
PHYSICAL REVIEW 8 VOLUME 24, NUMBER 2

Cluster approach to the extended Hubbard model
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The eigenvalue problem of the two-site and three-site extended Hubbard Hamiltonian, which contains the intra-
atomic repulsion U, the nearest-neighbor repulsion V, the isotropic exchange J, the anisotropic exchange J', the
hopping term t, the semihopping term S, and the double hopping term D, has been solved exactly and the grand
partition function is obtained. The magnetic and thermodynamic quantities such as the magnetic susceptibility and
the specific heat are calculated for arbitrary electron density. Several features believed to have wider validity have
been deduced from this cluster model.

I. INTRODUCTION

A cluster-type approach to the narrow-band Hub-
bard model" has been suggested by several au-
thors. ' In thse cluster approaches, the eigenval-
ue problem of a finite number of sites is treated
exactly. The grand partition function can then be
obtained and the magnetic and thermodynamic
properties calculated accordingly. In most cases,
only the effects of the hopping term t and the intra-
site correlation term U in the half-filled model
have been considered. Chen and Cheng' have ex-
tended the calculation to arbitrary electron densi-
ties and included the effect of the direct intersite
Coulomb repulsion term. Shiba' has shown that,
for the simple Hubbard model with only U and t,
as the size of the cluster increases the specific-
heat curve remains qualitatively the same agree-
ing with the result of self-consistent approxima-
tion. ' Chui and Bray" have developed a computer
renormalization-group calculation on the one-di-
mensional finite chain, and the 2k~ and 4k~ corre-
lation functions for the cluster model were calcu-
lated.

In this investigation we include in the cluster
'

model all the interaction terms" which were neg-
lected by Hubbard in his original work. ' Among
these interaction. terms all assigned reasonable
numerical magnitude'; the most significant one
is the intersite isotropic exchange term J, espe-
cially concerning the magnetic properties of the
system. That this is so will be borne out in the
calculation of the magnetic and thermodynamic

quantities in the cluster model.
In Secs. II and III we solve the two-site extended

Hubbard model analytically and the three-site mod-
el numerically for arbitrary electron densities.
The magnetic and thermodynamic quantities are
computed and discussed in Sec. IV. A brief con-
clusion including the general features of the re-
sults of the cluster model that we believe to be
valid for the actual many-body system is given in
Sec. V.

II. TWO-SITE MODEL

The one-band Hubbard Hamiltonian in Wannier
representation is usually written in the form

H = t Q Ct, C), + U Q n, tn, t, . (l)

where (ij) indicates sum over nearest neighbor
only, C,, creates an electron in the Wannier state
centered about the lattice site i with spin o, and
g,,=C~,C, . U is the intra-atomic Coulomb inter-
action (correlation) and t is the transfer integral
(hopping energy). For the two-site model we con-
sider two particular neighboring sites and allow
the number of electrons to vary in this two-site
cluster by introducing a chemical potential p, into
the Hamiltonian. Therefore, the information of
interaction between the cluster and the rest of the
system is also included in the chemical potential.

The extended Hubbard Hamiltonian of the two-site
system in the two-site system in the presence of
a uniform magnetic field & is

H„=t g (C~,C2, +C2,C„)+U P n, tn„-t + Vn, n~+&(n, t -n, t)(n, t -n, t)

+J (Ctt C t CttC t+ CttC tCttC t) D(C+ttC tCtitC2t+Ct2tC Ct2tC t)

+S g [C~t,C„(n, ,+n, )+Ca~,C„(n, ,+n, , )] —y& Z (n, t -nt) —tj. g g n,.„
0 f=l, 2 1=1,2 g
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where V is the direct Coulomb interaction (inter-
site repulsion), J is the isotropic exchange inter-
action, J' is the anisotropic exchange interaction,
D is the double hopping term, S is the semihopping
term, and y is the magnetic moment of the elec-
tron.

