJ)
(0 IA )

(3.2)

to find the best variational u(r). Equation (3.2)
can be rewritten as an integrodifferential equation
in terms of the radial distribution function, g (x);
the pair-pair correlation function, P(x, y) =
2pgg(y)/Su(x), and the interaction potential,
V(r) The extre.mum condition is solved by a
predictor-corrector procedure. ' The hypernetted-
chain approximation (HNC) is used to approximate
g (x) and integrals containing P ( x, y ) .

Pseudopotentials generated in this manner were
used in the GFMC cal'culations for liquid densities
with the HFDHE2, ESMMSV, and MS12G6 poten-

y"'(R) =exp ——,
' $u(r;, )

i&J
t

Since the trial wave function is used to accelerate the
convergence of the GFMC iterations, as well as ini-

tiate the iterations, we tried to use pseudopotentials,
u, which are optimal for the HFDHE2 potential. We
took the results of functional optimizations of the
Jastrow wave function by the paired phonon-analysis
(PPA) method as described by Pinski and Camp-
bell. " In this method, one solves the extremum con-
dition

tials. The rate at which the GFMC calculation con-
verges to the final energy suggests that the u(r) ob-
tained from the paired phonon analysis are very
good. Also, the small degree of extrapolation (cf.
WCCK) needed to extract exact properties such as
g(r) and S(k) from the GFMC results confirms that
these are excellent pseudopotentials.

It is not possible to use the PPA method of
Pinski-Campbell in the crystal phase since the HNC
method employed to perform the iterations can only
be applied in the liquid phase. We chose instead a
wave function with the McMillan form"' of the
pseudopotential plus a localized (one-body) Gaussian

y'"(R) =exp —,' $u(rp) g@(r —S )
i&J m

t

(3.3)

4

S are the lattice sites. Variational calculations were
performed with this wave function to minimize the
energy and the resulting parameters were then used
in the GFMC calculations which converged satisfac-
torily.

As mentioned above, we used Rayleigh-Schro-
dinger theory (RS) to predict the energy of a many-
body "He system using various two-body potentials.
To lowest order in b V, the eigenvalue per particle of
He is given by

Ep =Ep +
2 p& d r EVgU(f)d r
1

5 V = x( VJ —Vp~")

i&J

(3.4)

where V&' is the Lennard-Jones potential at r~ and
V& is some other potential at the same point. gU(r)
is the radial distribution function obtained from the
GFMC simulation of LJ 4He and Ep"'/N is the energy
per particle derived from the same calculations. The
energy from this perturbation theory is an an upper
bound to the exact eigenvalue. In Table I, where we
compare variational, perturbation theory, and GFMC
results for Eo with various potentials, we see that the

TABLE I. Summary of energies (E2) in liquid He from variational, perturbation theory, and

GFMC calculations. All energies are given in kelvin per particle.

Potential Variational Perturbation pa GFMC

Lennard-Jones
Beck'
FDD-lb
MDD-2b
ESMMSV
MS12G6
HFDHF2

0.365
0.306
0.325
0.300
0.365
0.365
0.365

—5.68
—5.62
—7.10
—5.67

—5.87

~ \

0.365
0.365
0.365
0.365
0.365
0.365

—6.57
—8.39
—6.48
—6.32
—7.68
—6.98

0.365

0.365
0.365
0.365

—6.85

—6.49
—7.84
—7.12

'R. D. Murphy, Phys. Rev. A 5, 331 (1972).
R. D, Murphy and R. O. Watts, J. Low Temp, Phys. 2, 507 (1970).
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V3 ( f 1 2, 713,f 2 )3=

3

0.324 1 + 3 g cos8,
i I

L

3 3 3
~12~13f23

(3.5)

perturbation theory result is consistently within 0.12
K of the GFMC result. Therefore we are confident
that our perturbation results are reliable indicators of
the behavior for potentials in which we did not pur-
sue GFMC calculations.

We estimated the contribution of three-body terms
to the potential by calculating the perturbation of the
energy arising from the Axilrod-Teller triple-dipole
potential, '9

(A)

Lennard-Jones
ESMMSV
MS1266
HFDHE2

10.22
10.57
10.9
10.8

2.869
2.97
2,967
2.9673

TABLE II. Energy and length parameters for several po-
tentials.

Barker argues that this form of the three-body poten-
tial is the major contributor to the energy. In Appen-
dix A of WCCK, we described in detail how we es-
timated this perturbative correction. We note here
that the values of the three-body correction given in
WCCK for liquid and solid LJ 4He are in error by a
few percent. We shall correct these values in the fol-
lowing section.

IU. RESULTS

As mentioned above, we used first-order perturba-
tions from our exact LJ results to suggest which po-
tentials to use in GFMC calculations. In Table I we

have summarized the results from our perturbation
calculations, various variational calculations, and our
GFMC calculations at the density at which the energy
is smallest. From the perturbation data, it is clear
that the HFDEH2 is the most promising potential to
use in many-body theories, Though the ESMMSV

400.
l

ll
l200- ~'

, l
~ ~1

, 1

, l

-2.00-
11

I

-4.00 — '

