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Optimal hypernetted-chain (HNC) methods provide a useful approach to the study of the

liquid state of many-body systems. They give reasonable numerical results and yet many analyt-

ical manipulations may be made with them. Previously, the behavior of the energy functional in

an infinitesimal region of the optimal liquid correlation function was studied. This eigenvalue

analysis reliably characterized the droplet formation of liquid 4He at the spinodal point and indi-

cated the possibility of a solid phase at higher density. In this paper we examine He and the

charged-Bose gas for both infinitesimal and noninfinitesimal deviations from the liquid wave

function. We find that considerable information on the location and nature of the liquid-solid

phase transition may be obtained with very little effort from calculations on the liquid alone.
Constrained HNC calculations of a solid phase using nonspherically symmetric correlation func-

tion confirm the association between the behavior of the energy surface near the liquid phase

and the structure of the solid phase. The method is recommended for other systems; 4He and

the Coulomb gas are quite different, but it gives transitions in these systems.

I. INTRODUCTION

At zero temperature, some boson systems crystal-
lize while others remain liquid. Considerable effort
has been spent in trying to determine, from first
principles, the nature of the ground state for a given
system. The Monte Carlo solution of the many-body
Schrodinger equation is probably the most elegant ap-
proach and leads to numbers which may be compared
with experiment. ' Chief among other methods, the
Rayleigh-Ritz principle has been applied with a

number of interesting variations. One virtue of this
method is that, to varying degrees, certain aspects of
the calculation may be performed analytically.

For the liquid phase, many variational calculations
have been based on a Jastrow' ansatz for the wave
function. For the solid, one wishes to incorporate at
least some aspects of lattice structure in the wave
function, and this has usually been done by writing
the variational wave function as the product of two-

body correlation factors times a lattice wave function.
Koehler4 ' suggested a form for the lattice factor of
the wave function which is a generalization of a prod-
uct of Gaussians confining particles to lattice sites.
In the absence of explicit pair correlations, this wave
function allo~s calculations to be made in a straight-
forward fashion; the inclusion of pair correlations in
Jastrow form greatly complicates the calculation of
expectation values, These computations have been
performed in the past by Monte Carlo means, e.g. ,

Ref. 8, truncation of the cluster expansion at the
two-body level, Refs. 6, 9, and 10, or by the use of
integral equations to sum certain classes of cluster di-

agrams. "
The above approaches have all incorporated expli-

citly the crystal aspects of the wave function with the
use of single-particle wave functions or the correlated
lattice structure advocated by Koehler. Feenberg"
proposed that the explicit use of single-body wave
functions was unnecessary for describing solids. He
suggested that one could build up good solid wave
functions from products of pair, triplet, and higher
correlation functions. These would generate a solid
without either definite orientation or position.
Roughly speaking, the pair correlations keep particles
apart and the triplets produce a latticelike ordering
without referring to external axes. This basis puts
liquid and solid wave functions on a more equal foot-
ing.

Our own interests in the problem of crystallization
arise from detailed study of the liquid using a simple
Jastrow wave function and the hypernetted-chain
(HNC) approximation to the radial distribution func-
tion. The corresponding approximate energy func-
tional has some useful features. In addition to yield-

ing relatively reliable approximations to the energies
of quantum fluids, it also serves as a stable basis for
optimization. Variation of the approximate energy
functional leads to an Euler-Lagrange equation for the
distribution function' "which may be solved by one
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means' or another. " These solutions yield good es-
timates of the pressure and compressibility as a func-
tion of density. ' Furthermore, for only a little in-

vestment of effort beyond that made in computing
the optimal distribution function, one may gain rath-
er substantial returns,

In Ref. 19, we showed that for 4He, the stationary
solutions for the distribution function corresponded
to energy minima and linked the linear behavior of
the liquid structure function at small k to the positivi-
ty of the compressibility. From a determination of
the eigenvalue spectrum and eigenfunctions for small
deviations from the optimal distribution function, .we
observed interesting features of 4He at low densities
(near the spinodal point) and high (above the experi-
mental solidification density) densities. At low densi-

ty, one particular eigenvalue drops rapidly toward
zero at the spinodal point; its eigenfunction was seen
to correspond to puddling in the system. At high
density, a single nonspherically symmetric eigenfunc-
tion was observed to lie substantially below all other
eigenfunctions, and we speculated that this might be
a sign of incipient crystallizatiori. On the basis of this
observation, we were led to infer various features of
the solid from the behavior of the energy functional
at the liquid minimum.