The eigenvalue problem of Eq. (2) can be solved
exactly. There ar e 16 nondegenerate eigenvalues
and eigenstates, all listed in the Appendix. From
the known eigenvalues the grand partition function
Q can be written down immediately. The chemical
potential l& can then be determined via Q in the
usual manner If 2.f=n denotes the average num-
ber of particles per site, the chemical potential p,

can be calculated from the equation

e4(&f4 (I 4f) E (&(2 V+4-V &

+e~" (3 —4f) e " '"'coshP(t+2S)

+&e' " (I —2f)+e '(I —4f) coshPt -f=0

where
& [2E-(&(X+V&+E-(&(U D& e-(&(-V-J'-Z'&+

( (&EP 8E )-)-
(4)

in terms of f, T, and the interaction parameters.
The magnetic susceptibility & and the specific

heat C„also follow immediately from knowledge
of Q and p, . These quantities for different values
of f will be computed and discussed in Sec. IV. In
the limit of the narrow band, the parameter Uis
much larger than the other coupling parameter t,
4, O', V, S, D. The spectrum of the two-site
cluster can then be roughly divided into three
groups of levels, the spacing between successive
groups are of order U while the spacing between
levels within the same group are of order t'/U.
In particular, atf =2 and with only U, t present
we find that among the six eigenvalues, the ground
state

I g») has minimal IS, I
and an eigenvalue &&0

approximately t'/U below zero [Appendix, Eq. (3)].
The first excited level is degenerate; there are
three states Ip(&), I(2), and Ig»), some of which,
e.g ~ Ig(&) and

I p») have maximal Is. l
and they all

are located at energies -0. These two levels will
interchange with each other if we introduce a neg-
ative 4 of appropriate magnitude. The highest ex-
cited states are

I g,) and I((&2); their energies are
approximately of the order of U above zero. The
nature of such a spectrum mill manifest itself in
the thermal and magnetic properties of the sys-
tem.

III. THREE-SITE MODEL

In order to judge the result of the two-site mod-
el, we now enlarge the cluster and consider the
three-site model. Magnetic and thermodynamic

quantities mill be calculated again and compared
with those of the two-site model.

The Hamiltonian of the three-site model in a
linear chain structure including only the nearest-
neighboring interaction is similar in nature to Eq.
(2), except for the inclusion of the third site.

There are 4'=64 eigenvalues and eigenvectors
corresponding to the fact that there are four states
per site. Since the Hamiltonian is isotropic in spin
space, the total spin S and its g component S, are
good quantum numbers. The 64 & 64 Hamiltonian
matrix can thus be reduced into block form: 28
eigenvalues can be obtained analytically. The rest
can also be reduced into four 9 x 9 matrices, two
of which are identical and these three 9 && 9 ma-
trices have been diagonalized numerically.

In order to investigate the effect of the different
boundary conditions on the clusters, we have also
considered the three-site model in ring geometry.
The Hamiltonian matrix exhibits more symmetry
than that for the linear chain, and the eigenvalues
and eigenstates are also different.

All these eigenvalues and eigenstates for both
types of boundary condition have been obtained ex-
plicitly" but will not be listed in its totality here.
They will be used to calculate the thermal and
magnetic quantities in See. IV.

By analyzing the eigenvalues and eigenvectors of
the three-site models, we find similar features as
those in the two-site model. Numerically it is
found that the ground state is usually the state with

S.l. The state with maximum IS I
can

become the ground state if we introduce a suffi-
ciently negative isotropic exchange interaction ~.
We also find both analytically and numerically, for
V= 0, the one-particle states and the five-particle
states have the same excitation spectra, except
for a constant of shift of 2U; so do the two- and
four-particle states, except for a shift of U. How-
ever, for V~O, this feature is lost for the linear
model simply due to the fact that a particle at the
central site interacts via V differently than a par-
ticle at an end site with its neighbors. In the case
of ring geometry, because of the cyclic symmetry,
the above-mentioned feature is recovered even for
V& 0. The shift of the spectrum of the five-particle
states relative to that of the one-particle state is
now 2U+ 8V; the shift of the four-particle spec-
trum relative to the two-particle spectrum is U
+4V. These are the amount of energy increase
when we put two or four particles in the states with
two or one particle already present, respectively.

There is another significant feature about the ex-
citation spectrum at f=2. From the numerical cal-
culation, we find that the twenty eigenstates for the
half-filled case are divided into two groups. There
is an energy spacing of the order of several f'/U
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FIG. 4. Magnetic susceptibility curves of the two-site model for the case of. integral and nonintegral occupation
numbers.

and the peaked natures of the susceptibility asso-
ciated individually with these two types of states.
We find that this kind of phenomena will occur for
f close to 3 in the three-site model. The effects
of the other parameters are quantitatively small
if we keep their values in. the same order as t and
will not be discussed further.

