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Starting from the same fundamental bases as a recently advanced unified theory of low-

frequency fluctuation-dissipation properties of condensed matter, we have approached the
various problems associated with diffusion phenomena. In this approach the classical Mar-
kovian diffusion transport is a limiting case (n = 0) of an in-general non-Markovian dif-

fusion transport (n +0). The theory involves a single parameter n, the infrared divergent

exponent, which ranges from 0 to 1. For any value of n in this range, the form of the dif-

fusion transport equation is completely specified through a universal time correlation func-

tion P(t) whose form is dependent on n only. Since the present treatment is one branch of
the unified theory, the quantity n, although it cannot be easily calculated for a given materi-

al and process at this time, can be determined by or inferred from measurements in another

low-frequency response provided the same diffusion process governs both phenomena.

From the availability of large amounts of experimental data in dielectric, mechanical, and

viscoelastic relaxations, in NMR spin-lattice relaxations, in dispersive transient transport,
etc., and the already-proven successes of the unified theory when specialized to these sub-

jects, n should not be considered as a free parameter that cannot be cross checked or can-

not be determined. The new results on diffusion derived in this work for each n value in-

clude (1) the diffusion noise spectra which tend to 1/f spectra when n approaches unity; (2)

a modified Einstein relation between mean-square displacement and time of diffusion; (3)
time-dependent diffusion coefficient and mobility with their ratio now obeying a generalized

Nernst-Einstein formula, and (4) the time evolutions of diffusion-controlled unimolecular

and bimolecular reactions or recombinations. We have compared these predictions with re-

cent experiments on amorphous Si and achieved good agreement between them. In con-

trast, the results of our analysis of diffusion in another well-known model due to Scher and

Montroll, based on a stochastic-event time distribution function g(t):—t ' at large

times, fail to account for the time dependence of bimolecular recombination of electrons

and holes that is controlled by dispersive diffusion.

I. INTRODUCTION

Recently one of us has proposed a physical pic-
ture that departs drastically from the conventional
one for low-frequency (for example, to ( 10 GHz)
fluctuation, dissipation, and relaxation behaviors of
condensed matter in general. ' ' The model evolves

from a fundamental mechanism that is operative in

any condensed matter to govern its low-frequency
responses. Since fundamental process is involved,
the issues of the model will have some universal
features. The new physical picture' ' stems from

inquiring into the nature and properties of excita-
tions of arbitrary low energy and the corresponding
states that give rise to these excitations. We have

adapted the statistical approach to quantum
mechanics of Wigner, ' known sometimes as ran-
dom matrices, ' ' to condensed matter. Wigner's

approach enables us to deduce some general proper-
ties of the correlated states' . that give rise to low-

energy excitations. In most if not all considerations
of the low-frequency responses, a primary species
can be identified for any particular response. These
can be dipolar groups of atoms or molecules,
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charged and uncharged particles including electrons,
holes, ions, atoms, defects, vacancies, etc. Response
and fluctuations are triggered by transitions of the

primary species which in turn will cause both exci-
tation and de-excitation of correlated states. We
have proposed that the correlated-state excitations
and de-excitations that trail the primary transition
are infrared divergent. ' ' This conclusion is ar-
rived at from physical arguments, and a mathemati-

cally rigorous treatment has not yet emerged.
The transition rate of the primary species vp is

modified by the infrared-divergent excitations and
de-excitation of correlated states to be time depen-
dent according to ro

'
exp( ny—)(E,t) ", where

y = 0.577 and E, is the upper "cutoff" of the
correlation-state excitation energy which can be con-
sidered as the energy above which the density of
correlated-state excitations is no longer linear in
E.' The transition rate equation for the primary
species

&& exp[ —ro 'e "rt ' "/(1 —n)E,"]

This function will be repeatedly referred to in this
work and it is convenient to rewrite Eq. (4) as

P(t) = (1 —n)at "exp( at' ")—
with

(4)

(5)

a = e "r/(I —n)roE,"