The purpose of the present paper is to establish
that there is a basis for making these inferences and
to show to what degree these inferences are reliable.
We choose a variational wave function which allows a
smooth mapping of the energy surface from the
liquid minimum to a very crystalline structure. The
wave function used to describe the solid is in fact the
same as that for the liquid; however the correlation
function is no longer assumed to be spherically sym-
metric. No single-particle lattice wave function is in-

troduced. In spirit, this wave function is close to that
of Feenberg, ' but the relative spatial orderings are
now achieved with direction-dependent pair correla-
tion functions rather than with three-body correla-
tions. There are several advantages to this choice.
First, the variational wave function remains properly
symmetric as it ranges from liquid to solid phases.
Second, we can directly exploit our rather complete
knowledge of the behavior of the energy functional
in the liquid limit to direct the search with nonspheri-
cal correlation functions, Latticelike ordering may be
introduced without the complications which would
arise with three-body functions. Finally, the use of
the same form for both liquid and solid wave func-
tions enables us to say as much as possible about the
solid after doing only the liquid calculation.

In Sec. II, we review the behavior of the energy
functional near the liquid minimum. The example
discussed in this section is 4He, although similar re-
marks could be made for other systems since studied.
Section III investigates the most simple-minded path
in the energy surface and finds that for 4He, it only

II. OPTIMAL HNC FOR A LIQUID

Consider an infinite system of bosons of mass m

interacting via a two bo-dy potential V(r). With a
variational wave function of the Jastrow form

4= IIf("

the energy per particle may be expressed in the
Jackson-Feenberg' form as

—hE = —
l drg'r 'V + V(r)

~21„ f iP
4m g

for a real but not necessarily spherically symmetric f
In the HNC approximation, the radial distribution
function g ( r ) is related to the correlation function f
by

(S —1)'
ln —= —F

g pS
(3)

where F (y) denotes the Fourier transform of the
function y and the liquid structure function S ( k ) is

given by

S(k) =1+pF(g —1)

With this approximation, the energy functional may
be recast as

—h2
E[g( r ) j = —

I drg'r' 7'+ V2" m

—l~k2 (S —1)2
4mp

This functional, which does not assume spherical
symmetry for f, is the basis for the remainder of the
work to be described in this paper.

Previously, we found local minima of the energy
functional of Eq. (5) for liquid ~He at various densi-

goes upward. The method for producing a crystal-
linelike wave function which reduces to a low-

eigenvalue result for small deviations from the liquid
is presented in Sec. IV. The results of such a calcula-
tion are presented for 4He in Sec. V and for the
charged-Bose gas in Sec. VI. In Sec. VI, we also
mention the eigenvalue properties of the homework
potential. There remains for Sec. VII an assessment
of the usefulness of the eigenvalue and eigenvector
analysis and the limitations of the HNC energy func-
tional for solid energy calculations.
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ties. '9 The corresponding g (r) and S (k) are shown
in Fig. 1 at densities of p=0.018,0.030 A . Indica-
tions of instability are seen by examining the change
AE induced by small changes in g'/2(r). For small
perturbations, this study leads to a linear eigenvalue
equation, in which the positivity of all eigenvalues is
a guarantee of stability. The motion. of eigenvalues
and the form of eigenfunctions at the densities given
foreshadow changes in phase at more extreme densi-
ties ~here actual calculations are precluded by nu-

0
merical indelicacies. ' At a density of 0.030 A, the
structure of g(r) —I already extends out to about 50
A, where g(r) —1 =10 '. At somewhat higher den-
sities, the ringing structure in r (g —I ) observed in

Ref. 19 is expected to extend much further out.
While there seems to be no trouble, in principle, in
extending the HNC calculation to higher density, the
benefit to be gained from such solutions is incom-
mensurate with the effort which would be required to
obtain them. At lower density, a particular eigen-
value plummets toward zero. The corresponding
eigenfunction has k =0 and is associated with the
steep slope of S(k) for small k and the vanishing of
the compressibility at the spinodal point. At higher
density, a different eigenvalue moves discretely
below the continuum toward zero. Its eigenfunction
has a finite k related to the maximum in the liquid
structure function. Other manifestations of its pres-
ence are long-range oscillations in g(r) and an in-

crease in the peak value of S(k). In the next sec-
tion, we show that these features, although very sug-
gestive, will not lead to a lowering of the energy
without the inclusion of some crystalline structure.