I

-6.00-

-8.00-

-IO.OO—

and the MS12G6 potentials gave energies which were
too high and too low, respectively, we decided to use
them in GFMC simulations since they did reasonably
well in reproducing experimental two-body data in
the calculations of Aziz et al. ' A glance at Fig. 1 or
Table II reveals that the ordering of the simple per-
turbation energies of the three potentials follows that
of their well depth. The position of the minimum is

very similar for the potentials and witkin the experi-
mental uncertainty as derived from molecular mea-
surements. One might expect that the many-body
energies would be much closer than they are, espe-
cially for the MS12G6 and HFDHE2 potentials. The
behavior predicted by perturbation theory is con-
firmed by the GFMC calculations. The only accept-
able potential of the three is HFDHE2 and it repro-
duces the experimental equation of state very well.
The energy of the many-body system appears to be
very sensitive to minor changes in the shape of the
potential and this is reflected in the GFMC results.
The real puzzle in this investigation of various 4He

potentials is the LJ potential. Its energy is closer to
the experimental equation of state than either the
MS12G6 or ESMMSV potential; however, neither
the position of the well nor the well depth are in the
range which gives agreement with experiment. We
conjecture that it is largely fortuitous that the LJ po-
tential provides a reasonable description of the prop-
erties of liquid 4He. Similar behavior occurs with the
LJ potential for argon. '~' In that case, the LJ poten-
tial gives a good agreement with experimental data on
the liquid state if many-body interactions are neglect-
ed. However, the well depth of the LJ potential is
known to be in error by 20% and the coefficient of
R 6 at large distances is in error by a factor of 2.

-l2.00 2.80 5.20 3,60

r {A)

4 00 440

FIG. 1. Comparison of the potential energy as a function
of distance for several two-body 4He potentials. The poten-
tials are identified as follows: (. . . ) Lennard-Jones, ( )
HFDHE2, (——) MS1266, and (———) ESMMSV.

A. Equation of state: Liquid phase

After the excellent showing of the HFDHE2 poten-
tial at the experimental equilibrium density, we pur-
sued GFMC simulations at several other densities.
The energies are compared with those of other poten-
tials and experiment in Fig. 2. Table III contains a
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TABLE III. Energies in the liquid phase from the GFMC calculations with the HFDHE2 potential, the Lennard-Jones poten-
tial, and experiment. The first column gives the density in reduced units; E2 is the eigenvalue from the GFMC calculations;
( V3) is the perturbation estimate of V3, E = E2+ ( V3); and E,„~, is the experimental value of the energy from Ref. 20. All en-
ergies are in kelvin per particle.

PcT E2
HFDHE2

(V, ) E2

L'ennard-Jones

( V3) Eexpt

0.328
0.365
0.401
0.438
0.490

—7.034 + 0.037
—7, 120 + 0.024
—6.894 + 0.048
—6.564 + 0.058
—5.175 + 0.101

0.113 + 0.002
0.152 + 0.003
0.190 + 0.002
0.237 + 0.003

—6.921 + 0.037
—6.968 + 0.024
—6.704 + 0.048
—6.327 + 0.058

—6.662 + 0.035
—6.848 + 0.018
—6.743 + 0,033
—6.386 + 0.072
—5.362 + 0.079

0.114 + 0.002
0.149 + 0.003
0.195 + 0.001
0.244 + 0.002
0.325 + 0.004

—6.627 + 0.035
—6.699 + 0.018
—6.548 + 0.033
—6.142 + 0.072
—5.037 + 0.079

—7.14
—7.00
—6.53

comparison of the GFMC energies calculated with
the LJ and the HFDHE2 potentials. We have report-
ed the densities in units of 0. ' to make comparison
with our earlier LJ results easier. By multiplying
densities in units of atoms/o-' by 0.05989, units of

0
atoms/A are obtained. Except for the value at
pcr3 =0.4013, the HFDHE2 energies are within their
standard deviations of the experimental energies.
Thus the shape of the equation of state is reproduced
well by the HFDHE2 potential.

In columns 3 and 6 of Table III we give our esti-
mates of the Axilrod-Teller three-body corrections to

-4.50

-5.00-

-5.50-

the energy of the HFDHE2 and LJ systems, respec-
tively. As noted above, the values of ( V3) for LJ
are corrected slightly from those given in WCCK.
The values of the three-body energies in the two sys-
tems are identical within their errors and are in

agreement with the calculations of Murphy and
Barker. 'lb' The sign of ( V3) is positive and increases
the energies. Thus the energy, E„of the HFDHE2
system is no longer in agreement with experiment
but differs by about 0.2 K. Note, however, that the
calculation of ( V3) is in effect an estimate of the RS
perturbative effect of ~3 and hence yields an upper
bound to the energy.

The sensitivity of the many-body energy to small
changes in the two-body potential is an interesting
phenomenon. We investigated this phenomenon fur-
ther by observing how the energy changed when the
HFDHE2 potential parameters were varied within
reasonable limits. Table IV summarizes the results

-6.00-

-6.50-

-7.00—

TABLE IV. Energies of 4He system when the HFDHEZ
potential parameters are varied. The first column gives the
density in reduced units; rm and ~ are the length and energy
parameters; the fourth column is E2 as predicted by pertur-
bation theory; and the last column gives the GFMC energy.
All energies are in kelvin per particle.

-7 50-

L
. -8.00 I I I I I

0.280 0.520 0.560 0.400 0.440 0.480 0.520

P~

(A) ~ (K)
Perturbation

theory GFMC

FIG. 2. Equation of state for the liquid phase of 4He.
The solid line represents the experimental equation of state
of Ref. 20. The solid circles are the GFMC energies with
the HFDHE2 potential; the dashed line is a fit to the calcu-
lated energies. The boxes are GFMC energies with the
Lennard-Jones potential and the dashed-dot line is a fit to
the latter energies. The triangle is the GFMC energy calcu-
lated with the ESMMSV potential and the solid triangle is
the. GFMC energy calculated with the MS12G6 potential.