For example, in dielectric relaxation the dielectric
polarization correlation function

p(P; (t)P;(t —r) )0 ca—n be expressed as pPO p(t)
with pp being the dipolar polarization. In carrier
hopping transport, g(t) is the hopping-time proba-
bility density or distribution function, i.e., the carrier
being initially at a site will hop between times t and
t + ot with probability P(t)ot. With P(t) being
known, predictions of the long-time or low-

Tp

is modified by the infrared-divergent phenomenon to

dOQ —ie —nr(E t)
—ng

dt

Of central importance is the function

(t) —=- d
dt

which can be obtained explicitly through solution of
Eq. (2) as

p(t) = r, 'e "r(E,t)

frequency (after Fourier transformation) fluctuation
and dissipation properties can be worked out. This
has been accomplished through the use of the
fluctuation-dissipation theorem whenever necessary,
in a number of areas including dielectric relaxation,
mechanical relaxation, internal friction, viscoelastic
properties, nuclear-spin relaxation, generation-
recombination noise, flicker I/f noise from mobility
fluctuations, transient electrical transport, and tran-
sient capacitance. We have then arrived at a unified

theory of many low-frequency properties of con-
densed matter. The contribution to dispersion from
this mechanism, being universal, will conform to
certain predicted forms irrespective of the physical
and chemical structure of the material.

The special case of n = 0 in Eqs. (4) and (5) re-

captures the form for classical Markov processes.
For n Q 0, the fundamental mechanism provides a
specific "intrinsic" distribution of transition times,
Eqs. (4) and (5), even though the transition rate of
the primary species ~p

' has a single value with no
distribution. If there is, in addition, a true "extrin-
sic distribution of ~p, our intrinsic distribution
has to be folded into the extrinsic distribution in or-
der to obtain the observed distribution.

In this present work we present the study of
non-Markovian carrier-diffusion transport and dif-

fusion noise, as well as diff'usion-controlled uni-

molecular and bimolecular reactions as modified by
the transition-time distribution P(t) of Eqs. (4) and

(5). For n fixed, g(t) has two characteristic time

dependences. At earlier times, t & t~ —= a
the pre-exponential function t " gives the time
dependence of P(t) At longe. r times t p tz P(t) is

controlled by the exponential function with fraction-
al power of t, and the decay is thus stretched out in

a more extended time region. We emphasize both
time domains and explore both characteristic time
dependences of g(t) in the diffusion-related prob-
lems. Parallel to the studies of diffusion transport,
we consider also the transport of carriers in the
presence of an electric field as modified by the
hopping-time distribution g(t) In diffusion t. rans-

port we obtain a generalized diffusion coefficient
which in a certain time regime is time dependent.
Similarly, a generalized mobility can be defined in
the case of electric-field-induced carrier trans-
port. ' ' The Einstein relation between the general-
ized diffusion coefficient and mobility still exists, as
it should, although its form is modified from the
original one due to Einstein. '

We then turn our attention to diffusion-controlled
unimolecular and birnolecular reactions and recom-
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and the bimolecular decay-rate equation

dE
dt

Equation (2) has been presaged by Vardeny et al. 9

and successfully explains their optical studies of ex-
cess carrier recombination in hydrogenated amor-
phous silicon. On the other hand, the rather popu-
lar hopping-time distribution function of Scher and
Montroll, ' decaying at large times as

QsM(t)=t ', 0(a(1 (9)

which has been employed to describe dispersive

transient transport in a-As2Se3, runs into the diffi-

culty of not being able to arrive at Eq. (8). The pa-

per is, organized as follows. In Sec. II and in Ap-
pendix A we list only the essential mathematical
tools and definitions that are involved in the CTRW
formulation of Montroll and Weiss. ' This is both
necessary and beneficial for clearer exposition of the

subject matter to be treated in a later section. The
work involved in the later section amounts to the
clothing of the body of physics contained in P(t) of
Eqs. (4) and (5) by the mathematics of CTRW.
Section II A deals with a dispersive diffusion trans-

port and noise. Section II B derives the generalized
diffusion coefficient and mobility, and II C gives the
modified Einstein relation between them. Section
III treats the problem of dispersive diffusion-