The specific-heat curve can. be interpreted in the

same manner. jn Fig. 5 we find that in both the
two-site and the three-site models for f= ~, the
specific-heat curves are very similar to each
other qualitatively. They both have a low-temper-
ature and a high-temperature peak. The width and
the height of the peaks depend on the ratio of U to
t. These two peaks can be adequately explained by
the two distinct energy spacings in the excitation

LA

O

U = 0.17eV
t = 0.02leV
I= I/2

(i) two-site model

(ii) three-site model
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FIG. 5. Specific-heat curves of both the two-site and three-site models for half-filled case with only U, t present.
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spectra for the half-filled case. Therefore, this
feature remains valid even when the cluster gets
larger. This is different from the explanation of
Shiba and Pincus. " They interpreted the low-tem-
perature peak as arising from the antiferromagnet-
ic short-range order and the high-temperature
peak from the metal-insulator transition. . As we
include more interaction parameters, we find that
the only parameter that changes the result qualita-
tively is the isotropic exchange J. If J is negative,
the specific-heat curve has qualitative changes due
to the rearrangement of the eigenvalues mentioned
above (Fig. 6). But if J is positive, the energy
spectrum is just shifted upward with no qualitative
modification, leading only to quantitative changes
in the thermodynamic quantities. The effects of
other parameters are not very significant as long
as they remain the same order of magnitude as t.

We have studied the non-half-filled case in the
three-site model, say f=a (or f= ~) (Fig. 7). We
find that there are also two peaks on the specific-
heat curves. This phenomena can also be ex-
plained by inspecting the eigenvalue spectrum. In
the case when only U and t are present, the ar-
rangement of the eigenvalues is more or less the
same as that of the half-filled case. A group of
states center around zero with energy with ap-
proximately t'/U, the other group of states are
located above zero with energy gap of the order of
U. The ground state is again the antiparallel-spin
states; the parallel-spin states are located exactly
at zero. Therefore, the excitation spectrum and

the specific heat can change significantly only when
we introduce a negative 4.

The nonintegral occupation number cases are
also studied. In Fig. 8 we plot the specific-heat
curves of the two-site and the three-site model for
f=0.345. We find that the curves are not quite
alike. Thus is because in the two-site model the
contribution would primarily be f rom the one-par-
ticle states while in the three-site model it would
primarily be from the two-particle states. Since
the nature of the spectra for them are qualitatively
different, therefore, we expect the specific-heat
curves to be rather different. This shows that for
f not close to —,

' the cluster may not give a reliable
description of the thermal properties of the actual
many-body system.

V. CQNCI. USION

%e have solved the two-site and the three-site
extended Hubbard narrow-band model with all the
nearest-neighbor interactions exactly. From ana-
lyzing the eigenvalues and eigenvectors, several
interesting general features are worth noting.
First, the ground state is usually the minimal

~
S,

~

configuration unless a ferromagnetic isotropic ex-
change interaction J is introduced. This minimal
(8,

~
configuration usually includes an admixture

of states in which some sites are doubly occupied
with antiparallel spins in order to take advantage
of the off-diagonal t transitions among the appro-
priately phased singly occupied and doubly occu-
pied states. As the cluster becomes larger, the

0) ~
O

C3

200 400 600
TEMPERATURE { K }

800 l000

FIG. 6. Specific-heat curves of both the two-site and three-site models for the half-filled case with V, t, and J
present.



COMMENTS

O

three -site model

U= O. I7eV
t = 0.02I eV

f = I/3 (or 2/3)

(i) J=O
(ii) J =-O.OI7eV

PO0
z

LLJ 0
V)

I

200 400 600
TEMPERATURE ( K )

800 IOOO

FIG. .7. Specific-heat curves of the three-site model for the case f=3 .

off-diagonal effect may be even more dominant in
the determination of the ground state as long as U

remains finite simply because the number of such
transitions increases faster than. the number of
diagonal U terms. Second, the excitation spectra
of the states corresponding to occupation number

f are always similar to those with occupation num-
ber 1-f, that is, the excitation spectrum is sym-

metric with respect to f= —,', provided that the
semihopping term ~ is not included. This leads to
the consequence that the chemical potential of a
general cluster model with ring geometry is a con-
stant U/2+2V. Also, the magnetic and the therm-
odynamic quantities are symmetric with respect
to f= ,'. Third, th-e excitation spectra of the clust-
er models at f= 2 are qualitatively similar. For