0.3648
0.4378
0.491'
0.3283
0.3648
0.4013
0.4378

2.9673
2.9673
2.9673
2.9648
2.9648
2.9648
2.9648

'fcc crystal.

11.0
11.0
11.0
10.8
10.8
10.8
10.8

—7.52
—7.06
—6.20
—7.01
—7.09
—6.87
—6.54

—7.548 + 0.029
—7.003 + 0.016
—6.237 + 0.038
—6.952 + 0.026
—7.075 + 0.040
—6.736 + 0.026
—6.404 + 0.026
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of changing the potential parameters. First we de-
creased the value of e from 10.8 to 11.0 K, and per-
formed GFMC simulations at two densities in the
liquid. The energies decreased by about 0,4S K from
the values for the unperturbed HFDHE2 potential.
Figure 3 shows the changed energies compared with
the unperturbed HFDHE2 energies. It appears that
increasing the value of ~ has shifted the equation of
state to lower energies but has not affected its shape.
%e performed additional RS perturbation calculations
starting from our g(r) obtained using HFDHE2 rath-
er than those obtained from LJ. These gave very
good predictions of the change in energy. RS theory,
being first order in 6 V, is equivalent to the
Hellmann-Feynman theorem which here reduces to
BE/Be = ( V)/eo.

The next variation of a paramater we tried was to
change r from 2.9673 to 2.9648 A. As can be seen
in Fig. 3 and Table IV, this very small change in the
position of the minimum significantly changed the
equation of state. The equilibrium density has shift-
ed to a lower density and the curvature of the equa-
tion of state became steeper. The results from a per-
turbation calculation predict the trends observed in
the GFMC simulation. The primary contribution to
the integral in Eq. (3.4) occurs at small values of r,
where g(r) is least accurate. These uncertainties are
reflected in the perturbation energies as an error es-
timated to be 0.2 K.

The results of changing the HFDHE2 parameters
indicate that any improvements in the many-body en-
ergy will require delicate tuning of the parameters.
Small changes in the value of r within the estimated
standard error range lead to relatively large changes
in energy. Such tuning can be done rather easily and
reliably by using Eq. (3.4) and the radial distributions
in the Appendix.

B. Radial distribution function and
structure function

Other properties of HFDHE2 liquid He were in-
vestigated as well. In Fig. 4, we show the radial dis-
tribution function from the GFMC calculation (solid
line) at a density of po3 =0.3648 in comparison with
an experimental g (r) shown by circles derived from
the measurements of Sears and co-workers. ' The
experimental g(r) was obtained by Fourier trans-
forming the S(k) measured at saturated vapor pres-
sure at 1.0 K. Agreement between the theoretical
and the experimental pair correlation function is ex-
cellent and demonstrates that the HFDHE2 potential
gives a good representation of pair correlations in
liquid helium. The width and the height of the first
peak in g (r) are especially well reproduced in the
GFMC calculation. The g(r) derived from GFMC
calculations with the HFDHE2 potential has a sharper
first peak by about 2% than the g(r) from LJ GFMC
calculations. '

Figure S contains a comparison of the GFMC with

-5,0—

-55—
1.5

-6.0—

LLI -6.5—

-70—

0.5—

-8.0 I I l I I

0.280 0.320 0.360 0.400 0.440 0.480 0.520

P(T 0
0 2.0 4 0 6.0 8.0 10.0

FIG. 3 ~ Effect of changing the HFDHE2 potential param-
eters on the equation of state. The solid circles are the
GFMC energies with the original HFDHE2 potential and the

. solid line is a fit to the calculated energies. The boxes
represent GFMC energies with a modified HFDHE2 poten-

0
tial where e =11.0 K and r~ =2.9673 A. The. triangles are
GFMC energies for a modified HFDHE2 potential where
~=10.8 K and r~ =2.9648 A.

r (A)

FIG. 4. Comparison of the calculated and experimental
radial distribution function. The solid line gives g (r) at
po. =0.3648 derived from the GFMC calculations with the
HFDHE2 potential. The circles are experimental points
given in Ref. 21 derived from neutron diffraction measure-
ments at saturated vapor pressure at 1.0 K.



24 MODERN POTENTIALS AND THE PROPERTIES OF CONDENSED . . ~ 121
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0
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1.0 2.0
I I
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&(A )

I I

5.0 6.0 7.0 1.30
0

I I I I I

0.40 0.80 I.20 1.60 2.00 2.40
T (K)

FIG. 5. Comparison of the calculated and experimental
structure function. The solid line is S(k) at per =0.3648
which is the Fourier transform of the calculated g (I.) in Fig.
4. The circles are the smoothed S(k) measured by neutron
diffraction at saturated vapor pressure at 1.0 K, described in
Ref. 21.

the HFDHE2 potential and an experimental structure
function, S(k). The GFMC S(k) is at a density of
po3=0.3648 and is the Fourier transform of g(r)
shown in Fig. 4. The experimental S(k) is a

smoothed version of the structure function measured
by Sears and co-workers by neutron diffraction at 1,0
K at saturated vapor pressure. S(k) derived from
the HFDHE2 is in better agreement with the
neutron-diffraction experiments than the LJ potential
though there are still discrepancies in the vicinity of
the first maximum. S(k) derived from the LJ
GFMC calculations is about 3% lower at the first
peak than S(k) from the present GFMC ca1cltlations.
The discrepancy between experiment and the present
GFMC result is not dramatic, however, since the
S(k) values are within each other's error. This is

clearly shown in Fig. 6. Figure 6 displays the value
of S(k) at its maximum as a function of tempera-
ture. The GFMC value ( ~ ) is shown at 0 K. The
x-ray diffraction results of Robkoff, Ewen, and Hal-
lock~~ are plotted as (L) and the neutron diffraction
results of Sears and co-workers are plotted as ( ~ ).
Sears et al. estimated that their statistical precision is
0.8% and the residual systematic error is less than
1%. These errors are shown separately on two of the
data points to indicate how the experimental errors
compare with the GFMC errors. In a paper which
discusses the static structure function measured in

the neutron diffraction experiments, Svensson et al. '
argue that S(k) changes very little below 1.0 K.
They compare the results of a recent calculation' of
the temperature variation of S(k) due to the thermal