binations and treat them in the framework of our
present model with g(t) of Eqs. (4) and (5). The
mathematics of a random walk on lattice, its ex-
tension to continuous-time random walks (CTRW)
of Montroll and and Weiss, ' and their applications
to the master-equation approach to unimolecu-
lar and bimolecular reactions are available in the
literature. Earlier applications of the
mathematics of CTRW have implicitly or explicitly
assumed that the hopping-time distribution function
arises from randomness such as a random array of
sites through which the carrier moves, resulting in

fluctuations in hopping times. We shall rely heavily

on the mathematics of the CTRW (Refs. 20,21) but

depart from earlier works in the physics behind

g(t). Allowing our microscopically derived P(t), we

calculate the reaction rate K(t) for unimolecular
and bimolecular reactions, and the time evolution of
the concentration of reacting species. When special-
ized to bimolecular recombination of electrons and
holes generated initially in equal numbers, our tb(t)

leads directly to the result of

K(t) = Bt

controlled unimolecular and bimolecular reactions.
The results are used to discuss experimental data.
We pay special attention to the results of a recent
study of electron-hole recombination in amorphous
silicon which shows evidence for dispersive diffusion
and diffusion-controlled bimolecular recombination.
The last section briefly summarizes the essential
results.

II. DISPERSIVE DIFFUSION TRANSPORT

In this paper we investigate the problems associat-
ed with dispersive non-Markovian diffusion trans-
port with the help of the generalized master equa-
tion to formulate the continuous-time random walk
(CTRW) processes characterized by the hopping-
time distribution function.

CTRW is introduced by Montroll and Weiss to
consider the situation when the jumps do not occur
at regular time intervals, but are made according to
the hopping-time distribution function P(t) such as
those given by Eqs. (5) and (9). In CTRW we are
interested in functions like P(l, t) and F(l,t), the
probability of being at l at time t and the probabili-

ty for reaching I for the first time at time t, respec-
tively.

With the help of the generalized master equations
to characterize the CTRW processes, P(l, t) satis-

fies

&)g[p (I, l')P(l, r)
dt

—p (l'l)P(l, r)]d r(10)

where P(t) is the memory or relaxation function.
The Laplace transform P*(u) of P(t) is related to
1(*(u), the Laplace transform of g(t), by'

P*(u) = u lb*(u)/[I —1(*(u)]

The master equation (10) for CTRW on a lattice
network has a continuum limiting form that will be
of interest. In the presence of a constant electric
field E in the x direction, at each jump there is a
bias for a jump to the right in preference to one to
the left. Equal weight is given to jumps in the +y
and +z directions. Passing to the limit of small dis-

tance co between jumps, the continuum form of the
master equation (10) with p(x, t) standing now for
eP(l, t) is

r

a p(x, r) co ', a 'p(x, r)
p t —r d7

dt 6 o (jx2

—2cobE f P(t —r) ' dr (12)
ap(x, r)

Bx
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The first term in Eq. (12) represents the generaliza-
tion of diffusion to include non-Markovian processes
described by P(t). For the particular example of

P(t) = Qe (13)

The first term is the conventional diffusion term
with diffusion constant Dp,

Do = co~3 (15)

and the second term is the flux in the presence of
the electric field. It is worth emphasizing that our
microscopic hopping-distribution function g(t) given

by Eq. (4) reduces to Eq. (13) when n ~0, which
corresponds to the physical situation of negligible

density of correlated-state excitations and/or ex-
tremely weak coupling of them with the primary
species.

A. Diffusion noise

There is a long history in the study of noise spec-
tra resulting from spatially dependent stochastic
processes such as transport noise. In particular the
noise spectra resulting from diffusion has been a
subject of great interest for the last thirty years.
These activities in transport noise are motivated by
the hope of finding a 1/f spectrum over a wide fre-

quency range and explaining the mystery of 1/f
noise which appears to be a ubiquitous
phenomenon. Although in the course of time there
have been claims that a 1/f spectrum can be
derived from specific models of transport, it has
been shown by van Vliet et al. ' and by Lax
that classical transport of carriers by drift or dif-

fusion, or transport of heat in finite systems, will in

general not have a 1/f noise spectrum. Specifically
for diffusion, one finds always a high-frequency
asymptote to (the universal to ~ law of Lax),
and for suAiciently low frequencies one finds