O

U = O.I7eV
t = 0.02leV
f =0.345

(i) two-site model
(ii) three- site model
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FIG. 8. Specific-heat curves of the two-site and three-site models for f= 0.345 with only p, t present.
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the two- and three-site models, they arrange
themselves into two groups. One group is closely
spaced within a width of order of several t'/U, the
other group is separated by a gap of order U. This
leads to the specific-heat curves with the low-tem-
perature and high-temperature peaks on the curves
corresponding to those two energy spacings. The
magnetic susceptibility in the case of reasonable
value of 4&0 is essentially of the Curie form,
monotonically decreasing as temperature in-
creases. This is to be contrasted with the result
of Ref. 8 with the presence of only U, P, and 7,
which shows that the Curie form is obtained only
by assuming an unphysically large V. The pres-
ence of a positive J does. not alter the qualitative
features of the specific heat, but a negative ~ does
because the levels of the excitation spectrum are
then rearranged. But these cluster models will
not be valid for occupation numbers far away from

f= & because of the qualitative difference in the re-
sult shown by the different small clusters. Other
features of the magnetic susceptibility which va-
ries according to even or odd sites in the cluster
are also pointed out.

In subsequent calculations, the mean-field ap-
proximation. will be applied to the cluster model.
By using the Hartree-Fock approximation, a self-
consistency condition is obtained by assuming the
thermal average' of the spin-deviation operator of
the cluster to be equal to that of the surrounding
sites. Equations governing the relationship be-
tween the interaction parameters and the transi-
tion temperature will be found. We find that both
the ferromagnetic and the antiferromagnetic tran-
sition temperature increases as I&I and U in-
crease, but they decrease as t increases. These
mean-field cluster results will be presented as a
sequel to the present work.

APPENDIX

The eigenvalues and eigenstates of the two-site model are listed as follows. (The representation that

I
ll)

I
10) means that in the left site both spin states are occupied by one electron and on the right site, the

spin-up state is occupied while the spin-down state is empty. )

(i) Zero-particle state:

E,=o, l~,&= Ioo&loo&.

(ii) One-particle states:

1
(I lo&

I
00&+

I

00&
I
10&)

1
10& I00&

1
='+~ -& l~ &=

2 (I10&100&+ loo& I01)),

1

2 (101& Ioo& —Ioo& Iol&).

(2)

(iii) Two-particle states:

E = +l -»E-'u
I
"&=l10)I10),

1
E, = U -D —2p,

I
4,&

= (
I
11)

I
00) -

I
00)

I

11)),

1

2 (llo) —lol) —lol) llo)),
(2)

1
E,=E, —2p, I4',)= [2(t+S)I11&

I
00) —(U+D -E.)l 10)

I
01) —(U+D E.)I 01)

I
10)+ 2(t+-S)l 00)

I
11)],

1E„=E - 2 A,
I
4'») = ,

~
[2(t+ S)

I
11)

I
00) - (U+ D -E )

I
10)

I
01)- (U+ D -E )

I
01)

I
10)+ 2(t+ S )

I
00)

I

11)],

E-=~+~+»E-» I~»&=
I
"&

I
"&.
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(iv} Three-particle states:

1
E, =(t+2s)+U+ v -yB — tu,

I
4„&= (I ) I10)—I10)

I )),

1
E =-(t+ 2S)+U+ 2V+'YB -3P, I+, )=

2 (Ill) I

10)-
I
10)

I
11)),

1
E14= «+ 2s)+U+ 2v+» -», I~,4&

= 2- (I11&
I
o1&+ I1o& I11&),

1E„=-(8+2S)+U+ 2V+'YB -34 I+ ) 2 (I11)
I
01) —

I
01)

I
11)),

(v) Four-particle state:

E, = 2U+ 4V -4g,
I
4,8) =

I
11)

I
ll),

where

E„=a((U+D+ V -j+J')+ [(U+D —V+j—j')'+ 16(t+S)']~'],

E = ~{(U+D+ V —j+j') —[(U+D -V+j-j')2+ 16(t+S)']~'},

N, = 2[8(t+ S)'+ (U+D —V+ j-j')(U+D -E,)],
N = 2[8(t+S)2+ (U+D -V+j-j')(U+D -E )].

(4)

(6)
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