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Comments on the scaling theory of localization and conduction in disordered systems
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A simple demonstration of the Thouless scaling picture for the conductivity of noninteracting electrons in a
disordered potential is presented. This picture, in the one-dimensional case, is shown to be equivalent to the
formulation of Landauer. Possible modifications in the numerical procedures which have been used for effecting the
scaling transformation are indicated. The dependence of the conductivity dividing the metallic and nonmetallic

regimes on the microscopic length scale is obtained and shown to be in agreement with experiments on granular
metals and with theoretical arguments by Adkins and Abeles and Sheng.

I. INTRODUCTION

The scaling theory'-' of localization" and con-
duction in disordered systems has gone recently
through theoretical advances and numerical""'"
investigations. However, in the delicate limiting
case of two dimensions (2D) the latter results ap-
pear to not agree fully with the picture obtained
from general simple scaling arguments. Experi-
ments" "on conduction in disordered thin wires
and films are roughly consistent with the theoreti-
cal picture when inelastic scattering effects are
taken into account. '" On the other hand, the elec-
tron-electron interaction effects""-" may well
be relevant and, in fact, lead to predictions that
are also consistent with experiments. . It has been
suggested" that localization-related ideas may be
relevant to explaining the unusual conduction prop-
erties of 3D amorphous and granular" metals.
Very early, I andauer" suggested an interesting
picture of conduction in disordered 1D (one-dim-
ensional) systems, relating the conductance to the
quantum-mechanical transmission through the
system and obtaining the exponential increase of
resistance in 1D. This picture was recently gen-
eralized and used to construct a novel scaling the-
ory for 1D conduction in Ref. 7, remedying the
delicate problem" of the anomalous distribution
of conductances and resistances in 1D.

In this Comment, we first present in Sec. II a
simple demonstration of the Thouless scaling the-
ory for conductance in a degenerate noninteracting
electron gas in a disordered potential. This con-
centrates on the lifetime, ~~, of an electron in one
block. The lifetime z~, which is easily calculable"
for large blocks using the Fermi golden rule, im-
mediately yields the interblock conductance and a
definition of the appropriate coupling constant (or
"Thouless number") which is somewhat different
from the one which has been used. This indicates
some possible modifications in the numerical pro-
cedure for effecting the scaling renormalization-

group (RG) transformation. For weak interblock
tunneling, ~~ is easily related to the interblock
transmission coeff icient. This correspondence
and a scaling argument yielding the full equivalence
to the Landauer" result for strong transmission
in one dimension is presented in Sec. III. Diffi-
culties" in defining the conductivity and diffusion
coefficient" for high transmission are shown to
be properly handled by the above procedure. Fin-
ally, the scaling picture is applied to estimate the
resistivity p separating the metallic from the
nonmetallic regime in granular metals. The
estimates for p and its grain-size dependence
are different from those obtained from a simple
Yoffe-Regel criterion"" but agree both with ex-
periment and with the result of qualitative physi-
cal arguments by Adkins" and Abeles. "

II. A DERIVATION OF THE TQOULESS SCALING
PICTURE OF CONDUCTANCE IN A DISORDERED

SYSTEM

Consider the macroscopic system to be divided
into equal blocks of cubical shapes (in d dimen-
sions) having a linear size L. L is taken to be
larger enough in size than the microscopic length,
a, so that the density of states at the Fermi ener-
gy Nz(& = &z) is large. This includes the case
where L is on the order of the appropriate cor-
relation length, which is the case of interest. The
typical energy-level separation' at the Fermi sur-
face

W~ = 1/N g(f ~) )

is thus, taken to be small. How small go~ has to
be will become clear below. w~ also represents
the order of magnitude of the mismatch in energy
levels q, and q~ of neighboring blocks at q . These
states ~i) and