III. SMALL DEVIATIONS FROM THE
OPTIMAL HNC SOLUTION

Around a liquid minimum, the energy may be ex-
panded as"

r

E[g] =E[go]+
2 p J Sg' 'KSg' 'dr

where

gg'/'= , (g —go)—g
' '

—t2k2(2So+ I ) (So —I ) 2

Py = '72+ V+F
m 4m pSp2

1

)g E
A2k2(S —I)

gp F

(6)

(7)

and the "e" in Eq. (7) denotes a convolution in-

tegral, and the term linear in 5g vanishes for an ex-
tremal function gp. For all physical systems studied,
the eigenvalues of the kernel E have been positive
and the corresponding energies are thus local mini-
rna. All infinitesimal variations Sg give higher ener-
gies, but some choices are more favorable than oth-
ers. We may quantify this by examining the soft
modes at the minimum, i.e., by studying the eigen-
values and eigenvectors of the kernel K. A set of
radial eigenvectors y~q may be found from the uncou-
pled equations

Kyik(r) YI (8 4) = &Ikyik(r) Yl. (e, ~)

'0 I I

4 6 8
k (I/]1)

IO

The YI are the usual spherical harmonics, and yik(r)
and A. y, are independent of m. For infinitesimal vari-
ations, the smallest change in energy for a given nor-
malization N,

N'= J dr(gg' ')'

occurs when Sg' is proportional to the lowest eigen-
function of E, and

AE = —pA. ;„W2 (10)

0
0

I

8 IO

Simple estimates of the eigenvalue spectrum may be
made when the I is sufficiently large that the potential
term V is essentially screened by the arigular momen-
tum barrier in Eq. (7). With this assumption, the yik

form a continuum with

FIG. 1. The liquid structure function S(k) and distribu-
0

tion function g (r) are shown for densities p =0.018 A
(broken curves) and p =0.030 A (solid curves).

A k2
ylk ii(«) Yi (~ 4) )a=-

ms'(k)

Given the linear behavior of S(k) for small k and
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the fact that S(k) approaches unity for large k, the
approximate continuum spectrum will have a
minimum at some k, will be doubly degenerate
above that, and will be independent of I at a given k.

Clearly, the condition for a given 5g' ' to be "soft"
is that it be a linear combination of the yik with k ap-
proximately equal to k . For "He at p=0.030 A ',
the approximate eigenvalue minimum occurs at
k =2.25 A ' with La=21.2 K. Although Eq. (11) is

strictly valid only in the large-/ limit, the calculated
continuum for 0 « l ~ 12 actually begins at
h. = (22.1+0.3) K. Equation (11) evidently provides
a good estimate of A.I for all I. The ad hoc extension
of Eq. (11) to small I is less reliable; since for small /,

jl(kr) does not look like the actual eigenfunction at
small r; the actual eigenfunction looks rather like

go in order to screen the potential.
In addition to the continuum eigenvalue spectrum,

there is a discrete eigenvalue in the I = 5, 6, and 7
channels. The t =6 eigenvalue falls farthest below
the continuum as the density increases; at p =0.030
0
A ', it is down to 80% of the continuum limit. The
corresponding eigenfunction y6 looks at large dis-
tances like an exponentially damped sinusoid with

period determined by k and damping related to the
distance below the continuum of the discrete eigen-
value and the curvature of the continuum spectrum
as a function of k at the minimum, This behavior is
familiar from bound-state wave functions, where the
corresponding quantities are the binding energy and
A'/m.

Extrapolation of this eigenvalue with density sug-
0

gested that it might vanish at p =0.050 A ', where
the energy would still be a minimum for spherically
symmetric changes in g(r) but not for nonspherically
symmetric changes. '9 Calculations of g(r) at densi-
ties above 0.030 A ' are very difficult and have not
been performed.

The combination of high density and nonspherical-
ly symmetric correlation functions suggests a liquid-
solid phase transition. Since low-temperature 4He is
known to crystallize into a close-packed (hcp) struc-
ture, it is natural to see whether the eigenfunction

y6 reflects this. However, the hcp structure does not
possess inversion symmetry, so an adequate 5g would
require admixtures of the 1=5 and I ='7 eigenfunc-
tions as well. Since these could come in with varying
relative coefficients, any conclusions which might be
drawn would be weakened by the availability of these
two parameters. Instead, we consider only lattice
structures with a cubic point-group symmetry; fcc,
bcc, and sc. For these structures, the odd-I functions
are not appropriate. We expect fcc results to differ
only insignificantly from hcp results, since both struc-
tures describe close-packed systems. In addition, at
finite temperature there is a transition in solid 4He to
an fcc phase. There is a unique linear combination
of Y6 (9, P) invariant under these symmetry opera-

tions: the "Kubic harmonic"

+ —, Y64 0, +Y64 8, . 12

The product of this angular function with the radial
function y6 at p =0.030 A ' has no free parameters.
The contours of this function are displayed on a cube
with one face cut away in Fig. 2. The side of the
cube is chosen so that a regular fcc lattice with that

0
lattice constant has a He density of 0.030 A '. The
close coincidence of the peaks in Sg' with many of
the fcc lattice sites is striking.

