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Decay of the k = 0 exciton mode at a finite trap concentration
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We study the decay of the k = 0 exciton mode in the presence of a finite concentration
of traps. It is assumed that the traps are distributed at random and that each trap can cou-

ple to a single donor. Particular attention is paid to the behavior of one- and two-

dimensional systems where algebraic decay was predicted on the basis of the average T-

matrix approximation (ATA), Using the coherent potential approximation (CPA), we find

that the ATA and CPA give similar results at all times in three-dimensional systems with a
low concentration of traps. In one- and two-dimensional systems the ATA and CPA agree
at short times, while at long times the CPA predicts exponential decay with a complex de-

cay rate. The variation of the decay rate with trap concentration is determined in the low-

concentration limit.

I. INTRODUCTION

In a recent paper' we studied the decay of the
fluorescence in a system where the transfer of exci-
tation between optically excited donor ions took
place coherently. It was assumed that there was a
small concentration of trapping centers (acceptors)
distributed at random. Transfer to the traps was a
one-way (on the time scale of interest) incoherent

process involving the emission of a phonori. The
configurational average of the probability amplitude
characterizing the decay of a eigenstate of the donor
array (a Frenkel exciton) was calculated treating the

trapping in the average T-matrix approximation
(ATA).

In the analysis of the decay of the uniform mode
(k = 0 exciton) in a donor array with translational

symmetry, anomalous behavior was obtained in one-

and two-dimensional systems. In contrast to three-
dimensional systems, where the asymptotic decay of
the probability amplitude was exponential, the pro-
bability amplitude in one and two dimensions de-

cayed as t ' and t ', respectively. The source of
these anomalies was traced to the singular behavior
of the unperturbed donor Green's function

g (E) = —'g(E —E-)
k

'in which E is the number of donors, E-„denotes
the energy of a donors. exciton with wave vector k,
and the sum is over the appropriate Brillouin zone.
In one and two dimensions go(E) diverges as

(E —Eo) 'r and ln(E —Eo), respectively. ~

The algebraic decay of the probability amplitude
at low dimensions is analogous to the algebraic de-

cay of the total number of excited donors in one-
and two-dimensional systems which was obtained
for the incoherent donor-donor transfer problem in

the ATA. ' Recently it was found that the number
of excited donors calculated in the coherent poten-
tial approximation (CPA) behaves quite differently
below three dimensions . The CPA results for the
number of excited donors agreed with the ATA at
short times. However, at long times there was a
crossover into exponential decay, analogous to three
dimensions. But unlike three dimensions the decay
rates were nonlinear functions of the trap concentra-
tion varying as cz (one dimension) and c~/~inc&

~

(two dimensions) in the limit as c„, the probability
of a donor site being associated with a trap, ~0.
Comparison with exact results, which are available
for a one-dimensional system with incoherent
donor-donor transfer and infinitely fast, zero-range
donor-trap transfer, indicates that the CPA result,
while not exact, is significantly better than that ob-
tained with the ATA.

Because of the probable superiority of the CPA
over the ATA it is worthwhile to apply the CPA
formalism to the trapping of excitation in systems
with coherent donor-donor transfer. This note is
the report of such an analysis. As in Ref'. 5 we

study a simplified model where it is assumed that
each trap interacts with a single donor. We also as-
sume near-neighbor donor-donor interactions so that
the (Frenkel) excitation energy takes the form
(A'= 1)
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ik r,"
Ek = Jy'e

J
(1.2) Gp(E) = —y[E +Xcpp, (E) —Ek] ' . (2.3)

1

k

where the sum on j is over the z nearest neighbors
of site i.