~
j) are connected by a matrix ele-

ment v,-&. In the usual microscopic Anderson mod-
el' with one state per site, v, , is the typical ma-
trix element "V". In our case, however, there
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are many states in adjacent blocks that can inter-
act. In fact, for large L these states form aquasi-
continuum, which is what we shall assume. The
transition probability per unit time, or the inverse
lifetime 7 ~ of an electron against going from the
block i to a neighboring block j is given by the
Fermi golden rule":

where lv'
l

is an appropriate average of lv, , l'.
The condition for using (2) is that L be large
enough so that the time w,.„beyond which the trans-
ition probability increases linearly with the time
is much smaller than the time 7,„limiting the
validity of the first-order perturbation theory,
i.e., 7 «w, „.To estimate 7,„, we note that
two conditions must be satisfied to ensure the val-
idity of the golden rule. The depletion of the
ground state must be small, so that ~,„~ ~~ and
the number of final states that are significantly
populated after a time ~,„should be larger than
unity. The latter condition leads to Nj(r ~) ~ 1.
Thus T,„is given by the smaller of 7'~ and& jm~.
On the other hand, 7 . is usually given by the in-
verse of the bandwidth or the Fermi energy. To
obtain" the interblock conductance, G~, we note
that if a small voltage V is applied between the
blocks, eViV, (q~) states in the ith block would de-
cay into the block j, each with a lifetime v~. The
interblock conductance is thus given by

procedure for numerically effecting the scaling
transformation by computing the scaling of
lv'~ l/gv~. In general, this procedure might not be

equivalent to the one used in Hefs. 10 and 11 where

lv, , l
has been used as an interblock coupling para-

meter. Qn the other hand, rough arguments can
be constructed in lowest-order perturbation theory
to indicate that h/7~ is indeed of the same order
of magnitude as the shift in the energy levels,
AE„of a given block due to its coupling to a neigh-
boring one. A similar boundary condition shift,
4E,', has been used by Thouless and co-workers' '
in Ref. 10. From the results of Ref. 10, it appears
that &E,/zv scales differently from lvl/m. Since
lv '/m gives g directly and is related to EE„our

point here is that it is a good candidate for use in
further systematical numer ical studies.

III. THE EQUIVAI. ANCE OF LANDAUER'S
PICTURE IN ONE DIMENSION

As early as in 1960 and 1969, Landauer" dem-
onstrated the general result that the conductance
through any one-dimensional system is given by

(6)

where t and ~ are, respectively, the transmission
and the reflection coefficients (t+r= 1) of the given
system imagined as linking two ideal electrodes.
This has been generalized to many channels by
Anderson ef; gl. ' For weak coupling through the
system, t«1, &=1, this will reduce to

g= t (t «1). (7)

where the validity of the golden rule was assumed
to get the second equality. Equation (3) is the
well known formula for the conductance of a tunnel
junction. " The dimensionless conductance" g~
—= G~/(e'/nh) is thus. given by

(4)

as defined by Thouless" and used by Abrahams
eg al. ' In terms of g~ we find

Let us first show that the formulation which con-
centrates [Eq. (4)j on the lifetime 7 ~ is indeed
equivalent to Eq. (7) for weak coupling. The
strong-coupling case will be treated later. Here
we consider in the simplest one-dimensional case"
a single block of size L connecting two ideal elec-
trodes, each being also of the same size. The
conductance of this arrangement must be equal
to g~. The electron wave packet spends a time
2L/v~ for traversing each electrode back and
forth and it hits the barrier vv/2L times per unit
time. For a small transmission probability p, it
takes, on the average, g

' trials to cross the bar-
rier. " Thus, the characteristic lifetime against
cross ing the inter vening block, or barrier, is

It follows that for a block of N atoms, the validity
of the golden rule at an intermediate time range
requires N+& 1 for g~«1 and N+&g~ for g~ «1.
From Eq. (4), g~ is indeed found to be given by
the ratio of the two energies vh/w~ and go~. How-
ever, 7' is related to the inverse of the typical
energy lv~ l

jar~, not to lv, ~l. This suggests a

(8)

Using Eqs. (4), (8), and N(e~) =2L/(wkv„), weobtain
Eq. (7). We note that for t which is not very small,
i,andauer's result (6) replaces the weak coupling
t in Eq. (7) by t /(1 —t). This looks like a possible
result of summing to all orders in t. It is difficult
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lnt„= n ln

Let us nom choose n to be so large that lnt„= C,
where C is a negative constant whose absolute val-
ue is of the order of unity, say C = -1 (1/e of the
total transmission):

n= C/lnt, =O(1)/z, .
I

The conductance of the system of n blocks is, us-
ing the weak-coupling rough approximation, with
f„=exp(lnt„),

g„= t„=exp(-C) . (12)