Of course, for small admixtures of this eigenfunc-
tion, the energy still increases. Our first hope was
that for larger variations, the cubic and higher terms
might bend the energy surface downward. To try
this, we used Eq. (5) to evaluate the energy for arbi-
trarily large variations proportional to y6. (r) C6(8, @).
As shown in Fig. 3, this hope was short-lived. This
path on the energy surface, although paved with good
intentions, led upward even more rapidly than the
parabolic curve suggested by Eq. (10). This behavior
persisted when spherically symmetric variations were
simultaneously allowed. The reason for this failure is
that for large perturbations, it is not sufficient to
have the limited angular dependence of Eq. (12). It
is necessary that the admixture be coherent over
more than just a few of the nearest-neighbor sites.
For example, the third- and fifth-nearest-neighbor
directions lie nearly at nodes of the angular function
of Eq, (12), and hence cannot contribute effectively
to the energy. We also note that the chaining opera-

' FIG. 2. Contours of.~~6.(r)C6(0, P) are shown on a cube
whose side corresponds to the lattice spacing for an fcc lat-

0
tice at density p =0.030 A . The solid areas represent areas
near nodes in either y6. or C6, the dotted areas are peaks,
while the dashed areas are troughs. The origin is in the
lower right-hand corner,
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FIG. 3. The increase in energy over the liquid phase, 4E,
is shown for various trial wave functions as a function of the
normalization. The curve labeled "

f I =6] " is for the
eigenfunction y6. (r) C6(8, @), while the curve labeled
"QUAD" is for the same function in the quadratic approxi-
mation. The remaining curves are labeled by the crystal
structure and the density.

tions constructing g from f are likely to produce
enhanced periodic behavior in g. The availability of
other I eigenfunctions at the same k and with only
slightly higher A.I suggests the use of standing plane
waves, as in a crystal.

W'e wish to emphasize that the study of small per-
turbations only serves 'as a guide for subsequent cal-
culations. For positive eigenvalues, the energy ex-
pression given by Eq. 10 is a parabola opening up-
ward. In the calculations discussed in the remaining
sections, the assumption of small perturbations is set
aside and the full nonlinear (in Sg) Eq. (5) is used to
calculate the energy.

IU. LARGE DEVIATIONS FROM THE
OPTIMAL HNC SOLUTION

At this point, we know the location of a path lead-

ing gently away from the liquid minimum in the en-

ergy surface. In this section, we derive a form for hg
which has one end firmly embedded in a crystalline
region yet is flexible enough to represent the early
steps of the path quite well. The wave function could
have been built up as a sum of low-lying radial eigen-

functions multiplied by their corresponding crystal
harmonics. As mentioned in Sec. III, the behavior of
the yib is approximately that of a screened ji(kr) and
P Ik is roughly independent of I. This suggested a
simpler alternative in which a crystalline form is first
constructed from plane waves with k = k; short-
range correlations are then imposed on top of this to
simulate the behavior of ylk at sma11 r. The resulting
paths on the energy surface will be useful provided
that for one of them the energy eventually turns over
and starts decreasing as the f becomes less and less
spherically symmetric.

In principle, we can change both the spherical and
nonspherical parts of g ( r ), but in the present calcu-
lation, only the nonspherical part is allowed to
change. We start with a lattice structure for Sg( r ),
and then remove objectionable properties until the fi-
nal Sg is suitable. At that point, we may subtract the
angle-averaged (and hence spherically symmetric)
part.

Consider a lattice with vectors R,b, and a function
Sg ( r ) given by

Sg ( r ) = Xp ( r —K.b, )
abc

(13)

=C QD, b, exp(iK, b, r )
abc

where C is a normalization constant, K,b,
= kp(ax + by + cz ) is a vector in the reciprocal
space (the integers a, b, c depend on the lattice type),
and D,b, is the Fourier transform of p( r ) evaluated
at K,b, . Aside from the short-range behavior, the
plane waves in the sum in Fq. (14) are nearly eigen-
functions of the kernel of Sec. II with eigenvalues
h.b =g E,'b, /mS'(E, b, ). If the dominant term in Eq.
(14) comes from a E,b, which is near the minimum
of the continuum, k, and the D,b, fall off rapidly
with lt', then Sg( r ) is approximately a linear com-
bination of the lowest continuum eigenfunctions with
phases guaranteed to be consistent locally with the
lattice structure. The form of Eq. (14) must be pol-
ished, however. The screening needed for the hard
core must be simulated, the spherically symmetric
part removed, and the oscillations damped for large r
to prevent S from becoming singular. [A pure plane
wave would lead to delta functions in S(k) l. Keep-
ing in mind these restrictions, we obtain