f ', lnf, and f for one-, two-, and three-
dimensional diffusion systems, respectively. A 1/f
range never occurs and the early model of 1/f noise
from diffusion processes was shown to be
elusive. ~ Despite these conclusions, the model

obtainable by taking the limit as n ~ 0 of P(t) given

by Eq. (4) [from Eq. (11)],P(t) = 2+5(t) and the
master equation (10) becomes Markovian and has
the Pauli's form. Correspondingly Eq. (12)
reduces to

a&(x,t) a't (x,t) at (x,t)
Bt Qx Bx

=+o —P

8 G(x, t)
Bt

2co ' 8 G(x,r)I P(t —r) ,
' d r +5(t)5( )xax'

Taking the Laplace transform in t (denoted by *)
and Fourier transform in x (denoted by —), the
transformed Green's function G~(k, u) can be
solved and has the form

G*(k,u) = [u + cok P*(u)/2] (17)

If 0 is the volume of the domain in which the dif-
fusion process takes place one can show that the
noise spectrum is

investigations of transport noise and its connection
with 1/f noise has not diminished. One notable re-

cent work is by Voss and Clarke. They proposed
an ad hoc volume noise source called the "I'
source, " and were then able to obtain a 1/f dif-

fusion noise spectrum over a range of frequencies.
However, van Vliet has recently shown rigorously

by the A theorem that the "I' source" implies long-

range spatial correlation of the covariance function,
which is unphysical and not upheld by statistical
mechanisms. Thus classical diffusion transport will

not give rise to 1/f noise, a conclusion expressed in

a most recent review.

We have noted that classical diffusion is only a
special case (n = 0) in our physical model wherein
all rate processes are always modified by the
infrared-divergent excitations of correlated states to
a greater or lesser degree. Specifically, classical dif-
fusion transport equation (14) can be obtained as a
special case of a more generally applicable diffusion
transport equation (12). In laboratory condensed-
matter systems, diffusion transport may be more ap-
propriately described by the set of equations (12),
(11), and (4) with n Q 0. Naturally we would like
to investigate immediately the noise spectra for dif-
fusion transport with n +0 and to see if a 1/f
spectrum will emerge.

The more direct method of the calculation of
noise spectra resulting from diffusion is the
Green's-function procedure. In this procedure,
one calculates the Green's function G ( r, r ',t) which
is the probability that a carrier will be found at r at
time t if it is known to be at r at time 0. We shall
consider carrier fluctuations although the discussion
here is applicable also to other stochastic variables
such as temperature or energy. For transport equa-
tion (12) that describes diffusion in one dimension,
the Green's function satisfies
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where

N(t) = f n(r)dv

(18)

$~(to) = Re f f G~(x~', iso)du du'4(EN ) is the total number of particles in Q, (b,N ) is the
variance of N, and G*(x~ ',i co) is the Laplace
transform in t of G(x ~ ', t) with u the Laplace
transform variable written as i m. Expressed in

terms of the Laplace-Fourier transform G*(k,u),
we have

Sn(co) = Re f du f du'(1/2n. ) f dk G*(k,iso)e' '"4(bN ) (20)

Let us examine first the high-frequency spectrum, for which we know already that when n = 0, it has the
Lax universal co form. High frequency, or equivalently earlier times, implies that we should emphasize the
earlier time dependence of g(t}, which is

g(t) = (1 —n)at "for t « a

The Laplace transform of expression (21} is

g*(u) = (1 —n)a 1 (1 —n)u" ' =—iL„u"

(21)

(22)

where I (z) is the gamma function. When we substitute Eq. (21) into Eq. (11), the Laplace transform of the re-

laxation function P(t) is

P*(u) = A,„u"/(1 —A,„u '+")

This, in turn, when substituted into Eqs. (17) and (2), gives the noise spectrum of

Sn(co) = Re f (1/[i to~ (A,„co/2)k (ico)"/[1 A„(iso—)" , '] I) f dx e'4(aN') dk

(23)

(24)

Here the one-dimensional diffusion is in a sample of length 2l. For frequencies sufficiently high that