If n is not too large (the demarcation range is pre-
cisely the localization range, in this case), Ohm's
law is valid and

g„=g, /n

o i) o(i)f,
g, =ng„=

1

(13)

which is Eq. (6) up to a constant of order unity.
This is, of course, equivalent to the observation
that the scaling theory' built on Eq. (6) yields the
correct Ohm's-law addition of resistances in ser-
ies, for small resistances. Note that this pro-
cedure also can be regarded as settling a question
of principle. For a single junction with t, —1 be-
tween tmo ideal electrodes, one may argue that the
meaning of the appropriate diffusion coefficient and

to generalize the argument leading to (8) to a finite
However, we shall now present a rough, simple

scaling-type argument for replacing t by t/(1 —t)
for t close to unity.

We take a single block of size J, the transmis-
sion through which t, is very strong,

z, =(1 —t, ) « i.
Let us try to couple ri such blocks in series, so
that the total transmission coefficient, t„, is
small and we can use (7). A key observation here
is that the wave aspects of the problem should be
lost if the phases g, ~ picked up by the wave travel-
ing between the obstacles are random, span many
intervals of 2z, and can be averaged upon. ' That
this observation must be true should, in fact, be
clear for any classical situation of light passing
through two absorbers where the interference ef-
fects are destroyed by random dephasing. Ander-
son et a/. ,

' in fact, proved that this follows from
the expression derived by Landauer" for trans-
mission of an electron through tmo absorbers when
the phase in between them is random enough. They
based a new scaling theory of d = 1 conduction on
this fundamental property. According to the above,
once the distance across which the phase is ran-
domized is much less than L, it follows that

conductance is not obvious. The whole system is,
by definition, effectively shorter than a mean free
path and the electron motion through it is almost
"ballistic. "' Equation (13) can be viewed as an
operational definition of g„designed such that by
connecting n g, 's in series, one will obtain the
correct g„.

IV. APPLICATION OF THE SCALING THEORY
TO GRANULAR METALS. THE DEPENDENCE
OF THE CONDUCTIVITY SEPARATING THE

METALLIC FROM THE NONMETALLIC
REGIMES ON GRAIN SIZE

In Ref. 19, it was suggested that the scaling the-
ory of localization may be relevant to explaining
the conductivity of highly disordered metals. A

case of interest here is granular metals" where
metallic grains with typical diameters, d, ranging
from a few to ten thousand atomic spacings are
separated by insulating barriers. When the norm-
al-state resistivity, p, of such a material in-
creases above a characteristic value p, the be-
havior of the material becomes semiconducting
(i.e. , p decreases with temperature). For an
average grain size of a few hundred A, p is typi-
cally on the order of 10 ' 0 cm and it increases
with d. The above value of p corresponds to an
effective mean free path of / - 10-' A «a & d, and
the increase of p with d would amount to a de-
crease of the corresponding mean free path. Both
of these facts would not agree with a minimum
metallic conductivity based on the Yoffe-Regel' cri-
terione 24 with either l-a or l -d. On the other
hand, the scaling theory mould predict that p is
determined by an intergrain conductance on the
order of e'/K According to this, one obtains in
3D:

(15)

in units of Q cm, which agrees with both the order
of magnitude and grain-size dependence of p . In
fact, Adkins ' and Abeles and Sheng have obtained
Eq. (15) from different qualitative physical argu-
ments and found it to be in good agreement mith
experiment. The appropriate estimate in 2D films
would also roughly agree with experiments. '~'"

In conclusion, our remarks in this note further
substantiate the scaling theory of localization""
and its equivalence to the Landauer picture. The
predictions of this theory with respect to p in
granular metals are consistent with experiment,
without the necessity of taking into account elec-
tron-electron interactions. The latter interaction,
as well as the electron-lattice one are certainly
relevant. It mould be extremely useful if describ-
ing such interactions with an inelastic mean free
path that determines the length scale, as sug-
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gested by Thouless' (see also Ref. 15), would yield
a qualitatively correct picture of conduction in
highly disordered and granular metals.
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