(14)

Sg( r ) =Ago(r) exp( —p, r)

D,b, =eXp( —K,'b, cr /2) (16)

x XD,b, [exp(i K,b, r ) jb(K,b, r) ], (15)—
abc

where the D,b, and K,b, are independent of the signs
and permutations of the abc. The first four K,b, are
tabulated in Table I for fcc, bcc, and sc lattices. For
the particular case that p(r) is a Gaussian, then D,b,
is given by
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TABLE I. The first few E,b, are shown for three crystal

lattices in units of ko.

abc fcc
lattice

bcc sc

001
011
111
002
012
112
022
113

2

1

JY
2.

Xs

The parameters D,b, and ko may be freely varied.
The parameter p, must be constrained to prevent
singularities in S( k ), and the parameter A must be
restricted so that g( r ) and S(k) do not pass through
zero in any direction. If either of these latter condi-
tions were violated, it would be obvious that g could
not come from any wave function.

The leading term of Eq. (15) will roughly agree with
the lowest eigenvector if

gm]A kabc m

which gives ko=(k /J3, k /J2, k ) for the (fcc, bcc,
sc) lattices. The densities corresponding to these
ko's are po = (ko/2n)' (4,2, 1) or po = (k /2')'
x (0.77,0.71,1.0). One might guess that the best crystal
structure will be one for which the po calculated from
k corresponds closely to the density of the system.
Numerical results, which follow, show that this is
true, so that a knowledge of S(k) substantially
correct for the liquid would indicate strongly the crys-
tal structure of the solid!

In plotting the energy, it is useful to summarize
the various parameters by a single number. Thus, . we
plot the change in energy away from the liquid as a
function of the normalization. In the case con-
sidered, the energy with Bg(r) given by Eq. (15) is
given quite well for small normalization by a parabola
which lies only slightly above that of the lowest
discrete eigenvalue. This justifies the procrustean
techniques used in obtaining Eq. (15) from Eq. (14).

Further justification of the form of Eq. (15) re-
quires specific calculations of the energy and a check
that the parameters which minimize the energy at a
given normalization are plausible. For example, if p
is taken to be a Gaussian which falls to half its peak
value at a quarter of the nearest-neighbor spacing,
then for an fcc lattice, D002/D~~~ =0.64, D022/D»,
=0.11, and Dt, 3/D«, ——0.028. Similar values may be
obtained for other assumptions about the behavior
of p.

V. HELIUM

At zero temperature, 4He liquid saturates at a den-
sity of 0.022 A ', at p =0.029 A, it crystallizes into
a close-packed hcp structure. There is a small region
of bcc solid at about 1.5 K, and at substantially
higher pressures and temperatures an fcc phase is
stable. A sc phase has not been found.

Equation (15), with spherically symmetric g,
predicts saturation at p =0.017 A ' with the
Lennard-Jones potential. ' Calculations with non-
spherically symmetric g 's have been performed at
densities of 0.018 and 0.030 A ', the latter lying
above the experimental solidification density. The sc,
bcc, and fcc structures have been tried. For each
density with a given lattice, the energy shift and nor-
malization were computed for different choices of
D,b„ko, and A. The parameter p, was fixed at 0.2
A '. At fixed normalization, we observed a
minimum in the energy shift with respect to varia-
tions of D,b, and ko, the value of A was then deter-
mined by the normalization. At small N, only the
D,b, corresponding to the smallest E,b, was nonzero;
in the quadratic region, only the lowest eigenvalue is
desired. At larger normalization, other reciprocal-
lattice vectors become significant.

The minimum energy shift is shown in Fig. 3 as a
function of the normalization. The curves labeled
"QUAD" and "[I=6]"have been discussed in Sec.
III and set the scale for the present curves. At
p =0.030 A ', there is evidence of solidification in
the fcc energy. The curve rises to a low maximum of
about 1.3 K, well under the 5.3 K for the parabola at
the point, and then falls off and actually goes below
zero. The plotted energy stops near the point in
which g( r ) or S(k) develops a zero in some direc-
tion.

0
In contrast, at lower density, p =0.018 A ', the en-

ergy shift does not turn over. Also, the p =0.030
curve with sc structure only shows a hint of turning
over before g or S becomes unphysical, and the ener-
gy shift is much higher than for the fcc lattice. The
bcc lattice calculations, not illustrated, lie between the
sc and fcc cases. We note that this ordering of the
curves is the same as one would infer from the pack-
ing fraction in these three cases.