~

A,„ito" '
~

&& 1, $~(co) simplifies to

S~(to) = (8(bN )/irQ}Re f dk (sin kl/k )/[iso+ (A„co/2)k (l,to)"] (25)

The expression can be evaluated by contour integration, The mathematics are detailed in Appendix B. Qn in-

troducing a natural frequency

to„=(A,„co/4l )'

the noise spectrum is given by

SN(co) = 2(A,„co/2)'~ ((AN )/0) [cos(nm/2)/co (sP„ /2)] t'o+"'~

X (1 —e " [cot(P„/2)sin[8„sin(P„/2)]+cos[8„sin(P„/2)]I)

(26)

(27)

where t)}„=(m/2)(1 —n },8„=(to/co„)"
This expression is evaluated numerically for several

representative values of n between zero and unity
and the results are displayed in Fig. 1.

For the n = 0 case the result is the same as that
of one-dimensional classical diffusion with the high
frequency (co » coo) asymptotic to 3~ law and the
turnover to co

' behavior at co && coo. Note that
when n = 0, Q in Eq. (26) is the same as that in

Eq. (13) and, similar to the result of Eq. (15) for

three dimensions, the one-dimensional diffusion con-
stant Do ——~0 /2. Hence coo in Eq. (26) is just
Do/21, identical to the natural frequency of the
classical diffusion problem. ' In fact, not only No

but the entire expression in Eq. (27) reduces to the

corresponding one in classical diffusion.

For n +0, the high-frequency Lax's co ~ law is

modified, as well as the low-frequency ~
behavior as can be seen from Fig. 1. These modi-
fied asymptotic behaviors for Sz(to} are given
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FIG. 1. The noise spectra g {co) numerically evaluated
for several representative values of n between zero and
one. Except for the multiphcative constant
Qro /(hN )2'~ 60, g(co) is essentially S~(co) given by

Eq. (27). We have chosen E, = 10' Hz and coo ——104 Hz
when evaluating g{co). Note that n = 0 recaptures the
classical result and as n increases towards unity, the noise
spectrum becomes increasingly 1/f-like.

analytically by

A (co/~ )-"-""' ro )) co

N(, ra) (P /2)( / )
—( I+n)/2

(28a)

(28b)

with

A„=2(A,„co/2)' [cos(nrr/2)/cos(P/2)](AN2)/fl

when applied to several areas other than diffusion,

including ' dielectric relaxation, NMR spin-

lattice relaxation, voltage noise, 1/f mobility fluc-

tuations, viscoelastic relaxations, and dispersive tran-
sient transport. These successes should lend sup-

port for our results [Eqs. (27) and (28)] for diffusion

noise, which is just another application of the uni-

fied theory. Most intimately related to the present
subject of dispersive diffusion transport is dispersive

transient transport. Evidence of this intimate rela-

tionship can be found in Eq. (12) which contains
both dispersive diffusion and dispersive transport
described by the same memory function whose ori-

gin is attributed to the infrared-divergent excitation
of correlated states accompanying transitions of a
primary species, which in this case is carrier hop-

ping. A brief'discussion of dispersive transient
transport will be given later in this section. Our
earlier works ' ' ' on dispersive transient trans-

port based on the unified theory not only can ac-
count for the time dependences of the transient
current, but also predicts a relation between the ac-
tivation energy of the "transit time" and the micro-
scopic activation energy for hopping. This latter
quantitative relation has been verified ' ' ' in a™
As2Se3, a-Si, and a-Si02. The good agreement
between theory and experiment in dispersive trans-

port should give an additional boost to our confi-
dence in the results we derive here for dispersive dif-

fusion, its closest relative in the family of low-

frequency responses that have been treated by our
unified theory.

