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Dielectric screening theory in the local-density-functional formalism.
Application to silicon using Slater exchange
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The expression for the dielectric matrix, in the local-density-functional formalism, is
evaluated for silicon using self-consistent pseudopotential electron energies and wave func-
tions with the Slater exchange-correlation functional. The influence of the local-field effects
as well as of the exchange-correlation correction is discussed. The long-wavelength limit of
the exchange-correlation correction is determined and compared with existing calculations.

On the basis of the Hohenberg-Kohn' theorem,
one can derive? an expression for the dielectric ma-
trix in the local-density-functional formalism:
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where E, [p] is the exchange-correlation energy of a

uniform electron gas of density p(T). The polariza-

bility matrix X is given by the well-known expres-
3

sion
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Although the density in most solids is not slowly
varying everywhere, the local density formalism was
quite successful in describing various electronic
properticz:s.4 However, not much attention has been
paid to linear-response theory consistent with the
one-electron equations used to describe the electron-
ic states. For semiconductors a number of calcula-
tions exist® which use the random-phase approxima-
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tion (RPA) (time-dependent Hartree)® form of the
dielectric function (or matrix) together with local
density or Hartree-Fock wave functions. Also a few
calculations on metals have been performed.® It is
obvious that Eq. (1) is reduced to the RPA case’ if
no exchange is taken into account, i.e., ¥, is put
equal to zero. Equation (1) is similar to an expres-
sion for the dielectric function of the uniform elec-
tron gas first given by Hubbard® to describe approx-
imately exchange and correlation effects:
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There are, however, two major differences. First,
because in the present treatment the perturbation is
static, there is no frequency dependence in our
G (q,0). Second, Eq. (1) is more general in the
sense that it includes lattice effects which result
from the fact that all quantities V., V, X , and € are
matrices.

The theory given above is applied to silicon. For
the exchange-correlation potential V. we take the
form given by Slater’
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Although in principle this approximation only takes
exchange effects into account, it is generally accept-
ed to be a good approximation for the exchange-
correlation ﬁpg}ential.‘* Using this functional the ma-
trix V,(q,G,G’) [Eq. (3)] is simplified to
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i.e., the matrix elements are independent of ¢ and
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are a function of the difference of the reciprocal-
lattice vectors G and G'.

The Kohn-Sham equation is solved self-
consistently using the pseudopotential scheme. First
an ionic potential of the Topp-Hopfield type is
chosen. The determination of its parameters is
described in Ref. 10. The total crystal pseudopoten-
tial is then expanded in a Fourier series, retaining
only a small number of Fourier components. The
rest of the computational procedure can be summa-
rized as follows:

(1) Start with an empirical pseudopotential (e.g.,
Cohen-Bergstresser).

(2) Diagonalize H and calculate p.

(3) Compute Vo, + Vg + Ve

(4) Go back to step 2 and compare the new
charge density with the old one. Repeat this step
until convergence is reached.

In the present case the convergence is rapid, i.e.,
after eight cycles the maximal relative difference of
the charge density is less than 10™%, In this calcula-
tion, 65 plane waves are treated exactly while an ad-
ditional 150 are used in the Lowdin-Brust scheme.!!
The wave functions and energies are subsequently
used in Egs. (5) and (8) to construct X and V,. The
calculation is performed for different values of the
wave vector q in the [100] direction. Results of
€(q,0,0) are shown in Fig. 1 both for the RPA
(Hartree) and the Slater case. It is seen from Fig. 1
that the effect of exchange correlation is an upward
shift of the dielectric function ranging from 0% (at
q = 0) to 28% (around the Brillouin-zone boun-
dary). The difference between the RPA and Slater
dielectric functions is displayed in Fig. 2. The value
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FIG. 1. Microscopic dielectric function of silicon in
the A direction. Full line: Slater exchange; broken line :
RPA. Horizontal axis in units of 27/a.

24 BRIEF REPORTS 1097

09

08

074

064

05

Ae (-ay 030)

04,
A\ Direction

03] Exchange effects

0.1

00 02. 04 06 08 10 1249
FIG. 2. Exchange effects in the microscopic dielectric
function of silicon in the A direction. Horizontal axis in
units of 27/a.

of €(q,0,0) at d = 0 is 12.1047 and should not be
compared with the experimental value of 12.0.'?
This is owing to the local-field effects which are
responsible for the matrix nature of the quantities in
Eq. (1). The macroscopic dielectric function ¢, is
given by’
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FIG. 3 Dielectric function of silicon in the A direc-
tion using Slater exchange. Full line: with local-field ef-
fects; broken line: without local-field effects. Horizontal
axis in units of 27/a.
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It is this quantity which should be compared with
the experimental values.

The dielectric matrix is calculated for the first
three stars, i.e., its dimension is 27. The macroscop-
ic dielectric function is determined using Eq. (9) and
is shown in Fig. 3 together with the microscopic
dielectric function. The value of the macroscopic
dielectric constant, including exchange effects, is
found to be 11.0702. The value of the RPA macro-
scopic dielectric constant is 11.2788. So the local-
field effects are 6.82% and 8.55%, respectively, in
the RPA and the Slater approximation. In the
theory of the free-electron gas it is customary to de-
fine'® a quantity ¥ via the relation
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The corresponding relation in the Slater linear-
response theory is
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For silicon a value of ¥ = 0.4603 is found.
Although the charge density in silicon is highly
nonuniform, it is interesting to note that the corre-
sponding value of ¥ for a uniform electron gas (with
density 7, = 2) in the Hartree-Fock approximation'*
is 0.25, while in the Hubbard approximation® one
finds 0.5.

In summary, in this paper the microscopic dielec-
tric matrix and the macroscopic dielectric function
of silicon is calculated using the Slater functional to-
gether with a self-consistent pseudopotential band
calculation. The influence of local-field effects and
of exchange-correlation effects is discussed. The
long-wavelength limit of the exchange-correlation
correction is also calculated.
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