We now consider in more detail the parameters at a0
density of p =0.030 A '. At this density, the com-
puted k was 2.25 A '. For (fcc, bcc, sc) lattices at
this density, Eq. (17) would suggest
k = (2.13, 2.19, 1.95) A '. The first two lattices re-
quire little "stretching" to conform to the minimum
eigenvalue, while the sc lattice is quite far off. Fig-
ure 4 shows the sensitivity of the fcc energy shift to
the ko at different normalizations. The contours in
this figure are drawn with increasing intervals, so that
if the quadratic approximation were good and the en-
ergy were independent of ko, all contours would be
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2.8

kp (& ) oo

fcc

k sc

1.7
0

NORMAL I 2 ATION

0
FIG. 4. For a density of p =0.030 A and the fcc struc-

ture, this contour plot sho~s the dependence of the energy
on the kp parameter and the normalization. The contours
are labeled by the increase in energy over the liquid
minimum. Note that the contours are not equally spaced.

vertical and equally spaced. This is useful in
compressing the scale, but might lead one to un-
derestimate the steepness of the ridges leading down
to the saddle. It is apparent that the path leading to
the top of the saddle which one would like to follow
is the one corresponding to k and not to kf„or k„.
However, since kf„and k differ by about 5%, this is

quite acceptable. Even in the region where the qua-
dratic approximation breaks down completely, the kp

one should use is determined by the lowest eigen-
function at the liquid minimum.

Another indication that our distribution function is

trying to describe a crystal comes from the parame-
ters Dpp2, Dp22, and D~~3. For an fcc structure, the
higher density, and at the peak in the energy curve of
Fig. 3, the optimum ratios of D002/D»&, Do»/D»&,
and Dtt3/D~tt are 0.65, 0.10, and 0.028, in rough
agreement with Eq. (16) and a lattice site smearing
which falls to half the peak value at a quarter of the
nearest-neighbor spacing.

Finally, in Figs. S and 6 we show contour plots of
g( r ). The first shows the spherically symmetric go
on the faces of a cube which has been cut across one
face. A helium atom is given at the lower right-hand
corner, and the contours are at constant values of
g( r ). In rather striking contrast, Fig. 6 shows the
distribution function at the peak in the energy curve
of Fig. 3. The distribution function has maxima at or
near the fcc lattice sites. It should be emphasized
that the size of the cube is determined solely by the
density while the contour plots are for the trial g( r )
from Eq. (15) with parameters obtained by minimiz-
ing the energy at the value of the normalization.

If g or S becomes negative at any point, it can no

FIG, 5. The contours of g( r ) for the liquid minimum at
0

Jt) =0.030 A are shown on the surface of a cube with the

(111) face exposed. A helium atom is present in the lower

right-hand corner.

longer come from a wave function. The energies, in
the region of such a point, should not be imbued
with particular significance, as they are probably too
dependent on details of the nonspherical distribution
function. The saddle point, where the energy turns
down again, appears to be rather insensitive to minor
changes in the g and hence is a more stable indication
of an impending phase transition.

All calculations presented were performed at a
value of p, =0.2 A '. This parameter may not be al-
lowed to vary freely, as it would try to exploit

'

shortcomings in the approximate energy functional.
The value of p, must not be too large if one wishes to
include a reasonable amount of long-range order, but
it must be small enough to keep g and S positive,

FIG. 6. The contours of g( r ) for the fcc wave function at
0

the saddle point of Fig. 3 at a density of p =0.030 A are
shown on the surface of a cube with (111) face exposed.
The wave function is obtained by minimizing the energy
functional, while the size of the cube is determined by the
density.
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%e do not expect the true energy to depend sensi-
tively on distant neighbors, so a constrained p, is not
unreasonable. The value of p, used gives an e-folding
distance corresponding to the second-nearest-
neighbor positions in an fcc lattice. The height of the
curve is somewhat sensitive to the value of p, chosen,
although p, can be decreased to the 0.15 A ' suggest-
ed by the decay rate of the discrete l = 6 eigenfunc-
tion without changing the results qualitatively. Fur-
ther assessments of the sensitivity of the results to p,

could be performed by evaluating some of the ele-
mentary diagram corrections to Eq. (5) or using
Monte Carlo techniques to evaluate the energy. Ei-
ther method could be used to select a proper value
of p, .

VI. CHARGED BOSONS

The boson Coulomb gas in a neutralizing back-
ground is of interest because it crystallizes at low,
rather than high densities. At low densities, the lat-
tice energy goes like —q~p'~3 (attractive), while the
localization energy goes like p' '. For small enough
density, the first term dominates and the system crys-
tallizes. The coefficients of the lattice energy in the
classical limit are obtained with the method of
Coldwell-Horsfall and Maradudin. " For (bcc, fcc,
hcp, sc) lattices, they are (1.44423, 1.44414,
1.44408, and 1.41865). At low densities, therefore,
the matter should crystallize into a bcc phase.