FIG. 6. Maximum value of S(k) as a function of tem-
perature at saturated vapor pressure, The GFMC value is

represented by a circle at T =0 and po- =0,3648. The tri-

angles (k) are derived from x-ray diffraction experiments of
Ref. 22. The squares are values of maximum S(k) mea-
sured in the neutron diffraction experiments of Ref. 21.
The error bars represent, respectively„a residual systematic
error of -1.0% and the statistical precision of 0.8% in the
experimental measurement.

excitation of rotons out of a Jastrow ground state
with the experimental temperature variation. The
theoretical change in S(k) between T =0 and T =2.1

K is in reasonable agreement with the experimental
change between T = 1.00 and T = 2.12 K. Thus
Svensson er al. conclude that their S(k) at 1.0 K is
essentially the same as S(k) at T =0 and can be
compared with theoretical estimates at T =0. S(k)
derived from the GFMC HFDHE2 calculations is
sharper than S(k) derived from calculations which
used the LJ potential and is therefore in better agree-
ment with recent experimental measurements.

C. Momentum distribution

We have determined the value of no, the fraction
of particles in the zero-momentum state, at pa'
=0.3648 to be 0.090+0.003. This can be compared
with the previous theoretical value of 0.113 +0.002
obtained from the LJ GFMC calculations. The
difference between the values of no is significant and
is larger than would have been anticipated from ear-
lier simulation studies of hard-sphere systems. "'"'
However, Lam and Chang ' report similar differences
in the condensate fraction when the potential is
changed. The most recent experimental determina-
tions of no have used the theory proposed by Cum-
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mings, Hyland, and Rowlands' to extract no from
g (r). Cummings er al. suggest that the condensate
fraction is related to the behavior of g(r) at large r
upon crossing the A. transition. That is,

NO 1

r i/2
g(r, T ) —1

g(r, T+) —1
(4.1)

where g (r, T ) is the—pair correlation function just
above (+) and below ( —) the h. transition. The ex-

0
pression is expected to be valid for r & 4.5 A where
the reduced one-particle density matrix approaches
no. Robkoff, Ewen, and Hallock have analyzed
their x-ray data using Eq. (4.1) and report values of
9 + 3% at T = 1.67 K and T+ = 2.20 K at saturated
vapor pressure and 8 +3% when T =1.7 K at

p =0.378o- ' for no. Sears and Svensson" performed
a similar analysis on their neutron diffraction data
and found no over a range of temperatures. Their
results for no are well represented by

no( T) = no(0) [1 —( T/T~) ] (4.2)

with no(0) =13.3 +1.20k and n =6.2 +1.6. The
GFMC and experimental values for no are in satisfac-
tory agreement; however, the validity of Eq. (4.1)
has yet to be rigorously established so these experi-
mental values should still be considered tentative,

In Fig. 7, we present the momentum distribution
from our GFMC calculations plotted as kn(k). The
solid line is the GFMC results with the HFDHE2 po-
tential and the dashed line represents the experimen-

tal values of Woods and Sears obtained from neu-
tron scattering data. The structure at large k of the
GFMC results are within our errors which are ap-
proximately 10%. The agreement between the
theoretical and experimental momentum distributions
is very good; any differences are within the errors of
the two sets of results. Overall the HFDHE2 poten-
tial is seen to give a very good account of the interac-
tions in liquid 4He.

D. Equation of state: crystal phase

We have used the HFDHE2 potential to calculate
the energy of the fcc crystal in the density range
pa =0.491 to 0.589. We limited out GFMC simula-
tions to the fcc phase because our earlier results' '
with the LJ potential showed that we could not dis-

tinguish the hcp from the fcc phase and it is techni-
cally more convenient to calculate the latter. As
mentioned above, we used a McMillan form of the
pseudopotential plus a localized Gaussian in the im-

portance function for the crystal phase. An impor-
tance function which localizes the particles on the lat-
tice sites speeds the convergence of the GFMC itera-
tions. The particular parameters in the importance
function for each density were determined by a varia-
tional search for values that minimize-the energy.

Our results for the crystal equation of state are
sho~n in Fig. 8. The triangles are our GFMC results
with the HFDHE2 potential and the solid line is a fit
to them. The circles are the experimental measure-
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0.020 -50—

0.010

00 1.0
I I ~~--L~
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FIG. 7. Comparison of the calculated and experimental
momentum distribution plotted as kn(k). The solid line is
the GFMC result. The dashed line is the experimental
results of Ref. 28.

-6.0
0.450

I

0.500
I

0.550
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0.600 0.650

FKl. 8. Equation state of solid 4He. The triangles are the
GFMC energies calculated with the HFDHE2 potential. The
solid line is a fit to these energies. The solid circles are the
energies of the hcp solid reported in Ref. 29 with two points
showing the magnitude of the errors.
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ments extrapolated to 0 K by Edwards and Pan-
dorff. The agreement between theory and experi-
ment is good, especially at higher densities. By con-
trast GFMC calculation with the LJ potential gave an
equation of state whose shape disagreed with experi-
ment. In Table V the fcc crystal energies are given as
a function of density and compared with experimen-
tal energies. Also included is our estimate of the
Axilrod-Teller three-body perturbation energy at each
energy. In all cases the perturbative correction is
positive and when added to the GFMC F2, the
resulting energy disagrees with experiment by about
0.5 K.