In the ATA the configurational average of the
probability amplitude of the k = 0 mode, (R 0(t) )„
takes the form

With the distribution (2.2) Eq. (2.1) reduces to

XcpA 2 I Q + t) [—(Q + i) )' —4tc~rQ]'" I

(2.4)

where
(Rp(t)), =

2'

X defoe '"' co+i e —Ep

Q = I/Gp(E)

When cq «1 Eq. (2.4) becomes

(2.5)

+ X~TA(tp+ 'e)]

(1.3)

lcg P
1+ iyG0(E)

(2.6)

where the self-energy in the ATA is given by

leg f
XwTA(E) =

1 + imp(E)
(1.4)

The development of the CPA for the coherent
transfer problem proceeds in a manner analogous to
the formulation of the CPA for incoherent donor-
donor transfer. ' In place of XATA in (1.3) we have

LcpA, where Lcp& is a solution to the equation

dy P (1')[t'f' —Xcpa(E) ]
1 + [iy —XcpA(E) ]Gp(E)

(2.1)

Here P(y) is the probability distribution for the ran-

dom variable y characterizing the donor-trap
transfer. For the model under consideration we
have

P(y) = c„5(y—y) + (1 —c~)5(y) (2.2)

The Green's function appearing in Eq. (2. 1) is given

by an expression similar to (1.1)

with y denoting the (single) donor-trap transfer
rate. In Sec. II we indicate how (R p(t) ), is modi-

fied when the CPA self-energy is used in place of
X~TVE).

II. CPA

A. General formulation

which is equivalent to (1.4) with gp replaced by Gp.
In the opposite limit, cz ——1, we have

XcpA(E) = &)' (2.7)

which is to be expected since in this limit all donors
have traps associated with them. Under these con-
ditions donor-donor transfer has no influence on the
rate of transfer to traps.

Our primary interest in this paper is in the
asymptotic behavior of (Rp(t)), when c„&& 1. In
the case of three-dimensional arrays, where gp(Ep)
is finite, it is sufHcient to approximate Xcp~(E) by
X~Tp(Ep) in determining the asymptotic behavior.
We obtain the result'

(2.8)

valid when cz ~& 1.

B. One and two dimensions

In analyzing the asymptotic behavior of (R 0(t) ),
in one and two dimensions it is convenient to mea-
sure energies relative to Ep. Writing E = E —Ep
we approximate (Rp(t)), by expanding XcpA about

. Ep, viz.

(R (t)), = e ' e pI c„y g (E )t/[1+ y'g (E )]

—c~ 'Vt /[1 + pgp (Ep)]

(Rp(t)), = g —EEot dE e-'E'
e

E + XCPA(E + Ep)

I —iEot dEe
p

E + XCPA(EO) + XCPA (Ep)E (2.9)
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where XcpA (Ep) = dXcpA(Eo)ldEo Evaluating
the integral by closing the contour in the lower half
plane we obtain the result

(2.16) can be written

iycq
u(x) =

1 —iy ln[x + u (x)]
(2.17)

0 iXCPA(E0)t
(R 0(t) ),—, exp

1 + XcPA (EO} 1 + XcPA (Eo}

(2.10)

Separating u into real and imaginary parts we
find that Reu(0) [ = Re XcpA(0)/(32J)] is a solu-
tion to the equation

Note that in three dimensions we have

XcpA (Ep) = XATA (Eo) « 1 so that (2.10) reduces
to (2.8) for cq « l.

~ ~ 4In one dimension G p(E + Eo) is given by

Reu (0) = —cq/ln[Reu (0)]

whereas

ImXcpA(0)
Imu(0) =

(2.18)

G (E+ Ep) = j 2J' [E+XcpA(E0+E}l l

(2.1 1)

for E + XcpA(E + Ep) « J. Using (2.11) in (2.6)
we obtain the following equation for XcpA.

and

l Cg

y ln [Reu(0)]

du (0) dXcPA(EO}

dx dEo

(2.19)

XCPA(E + Eo}

lcg f
1 + (i y/2J'~ )[E + XcpA(E + Eo)]

Reu(0) ln [Reu(0)]

= —
t ln[Reu (0)] ] (2.20)

(2.12)

Solving (2.12) for XcpA(E0) and XcpA(Ep) we find

XcpA(E0) = 4' J + 32ic„J y
' + O(cz )

(2.13)

the last step following from (2.18). Since
Reu (0)~0 as cz ~0, du (0)/dx vanishes in the
same limit. Equations (2.10), (2.13), (2.14), and
(2.18}—(2.20) are the principal results of this sec-
tion. %e discuss their implications in Sec. III.