For this potential, the energy functional of Eq. (5)
must be modified slightly to remove the otherwise in-
finite contribution which is cancelled by the uniform
background. This is performed simply with the re-

placement of the term Jtgvdr by Jt (g —1)vdr.
For a system of particles with charge e, there are two
independent length scales. An average interparticle
spacing is given by ro = ( —

harp)

'~', and the Bohr ra-

dius is ao=h /me . There is no additional range as-
sociated with the potential, so that for any t'/m and

p, the energy may be obtained by scaling an energy
calculated with the same ratio of r, =ro/ao Large.
values of r, correspond to low densities. It is con-
venient to calculate the energy in units where
t'/m =ro ——1, and thus p =3/(4m). With this con-
vention, the Coulomb interaction is

(18)

The matter is solid for r, & r„; numerous calculations
of I„suggest that it is difficult to determine but on
the order of a hundred. The present situation is
summarized in Ref. 2; the precise value of r„does
not concern us here.

Solutions of the Euler-Lagrange equation in the
Coulomb problem have rather different character
from those obtained for short-range potentials. In

particular, S(k) must vanish as k~ for small k. As a

result, k~/S3 must behave as k ~ for small k, and
hence its transform beh'aves linearly at large r. This
leads to erratic numerical behavior. To circumvent
this problem, we made the decision to cut a little off
the tail of the potential, i,e.,

V(r) = —*exp( —Pr)
r

(19)

S(k) =
(k +12r, )'

(20)

Our estimate for the lowest eigenvalue is then ob-
tained by minimizing k~/S' to obtain

(21)

The uniform limit should be good for small r, (large
density). At r, =2, the uniform limit predicts

=12.7, while our calculation gives ) =10.3. The
increases until r, = 20, and then begin to fall

again, in spite of Eq. (21). Extrapolation of
h, /(9~r, ) suggests that a continuum eigenfunction
may drop through zero at r, = 300.

Below the continuum there are discrete eigen-
values. For r, =2(5), the I =0, 2(2) eigenvalues are
slightly below the other Al, but there is no sign of
damping in the corresponding eigenfunction in a box
of size 20. For r, =20, there appears a discrete
eigenvalue at l =4; at r, =100, the lowest discrete
eigenvalue is at l =6 and lies about 7% below the
continuum. The l =4 and l =8 eigenvalues are also
somewhat below the continuum at that r, . The ap-
pearance of the nonspherically symmetric eigenfunc-
tions suggests a nearby crystalline phase.

As in the case of helium, the lowest eigenfunction
alone leads to a path on the energy surface which
does not turn over. The use of Eqs. (5) and (15)
gives paths which lie appreciably lower than that ob-
tained with the lowest eigenfunction alone. The en-
ergy shifts are shown in Fig. 7 for bcc, fcc, and sc lat-
tices at r, =20 and r, =100. The value of p, =0.4
used was obtained by scaling that used for the 4He

calculation. The behavior of these curves is similar
to-' that obtained for 4He. The lowest curves corre-

The value P was reduced until we could no longer
obtain high-quality numerical solutions in reasonable
time; the final value adopted was P =0.3. Since the
induced screening of the bare potential has stronger
effects, this is primarily a technical point. Alterna-
tively, one could solve the Euler-Lagrange equation
by imposing boundary conditions at a small value of r
and neglecting edge effects. As P is reduced, the

g (r) soon changes by only very small amounts; the
primary difference is seen in the (very) small-k
behavior of S(k).

In the uniform limit, ' where g =1, the Euler-
Lagrange equation may be solved for S(k):
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FIG. 7. The increase in energy over the liquid phase, EF.,
is shown for the Coulomb gas at r, =20 and r, =100 for
three lattice structures as a function of the normalization, A'..

spond to the fcc and bcc lattices whose energies are
virtually indistinguishable, and the larger value of r, .
The sc curves do not turn over at all. In contrast to
He, the sensitivity of the height of the maximum of

the curve to the lattice constant is reduced. This is
presumably an indication that the cause of crystalliza-
tion in the Coulomb gas is more subtle than the hard
core of the 4He potential. The constraint parameter
p, could be varied without changing the qualitative
picture, but the details such as the value of r, at
which crystallization might occur, depend on it too
sensitively to justify further computation.