The discrepancy between the calculated total ener-
gy, E = E2+ ( V3), and experiment (cf. Tables III and
V) is somewhat disturbing. While three-body in-

teractions are anticipated to be small in comparison
with two-body energies, their inclusion was expected
to improve the agreement between theory and experi-
ment. It occurred to us that perhaps a simple scaling
of the potential might resolve the discrepancy. From
Table III we have data from GFMC simulations with
6 = 10.8 and 11.0 K at po and 1.2po. Using linear in-

terpolation, justified by the good results from RS per-
turbation theory, we determined a value of e which
should give E in agreement with experiment. This
new value of e is 10.88 K and we used it in a pertur-
bation theory calculation of the many-body energies
for both the liquid and the crystal phases. A sum-
mary of the perturbation results is given in Table VI.
The scaling of e works well in the liquid phase with
the values of E within their errors of experiment.
This is shown in Fig. 9. The results are not as
promising in the crystal phase. The decrease in E2
due to the larger value of e is not sufficient to com-
pensate for the three-body energy correction. We can

Perturbation
theory

Perturbation energy
+( V3) Eexpt

Liquid

0.3283
0,3648
0.4013
0.4378

0.491
0.526
0.56
0.589

—7.17
—7 ~ 28
—7.07
—6.77

—5.84
—5.19
—4.13
—2.95

Crystal

—7.06
—7.13
—6.88
—6.53

—5.52
—4.80
—3,67
—2,30

7 Qla

7 14a

7 00a
—6.53'

—5.78"
—5 03
—3 94"
-2.70b

'Reference 20. Reference 2&.

—5.5—

TABLE VI. Summary of perturbation energies for the
HFDHE2 potential with e/k =10.88 K. Column one con-
tains the density in reduced units. In column two are the
perturbative estimate estimates of E2. Column three con-
tains the perturbative E2 + ( V3 ) and column four gives ex-
perimental energies. All energies are quoted in kelvin per
particle.

TABLE V. Energies in the fcc crystal phase. Column one
gives the density in units of a. . The second column con-
tains the GFMC HFDHE2 energy while the next column is

our estimate of the Axilrod-Teller, three-body perturbation
correction to the energy. Column four is the sum of E2 and

( V3) and E,», is the experimental value for the energy.
All energy values quoted in kelvin per particle.

-6.0—

LLI -6.5—

-70—

po E2 ( V3) E a
Eexpt

-8.0 I I I I I

0.280 0520 0.360 0.400 0.440 0.480 0.520

P(T

0.491
0.526
0.56
0.589

—5.61 + 0.03
—4.94 + 0.03
—3.87 + 0.03
—2.68 + 0.06

0.32
0.39
0.47
0.65

—5.29 + 0.03
—4.55 + 0.03
—3.40 + 0.03
—2.03 + 0.06

—5 ~ 78 + 0.05
—5.03 + 0.05
—3.94 + 0.05
—2.70 + 0.05

'D. O. Edwards and R. C. Pandorf, Phys. Rev. 140, A816
(1965). Values are interpolated between their energy mea-

surements for hcp 4He at 0. K.

FIG. 9. Effect of deepening the HFDHE2 potential on the
equation of state of the liquid. The solid line is the experi-
mental equation of state as described in Ref. 20. The circles
are the perturbation estimate of E2 with the HFDHE2 po-
tential when e =10.88 K plus ( V3). The triangles are
GFMC energies with the original HFDHE2 potential plus

( V, ).
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correct the energies of either the liquid or the crystal
phase by our simple scaling of the potential, but not
both phases. It is clear that a more sophisticated
treatment of the potential is required in order that
the many-body energy calculated with two-body and
three-body potentials agree with experiment at all

densities in both the liquid and crystal phases,

E. Melting-freezing transition

E=E,+B ' " +C '
Po Po

(4.3)

A similar function has been used to fit experimental
equations of state' and we used this form to analyze
our LJ GFMC results, ' as well. The experimental
equation of state reported by Roach, Ketterson, and
Woo'Ot'~ used Eq. (4.3) to fit values of E(p) ob-
tained from integrating the pressure as a function of
density. Aziz and Pathria " obtained a power series
in (p —po)/po for the equation of state from a series
expansion of the density dependence of the speed of
sound. In the density range we investigated, the two
experimental fits are the same within the accuracy
plotted and are shown by the solid line in Fig. 2. For
the liquid phase without three-body corrections the
values of the parameters in Eq. (4.3) are

E = —7.110+0.023, B =10.08 +3.2
po =0.3600 +0.0049, C =12.59 +8,5 (4 4)

The quoted errors were determined from the errors
of the GFMC energies and are correlated. These
correlations were taken into account in calculating the
errors of functions depending on Ep, B, C, and pp.
The analytical fit to the liquid equation of state is
shown as a dashed line in Fig. 2.