XcpA (Ep) = 1 + 0 (cg ) (2.14) III. DISCUSSION
Where 0 (cz ), etc. , means terms proportional to the
third and higher powers of cz.

In two dimensions we have

for E + XcpA(E + Ep) « J. The corresPonding
equation for XcpA becomes

XcpA«+ Eo}

~ 'Ycw

1 + (i y/4m J) ln I 32J /[E + XcpA(E + Eo)] I

After introducing the variables u = Xcp~/32J,
cq ——orcus/8, y = y/4irJ, and x = E/32J, Eq.

(2.16)

1Go«+ Eo) = »[ 32J/[E + XcpA(E + Eo)] j4mJ

(2.15)

In one and two dimensions when cz && 1 the
ATA and the CPA give comparable values of
(R p(t)), at short times. However, at long times
there is a qualitative difference in the results ob-
tain. ed with the two approximations. As is evident
froin a comparison of (1.4) and (2.6) the predictions
of the two theories will begin to differ when
G0(E + Ep) is no longer approximategl equal to
gp(E + Ep). This will haPPen when E = XcpA(0),
or equivalently, at a time on the order of
[ReXcpA(0)J '. Thus for 0 & t « [ReXcpA(0}J
the ATA and CPA will give similar results, whereas
for t » [ReXcpA(0)] ' the CPA is exPected to be
the superior approximation.

On the basis of the analysis in Sec. II, (R 0(t) ),
in one dimension is predicted to vary as

(Rp(t)), —( —, )e ' exp(2ic& Jt —16c&J y 't)

(3.1)
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Ep fr = 2J cos(k,tta) (3.2)

From (3.1) it is apparent that the interaction with
the traps leads to both a shift ( cc cz ) and a damping
( ~ c~) of the uniform mode. The origin of the shift,

AEo ———2' J, can be understood as follows. In
the strong trapping limit, y/J )) 1, the effect of
the traps is to "deplete" the probability density lead-
ing to an effective exciton wave function which has
modes at the locations of the traps. The energy of
such a state is approximately

place of (2.9) we have an inversion of a Laplace
transform

1f(t) = — . f dse"[s +XcPA(s)]
27Tl

(3.6)

where f(t) is the ratio of the number of donors ex-
cited at time t to the number excited at t = 0 (in

the absence of radiative decay). In the case of a
donor array with translational symmetry where each
trap interacts with a single donor, XcPA(s) in the
limit cz « 1 is given by an equation analogous to
(2.6) (Ref'. 5)

k,ffL, = m (3.3)

where L, is the average spacing between traps a /cz.
Thus from (3.3) we have

k,ff ——mcq/a

so that

(3.4)

where a is the lattice constant and k,ff is an effective
wave vector determined by the distance between
nodes. We take

'Vca
XcPA(s) I+)Gp(s) '

where the Green's function for the incoherent
transfer problem has the form

1
Go(s) = y[s + &cpA(s)

cV
k

+ W(0) —W(k)]-i

(3.7)

(3.8)

bE() ———J(k,tra)

= —m Jcg (3.5)

which is the same order of magnitude as the shift
shown in (3.1).

There is an analogous shift and damping in

higher dimensions as well. In three dimensions
both the shift and the damping are proportional to
cz [cf. Eq. (2.8)], whereas in two dimensions we ob-
tain linear behavior with logarithmic corrections [cf.
Eqs. (2.18) and (2.19)].

In many respects the decay of the uniform mode
resembles the decay of the total number of excited
donors in the incoherent transfer problem. In

Here W(k) denotes the Fourier transform of the
transfer rate between sites i and j:

W(k) = ge "WJ.
J

(3.9)

ACKNOWLEDGMENT

Research supported by the National Science
Foundation under Grant No. DMR-7904154.

In the CPA f (t) decays at a rate proportional to
cz when cz « 1, whereas in one and two dimen-
sions it decays as cz and cz/

~

inc&
~

.'
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