Let us examine the noise spectra also in the re-
gime of very long times when the fractional ex-
ponential function dominates the time dependence
of tti(t) in Eq. (4). In this case of t ~ oo(u ~0) the
fractional exponential ensures that the entire g(t)
has finite. moments

It can be seen from Eqs. (28a) and (28b) that start-

ing from zero as n increases towards unity, both the
high-frequency and the low-frequency noise power
exponents (n —3)/2 and ( —1 + n)/2, respectively,
approach —1. This behavior can be seen at a
glance from Fig. 1. Thus we have found 1/f spec-
tra of many decades in our dispersive 'diffusion

transport model. It is important to emphasize that
this dispersive diffusion transport model, Eqs. (12),
(11), and (4), is one element among many of a uni-
fied theory of low-frequency (long-time) fluctuation-
dissipation properties of condensed matter. We
have already seen remarkable successes of the uni-
fied theory in accounting for experimental data

(t ) = f t g(t)dt (29)

where the ellipsis indicates higher-order terms in u

and, from Eq. (11),

lim P*(u) = 1/(t )
Q~0

where for g(t) of Eq. (5)

(t ) = 1.(1+ 1/(1 —n))a

(31)

(32)

for any positive nonzero integer m. Then, it follows
that

lim P*(u) = 1 —u (t ) + (u /2)(t ) + (- )
Q —+0

(30)
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If ro in Eqs. (4) and (5) is thermally activated with

activation energy Ez, such that

ro ——r„exp(E„/kT),then

(t ) [(1 )
n—rE& ]I/(1 —n)

X e ' I'(1+ 1/(1 —n)) (33)

Here an apparent activation energy

Eg* ——Eg/(1 —n ) (34)

governs the temperature dependence of (t ). The
noise spectrum from Eqs. (17)—(20) is now

S (co) = 4((AN' )/n)(c, '/ir(t ))

X J dk [sin kl/[co + (k co l2(t ) ) ] }

(35) with

(r'(t)) = 6D„t' (39)

diffusive transport that involves carrier hopping
from site to site or electronic excitation ji .iping
from one molecule to another (such as the Forster
mechanism ) will inevitably excite correlat 9 states
in an infrared-divergent manner and lead to a distri-
bution of event times as given by Eqs. (4) and (5).
Thus necessarily, if n +0, the diffusion transport
becomes non-Markovian and one can expect that
the classical results of diff'usion such as the
Einstein's' ' formula (r ) = 6Dot may be modi-
fied. We shall investigate what this modification
will be for our itj(t).

The mathematical details are relegated to Appen-
dix C. The result given by Eqs. (C9) and (C10), is

Expression (35) can be evaluated with the result

S~(co) = 32((b,N )/Q)(l (t )lco )(co/coo)

X [1 —e (cos8+ sin8)]

where

8 = (co/coo)'

coo —= D/2l =—co l4l ( t )

(36)

(37)

(38)

B. Modification of Einstein's formula (r ) = 6Dot

In condensed matter one often has the occasion to
consider diffusive transport or migration of particles
or electronic excitations. In our physical picture the

The noise spectrum as given by Eq. (36) is identical

in form to that for the noise spectrum of classical
diffusion. In other words, at very long times or
very low frequencies, for any n value between 0 and
1 the noise for non-Markovian diffusion [Eqs. (12),
(11), and (4) with n Q 0] will have a noise spectrum
that is the same as that of classical Markovian dif-

fusion. For a fixed value of n Q 0, the times (or
1/co) should be » tz ——a '/" "' and from Eq.
(5b) we can see that if E,ro » 1, then t~ can be so
long that the result of Eq. (36) holds only at exceed-

ingly low frequencies, especially if n approaches uni-

ty. As an example, for 7 p = 10 sec, E, —= 10"
sec ' and n = 0.7, then tz ~ 10 sec and Eq. (46)
starts to hold only for co &~ 10 Hz. In the special
case when n is unity, we have seen already (Fig. 1)
that a 1/f spectrum emerges for many many de-

cades. At the same time t~~ m if E,~p &~ 1, and
the noise spectrum never returns to the classical
result of Eq. (36) for all practical purposes.

D„=A„co/6I (2 —n) (40)

Note that when n ~0, D„~Do——~o l6 is the
classical diffusion constant in three dimensions [see
the discussions following Eq. (27)], and Eq. (39)
reduces to the original Einstein's equation of
(r (t)) = 6Dot. However, when n +0 the Einstein

equation does not apply but is modified to the form
given by Eq. (39). When n approaches unity, the
modification is so severe that (r (t) ) is no longer
dependent on time.