%e fit our equation of state in the liquid and crys-
tal phases to functions of the form

13

This representation of the crystal equation of state is
not the best least-squares fit because of the limited
number of densities we studied in the GFMC simula-
tion. It is, however, a very reasonable fit as can be
seen in Fig. 8. The two analytical equations of state
were then used to determine the melting and freezing
densities via a Maxwell (double-tangent) construc-
tion. In Table VII, the melting and freezing densities
are given for "He calculated using HFDHE2, LJ, and
obtained from experiment. The HFDHE2 liquid
freezes at a density of 0.438/0-' which is only 2%
above the freezing density observed in experiment.
The solid melts at a density 0.491/o-', which is 5%
above that of experiment. This discrepancy is a re-
flection of the difference in behavior of the equation
of state of the HFDHE2 simulation and experiment
at lower crystal densities. The pressure at the
double-tangent densities is 26.7 atm, which is within
one standard error of the experimental pressure. The
volume variation, 2.47 cm /mol, is significantly larger
than that observed in experiment.

F. Isothermal compressibility

The last property of HFDHE2 helium we will

present are the isothermal compressibilities of the
liquid and crystal phase. The isothermal compressi-
bility is defined as

1

apK=
p 9P

(4.6)

where P(p) = p26E/Bp is the pressure. Equation

%e determined an analogous fit to our crystal data
which yields

E = —5.899 +0.121, 8 =31.95 +5.26

p =0.4486 +0.0097, C =3.395 + 80.0 (4 5l

TABLE VII. Melting-freezing transition. A comparison of the GFMC calculations with the
HFDHE2 potential, with the Lennard-Jones potential and with experiment. The first column iden-
tifies the system, the second and third columns give the freezing and melting densities in reduced
units, column four is the pressure at the transition and column five is the volume difference
between the two phases at the transition.

Potential Pg (7 p {atm) 5V (cm3/mol)

HFDHE2
LJ
Experiment

0.438 + 0.011
0.475 + 0.011
0.430 '

0.491 + 0.010
0.515 + 0.009
0.468 .

26.73
42.85 + 8.64
25.0

2.47
1.63
1,9
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E
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0.008—

0.004—

value at all densities. The density dependence of the

theoretical and experimental values is somewhat dif-

ferent, reflecting the slight difference in shape of the

two equations of state. A comparison of K calculated

from the GFMC results for the crystal phase with

several experimental determinations as a function

of density is given in Fig. 11. At low densities, the

calculated K is lower than experiment but within two

standard errors. At higher densities the calculated K

agrees with experiment which would be expected

from the equation of state.

0
0.34 0.38 0.42 0.46 0.50

po

FIG. 10. Isothermal compressibility of the liquid phase
plotted vs density. The solid circles with error bars are the
values from the GFMC calculation with the HFDHE2 po-
tential. The solid squares are derived from the experimental
equation of state of Ref. 20(a).

The behavior of K as a function of density is a severe
test of a theoretical equation of state. Figure 10
shows the isothermal compressibility for the liquid
phase from the GFMC calculations compared with

that derived from the experimental equation state of
Roach, Ketterson, and Woo. ' The GFMC result
is within two standard errors of the experimental

40-

'E 24-
Oe~ 16-

"'I
(

0 I I I I I I I

0.46 0.48 0.50 0.52 0.54 0.56 0.58 Q60

PG

FIG. 11. Isothermal. compressibility of the crystal phase
plotted vs density. The solid circles with error bars are the
values from the GFMC calculation with the HFDHE2 po-
tential. The remaining symbols represent experimental mea-
surements; ( ~ ) Ref. 30(b), (5) Ref. 29, and (&&) Ref.
30(a).

(4.3) then gives the expression
T 1 ) 1

K= —83 ~ —2 +3C2 ~ —3 ~ +l
p , I Po Po Po

(4.7)

V. CONCLUSIONS

%e have investigated the effect of several two-

body potentials on the equilibrium energy of liquid
4He using the Green's-function Monte Carlo method.
One potential, the HFDHE2 potential, proposed by
Aziz et al. , gave excellent agreement with experi-
ment. The HFDHE2 potential was then used in a

GFMC calculation to determine the equation of state
of liquid and fcc crystal He. Within the statistical
sampling errors, the calculated liquid equation of
state agrees with experiment. The lowest crystal en-
ergies are somewhat higher than experiment at the
lowest densities but agree with experiment above
po- =0.525. Overall the agreement between the
GFMC calculations and experiment is very good.
However, if an estimate of the Axilrod-Teller three-
body energy is added as a correction to the GFMC
energy, the calculated equation of state is shifted to
higher energies. An attempt was made to derive a
better two-body potential by slightly deepening the
HFDHE2 potential. Perturbation-theory calculations,
indicate that this does not work in both the liquid and
crystal phases. Further investigation of the role of
two- and three-body interactions in 4He is needed.

The radial distribution function derived from the
GFMC calculation at the equilibrium density com-
pares well with g(r) derived from neutron diffraction
experiments. " However, the experimental structure
function from neutron diffraction exhibits a slightly
sharper first peak than the calculated S(k). Analysis
of the relevant errors suggests that experiment and
theory are within each others errors. S(k) from x-
ray diffraction experiments' is significantly higher
valued than the neutron diffraction results at similar
temperatures. If.the resolution of the experimental
differences are resolved in favor of a sharper first
peak of S(k), an obvious discrepancy with theory
will result. In that case, it would be interesting to see
whether the RS perturbation theory we have used for
estimating three-body potential corrections is correct
or whether a significant rearrangement of the three-
body correlations occurs. One might then find a
sharper structure and a lower energy than that given
by the perturbation estimate. It is not clear whether
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three-bod& forces are well enough understood in 4He

to make straightforward inclusion in the GFMC cal-
culation worthwhile.