VII. DISCUSSION

The Jastrow ansatz in the HNC approximation has
been used extensively in the study of quantum
liquids. We have demonstrated that the extension of
this wave function to real, nonspherically symmetric
correlation functions can also provide a qualitatively
correct description of the solid at the same density.
For two extremely different systems, liquid He and
the Coulomb gas, this-wave function generates the
right behavior of the energy with respect to increases
in density and the choice of crystal structure. The
approximations made in obtaining Eq. (5) remove
the variational aspect of the problem and hence man-
date a constrained (fixed) calculation.

The present calculations were motivated by the op--
timal Jastrow-HNC calculations of simple liquids
where we were tempted to regard vanishing eigen-
values in the second-order variational calculation as
indicators of physically interesting phase transitions
rather than artifacts of the approximations. The cal-
culations presented here, as well as previous discus-

sions of collapsing liquids at low densities, suggest
that there is no reason to resist this temptation.
Given the reliability of the approximate expression,
Eq. (11), for the lowest continuum eigenvalues, it is

possible to make qualitatively useful statements re-
garding the existence of phase transitions and crude
estimates of densities before which they will have
taken place given only the optimal liquid structure
function at a number of densities. This level of cal-
culation requires no additional computation. In well-

studied systems such as liquid 4He and the Coulomb
gas, this information may be of little value. Howev-
er, in systems such as nuclear matter and neutron
star matter, ~here the underlying interaction is im-
perfectly known, qualitative information of the kind
obtained in this manner may be useful. In addition
to standard liquid-solid phase transitions, nuclear
and neutron matter may have abnormal phases which
exploit the strong tensor component of the nucleon-
nucleon interaction or pion-condensed phases.
Indeed, indications of premature phase transitions
can help in excluding inadequate models of the
nucleon-nucleon interaction.

Such simple estimates of the lowest continuum
eigenvalue, although appealingly simple, have noth-
ing to say about the possible existences of discrete
eigenvalues or the nature of the new phase. For this,
one must actually solve the eigenvalue equation, Eq.
(S). This level of calculation requires only the kernel
already used in optimizing the distribution function.
In both liquid "He and the Coulomb gas, the softest
variations of the correlation functions about the
liquid minima are found to be nonspherically sym-
metric and strongly suggest particular crystal struc-
ture. The present results show that, while calcula-
tions valid only in an infinitesimal neighborhood of
the (locally) stable liquid can never produce a solid,
the nature of the eigenvalue spectrum and the form
of the lowest eigenfunctions are a good basis for pre-
dictions of the nature of the solid. By constructing
the variational wave function, we have shown expli-
citly how the information obtained at the liquid point
can be used in describing the solid. In both systems
studied, the full wave function did somewhat better
than a simple analysis of k~/S3. In helium, matching
the k with crystal structure and density would have
suggested a bcc structure. The behavior of the I =6
eigenfunction, however, indicated a preference for
fcc structure. In the Coulomb problem, the k pre-
ferred an fcc structure, while the calculations indicat-
ed no real preference for fcc over bcc. In both cases,
the calculations indicated no real preference for fcc
over bcc. In both cases, the calculations are in sub-
stantial agreement with experiment.

The present method is not competitive with Monte
Carlo calculations in determining transition densities,
because the approximations made require some con-
straint. Once a specific constraint is imposed, it may
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be supported either by showing that it gets the right
answer or by estimating its effect. As Miller et al. "
have shown, even the existence of a solid is sensitive
to the choice of constraint (with a somewhat different
wave function); thus there is little point in using the
present method in trying to make quantitative predic-
tions. Rather, it should be used as a tool in under-
standing the change of the wave function over the
phase transition. There remains, of course, the in-

teresting question of how- the present correlation
function, obtained from the nonspherically symmetric
g by Eq. (3) would do in an exact variational (Monte
Carlo) calculation. Such a calculation would be wel-

come.
The problem of metastable states and nucleation

has been considered in applications to superfluidity"
and superconductivity ', further discussion may be
obtained from Ref. 24. The approach of these papers
may be useful in combination with the present work
in investigating the process of crystallization and
freezing times.

In other systems, particularly where the interaction
is not completely known, qualitative information of
the type obtained with this method may be useful. -

Nuclear matter and neutron star rnatter are examples
of such liquids. The richness of the interaction al-

lows the possibility of pion condensation as well as
solidification. The present calculation suggests that it
may be useful to study some properties of these sys-
tems by carefully examinirig the normal liquid phase.

Finally, the somewhat unexpected ability of
Jastrow-HNC calculations to generate phase transi-
tions provides an additional measure of confidence in
calculations of the normal liquid. Features of the dis-
tribution function which ultimately lead to solidifica-
tion or low-density collapse can play an important,
although not necessarily dominant, role in the liquid
even near, its equilibrium density. The present
results sugges. t that such features are at least approxi-
mately incorporated in optimal HNC-Jastrow calcula-
tions.
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