For very long time t gp t& when the fractional
exponential dominates the time dependence of it(t),
we follow the developments and results from Eq.
(26) to Eq. (31). The Fourier-Laplace transform of
the Green's function now is

and

G*(k,u) = [u + (co/6(t ) )k ]

(r'(t)) = (c,'/(t ))t

(41)

(42)

If we rewrite it in the standard form of

(r'(t)) = 6C„t,
then C„canbe expressed in terms of k„through
Eqs. (22) and (32) and has the form

(43)

X ( g 1/( 1 n) 2 /6 )— (44)

The diffusion coefficient C„hasthe apparent activa-
tion energy Ez* of Eq. (34) if the hopping process is

thermally activated with activation energy Ez. C„
should be contrasted with D„in Eq. (39) which has

activation energy Ez. The important result is that
at very long times, the original Einstein equation

C„=[ [(1 —n)I (1 —n)]'/'" "/I (1 + 1/(1 —n)) ]
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holds again, although the diffusion constant C„is no
longer ~p /6. This behavior of the return at very

long times of the validity of the description of dif-
fusion by a conventional Markovian diffusion equa-
tion, is consistent with a conjecture made by Haan
and Zwanzig. ' It is pleasing that we can derive
this from our f(t).

C. Generalized Nernst-Einstein relation

pp
——2cg Q/I (2)

Hence we have

P„(t)= Pp[(1 —n) e "rI (1 —n)/I"(2 —n)]r

(50)

(51)

With the results for D„(t)and p„(t)as given by
Eqs. (47) and (51), we readily see through Eq. (44),

p„(t)/D„(t)= (1 —n)pp/D p
——(1 —n)e/kT

(x2) = 2D„r' "—= 2D„(r)r (46)

The last identity formally rewrites the result in the
original form of Einstein, but now the new diffusion
constant D„is time dependent, corresponding to the
transient situation and given by

D„(t)= [A,„cp/ZI (2 —n)]t

—= [Dp(1 —n)e "ri (1 —n)/I (2 —n)]r

The corresponding n +0 non-Markovian transient
transport in the presence of an electric field E is
derived in Appendix D. Again the mathematical
details are relegated to Appendix D where we have
derived the result of

(x(t)) = 2c+EA,„t'"/I (2 —n) (4g)

We can then define a generalized transient mobili-

ty by

pp, (t) —= d (x(r))
dt

2(1 —n)c pbA„,t-"
I (2 —n)

(49)

When n = 0, infrared divergence is suppressed and
the result (49) reduces to the classical time-
independent mobility po which is

The Nernst-Einstein relation between the diffusion
constant Do and mobility po is given by

p /pDp ——e/kT

In our physical picture, to encompass the dif-

fusion process in all forms of condensed matter one
must necessarily consider the n + 0 non-Markovian
transport Eq. (12) caused by g(r) of Eq. (4). We
have seen in Sec. II B that the t " dependence of
g(t) modifies the Einstein formula in accordance
with Eq. (39) which, in one dimension, is rewritten
here as

(52)

Equation (52) is the generalized Nernst-Einstein
relation between mobility and diffusion coefficient.
Except for the factor (1 —n), it is identical in form
to the original Nernst-Einstein relation, but now the
transient diffusion coefficient D„is introduced for-
mally.

III ~ DIFFUSION-CONTROLLED REACTION
AND RECOMBINATION

In various areas of physics, biophysics, and chem-
ical physics, reaction or recombination occurs
through diffusion of one reactant or both reactants
to some special sites, or to encounter each other.
The reaction or recombination rate and its time
dependence are controlled by the diffusion pro-
cess. ', There has been a continued interest in this
class of problems which is most appropriately
handled by the mathematics of random walks or
continuous-time random walks on lattices. ' How-
ever, the physics behind the mathematics without
exception is attributed to some randomness of one
kind or another, including intersite hopping distance
and trap depths. The assumed randomness will
then introduce a broad distribution of event times,
which for hopping diffusion motions is characterized
by the probability function g(t) defined earlier. In
this section we reconsider these problems in the
light of our universal P(t) as given by Eq. (4).