Other properties of liquid 4He derived from the
GFMC simulation such as the momentum-
condensate fraction and the momentum distribution
compare well with experimental determinations. In
the crystal phase, the isothermal compressibility is
close to experiment at higher densities as should be
expected from the equation of state. Overall, the
HFDHE2 potential gives a very satisfactory descrip-
tion of the properties of liquid and solid 4He. Minor
modification of the potential parameters may improve
agreement between experiment and the calculated
solid equation of state. Until such an improvement is
attained, we recommend that theorists adopt the
HFDHE2 potential for future calculations of 4He.
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APPENDIX: TABULATED RADIAL

DISTRIBUTION FUNCTIONS

In this Appendix we present tables of g(r) in the
liquid and fcc crystal phases at several densities. R is

0
in units of A and denotes the midpoint of the inter-
val for which g(r) is given. The densities p are in
units of o- ',

TABLE VIII. g(r) in the liquid and fcc crystal phases.

R/p = 0.3284

Liquid phase

0.3648 0.4013 0.4378

1.687
1.789
1.891
1.994
2.096
2.198
2.300
2.403
2.505
2.607
2.709
2, 812
2.914
3.016
3.118
3.221
3.323
3,425
3,527
3,630
3.732
3.834
3,936
4.038
4.141
4.243
4.345
4.447
4.550

0.0000
0.0000
0.0004
0.0024
0.0184
0.0327
0.0941
0.1387
0.2897
0.3887
0.5188
0,7395
0.9202
1.0475
1.1430
1.1983
1.2816
1.3251
1.3042
1.3194
1.2748
1.2832
1.2148
1.2428
1,1458
1.1299
1.1120
1.0863
1.0106

0.0000
0.0000
0.0000
0.0037
0.0133
0.0361
0.0952
0.1710
0.2809
0.4663
0.6316
0.8376
0.9828
1.1233
1.2163
1.3065
1.3456
1.3739
1.3812
1.3601
1.3328
1.2787
1.2072
1.1779
1.1434
1.0914
1.0542
1.0028
0,9848

0.0000
0,0000
0.0001
0.0015
0.0053
0.0373
0.1100
0.2114
0.3272
0.4949
0.6686
0.8890
1.0210
1.2003
1.2933
1.3895
1.3770
1.4132
1.4401
1.3969
1.3557
1.2838
1.2416
1.1896
1.1238
1.0512
1.0225
0.9749
0.9482

0,0000
0.0009
0.0021
0.0030
0,0087
0.0413
0.0902
0.1696
0.3743
0.5602
0.6966
0.8916
1.0751
1.3106
1.3602
1,4280
1.5401
1.4932
1.5099
1.4108
1.3344
1.2942
1.2152
1.1247
1.0961
1.0391
0.9860
0.9387
0.8985
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0.3284

Liquid phase

0.3648 0.4013 0.4378

4.652
4.754
4.856
4.959
5.061
5.163
5.265
5.368
5.470
5.572
5.674
5.777
5.879
5.981
6.083
6.186
6 ~ 288
6.390
6.492
6.594
6.697
6.799
6.901
7.003
7.106
7.208
7.310
7.412
7.515
7,617
7.719
7.821
7.924
8.026
8.128
8.230
8.333
8.435
8.537
8.639
8.742
8.844
8.946
9.048
9.150
9.253
9.355
9.457
9.559
9.662
9.764
9.866
9.968

10.071
10.173

0.9S39
0.9609
0.9418
0.9266
0.9155
0.9082
0.9046
0.9042
0.9068
0,9120
0.9192
0.9281
0.9382
0.9490
0.9602
0.9714
0.9822
0.9924
1.0017
1.0100
1.0171
1.0229
1.0274
1.0306
1.0326
1.0333
1.0330
1.0317
1.0296
1.0268
1.0235
1.0198
1.0159
1.0120
1.0080
1,0043
1.0008
0.9976
0.9948
0.9924
0,9905
0.9891
0.9882
0.9877
0.9876
0.9879
0.9885
0,9895
0.9906
0.9919
0.9933
0.9948
0.9963
0.9978
0.9992

0.9542
0.9296
0,9110
0.8985
0.8917
0.8902
0.8933
0.9004
0.9106
0.9231
0.9372
0.9521
0.9670
0.9815
0.9949
1.0069
1.0171
1.0254
1.0317
1.0359
1.0382
1.0386
1.0375
1.0350
1.0313
1.0269
1.0219
1.0165
1.0112
1.0060
1,0012
0.9969
0.9932
0,9902
0.9880
0,9865
0.9857
0.9856
0.9861
0.9870
0.9884
0.9901
0.9920
0.9940
0.9960
0.9980
0.9998
1.0014
1.0028
1.0039
1.0047
1.0053
1.0056
1.0056
1.0054

0.9162
0.8911
0.8729
0.8617
0.8572
0.8587
0.8656
0.8771
0.8921
0.9099
0.9293
0.9495
0.9696
0,9889
1.0067
1.0224
1.0356
1.0462
1.0539
1.0587
1.0608
1.0603
1.0575
1.0527
1.0463
1.0387
1.0303
1.0216
1.0128
1.0044
0.9966
0.9896 .

0.9838
0,9791
0.9756
0.9734
0.9725
0.9727
0.9740
0.9761
0,9790
0.9825
0.9863
0.9903
0.9943
0.9982
1.0018
1.0050
1,0077
1.0099
1.0115
1.0125
1.0130
1.0128
1.0122

0.8662
0.8424
0.8273
0.8206
0.821&
0.8303
0,8448
0.8644
0.8878
0.9137
0.9408
0.9680
0.9941
1.0183
1.0396
1.0575
1.0716
1.0815
1.0873
1.0891
1.0871
1.0817
1.0735
1.0629
1.0506
1.0372
1,0234
1.0097
0.9967
0.9849
0,9746
0.9662
0.9598
0,9555
0.9534
0.9533
0.9552
0.9587
0.9636
0.9696
0.9765
0.9837
0.9911
0.9983
1.0050
1.0110
1.0161
1.0202
1.0232
1.0250
1.0256
1.0252
1.0238
1.0215
1.0185
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R/p= 0.4910
Crystal phase

0.5260 0.5600 0.5890

1.687
1.789
1.891
1.994
2.096
2, 198
2.300
2.403
2.505
2.607
2.709
2.812
2.914
3,016
3.118
3.221
3 ~ 323
3.425
3.527
3.630

3.732
3.834
3.936
4,038
4.141
4.243
4,345
4.447
4, 550
4.652
4.754
4.856
4.959
5,061
5.163
5.265
5.368
5.470
5.572
5.674

5.777
5.879
5.981
6.083
6.186
6.288
6,390
6.492
6.594
6.697
6.799
6.901
7.003
7.106
7,208
7.310

0.0000
0.0002
0.0007
0.0030
0.0118
0,0449
0.1075
0.2002
0,3476
0.5500
0.7566
0.9528
1.1815
1.3402
1.4634
1.5774
1.5862
1.6002
1,5837
1.5783

1.4734
1.3666
1.2841
1.1709
1.0679
0.9770
0.8891
0.8193
0.7605
0.7183
0.6933
0.6849
0.6921
0,7132
0.7460
0.7879
0,8362
0.8881
0.9409
0,9920
1.0393
1.0808
1.1151
1,1412
1.1585
1.1670
1.1669
1.1590
1.1442
1.1237
1.0991
1.0717
1.0430
1.0145
0.9875
0.9632

0.0000
0.0002
0.0005
0.0053
0.0184
0.0481
0.1046
0.2316
0.3802
0.5726
0.7942
1.0420
1.2685
1.4228
1.5653
1.6619
1.7032
1.6657
1.6343
1.5742

1.4676
1.3489
1.2165
1.1024
0.9851
0.8870
0.7948
0.7429
0.7052
0.6609
0.6465
0.6590
0.6703
0.7087
0.7578
0.8079
0.8792
0.9292
1.0085
1,0508
1.1122
1.1603
1.1911
1.2057
1.2211
1.1983
1.1860
1.1568
1.1230
1.0908
1.0542
1.0196
0.9907
0.9663
0.9404
0.9186

0.0000
0.0000
0.0016
0.0042
0.0231
0.0540
0.1423
0.2706
0.4405
0.6596
0.8962
1.1372
1.3420
1.5280
1.6605
1.7271
1.7411
1.7101
1.6221
1.5255

1.3976
1.2518
1.1330
1.0023
0.9369
0.8421
0.7634
0.7037
0.6647
0.6469
0.6495
0.6710
0.7087
0.7595
0.8197
0.8853
0.9526
1.0177
1.0773
1.1286
1.1695
1.1983
1.2145
1.2179
1.2093
1.1899
1.1614
1.1259
1.0859
1.0438
1.0019
0.9626
0.9277
0.8989
0.8774
0.8638

0.0000
0,0001
0.0009
0.0041
0.0232
0.0606
0.1395
0.2689
0.4795
0.7112
0.9630
1.2297
1.4533
1.6167
1.7187
1.7657
1.8047
1.7338
1.6451
1.4820

1.3461
1.1931
1.0450
0.9323
0.8023
0.7094
0.6514
0.6126
0.6030
0,6078
0.6352
0.6720
0.7140
0.7791
0.8473
0.9308
1.0023
1.0707
1.1407
1.2020
1 ~ 2420
1.2540
1.2484
1.2353
1,1947
1.1641
1.1267
1.0852
1.0422
1.0002
0.9613
0.9275
0.9002
0.8805
0.8689
0.8654
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TABLE VIII ( Continued).

R/p= 0.4910
Crystal phase

0.5260 0.5600 0.5890

7.412
7.515
7.617
7.719
7.821
7.924
8.026
8.128
8.230
8,333
8.435
8.537
8,639
8.742
8 ~ 844
8.946
9.048
9.150
9.253
9.355
9.457
9.559
9.662
9.764
9.866
9.968

10.071
10.173

0.9424
0.9259
0.9142
0,9073
0.9054
0.9080
0.9148
0.9251
0.9381
0.9532
0,9693
0.9857
1,0016
1.0163
1.0292
1.0398
1.0477
1,0529
1.0552
1,0547
1.0517
1.0465
1.0394
1.0310
1.0217
1.0120
1.0024
0.9934

0.9025
0.8924
0;8884
0.8901
0.8972
0.9089. 0,9243
0.9422
0.9618
0.9819
1.0014
1.0195
1.0353
1.0483
1.0580
1.0641
1.0666
1.0657
1.0616
1.0547
1.0455
1.0348
1.0230
1.0109
0.9991
0.9881
0.9785
0.9706

0.8585
0.8612
0.8713
0.8878
0.9094
0.9347
0,9621
0.9899
1.0166
1.0409
1.0616
1.0778
1.0888
1.0943
1.0944
1.0894

- 1.0797
1.0663
1.0500
1.0319
1.0130
0.9944
0.9772
0.9622
0.9500
0.9412
0.9360
0.9347

0.8696
0.8807
0.8976
0.9190
0.9433
0.9690
0.9945
1.0186
1.0399
1.0575
1.0707
1.0791
1.0824
1.0810
1.0752
1.0657
1.0531
1.0385
1.0227
1.0068
0.9915
0.9778
0.9662
0.9573
0.9513
0.9484
0.9486
0.9516
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