Unimolecular and bimolecular reactions are best
treated by a stochastic master equation obeyed by
the probability I' of the random variable number
(numbers) of reactant (reactants) in the system at
time t. Shlesinger has given a clear exposition of
the problems involved in the calculations of the
reaction rate K(t), a conditional probability distribu-
tion, which is related to an unconditional one, F(t).
Both K(t) and F(t) are first-encounter distributions
appropriate for irreversible reaction, but F(t) is im-
mediately amenable to calculation by the
continuous-time random-walk (CTRW) formalism



24 DISPERSIVE DIFFUSION TRANSPORT AND NOISE, . . . 1057

of Montroll and Weiss ' once the jurnp-time distri-

bution is specified. A detailed discussion of the
mathematics involved can be found in Appendix E.
This has been carried out for unimolecular (UM)
and pseudounimolecular (PUM) reaction. We
have rederived the result [see Eq. (E18) in Appendix

E], which in the notation of Montroll is (La-

place transform):

F(t) = [1/( V —1)](I [1 —t(t„'(u)]

X G(O,z = P„*(u))] ' —1)

(53)

where G(O, z) for 1 = 0 that has already been

evaluated for various lattices, extending it to consid-
er bimolecular (BM) reaction, which has not been

done before. Here ve follow Shlesinger and
divide the system into Nq (t = 0) identical unit cells
each containing V sites, one 3 reactant at its origin

and one 8 reactant which at t = 0 has equal proba-

bility of occupying all sites in the unit cell except
the origin.

The random-walk-generating function G(O,z) as

it appeared in Eq. (2) has already been evaluated by
Montroll ' for various lattices in different dimen-

sions. Hence we can obtain F(t) by substitution of
the Laplace transform g*(u) of our model g„(t)
into Eq. (2). For a simple cubic lattice it has been
shown that

N —1N —1N —1

G(0~ = Q*(u)) = [V(1 —f*(u))] '+ —g g g '{ [1 —1(*(u)][cos(2ttk )N) + cos(2mk2N)
V k) ——Ok2 ——0k3 ——0

+ cos(2m.k3N )] I (54)

where the prime at the summation signs means that
the origin k1 ——kz ——k3 ——0 is to be omitted.

We consider first a bimolecular reaction
A + B~ C where Nq (t = 0) = Ns(t = 0) and the
3's diffusing so slowly compared with the 8's that
the 3's can be considered stationary at the origins of
their unit cells. This is appropriate for electron-hole
recombination in a-Si:H where, although both
electrons and holes diffuse, they have very different
mobilities. The stochastic master equation approach
leads to the equation for bimolecular decay (see Ap-
pendix E):

K(t) = [1/(VW)' "](1—n)a. t " (58)

This is exactly the same as the time-dependent bi-
molecular recombination rate K(t) = Bt " as as-

sumed by Vardeny et a/. which gives, as they
have already shown, a good account of the time
dependence of the electron-hole recombination de-

cay in a-Si:H.
The rate equation for a„t' " && 1 is

r

Here 8' is the Watson integral which for a simple
cubic lattice has the value of 1.516. It then follows
from Eq. (56),

d (NA(t))
dt

= —K (t) (&~ (t) ) (55)
d (NA(t) )

dt
1

(1 —n)at " N„(t)
( VW')' "Ng(0)

From the mathematics of CTRW it is more direct
to calculate F(t). K (t) can be obtained once F(t) is

known through the relation [see Eq. (E7)] Solution to Eq. (59) is given by

(59)

K(t) = F(t) J F(r)dr . (56)

At very long times t ~ co (u ~ 0) we can readily
obtain P„"(u)by the expansion

(N„(t)) —N„(0)(VW) ' "/at ' (60)

for t ~ oo.
In contrast, the Scher and Montroll ' form of

P(t) ~ A [1 (1 —a)] 't ' ~ at large times gives

y„*(u)= 1 —u &t ) + —,
' u'(t') + -,

where (tt') —= I tt'g„(t)dt. Substitution into Eq. (5)

yields

F(t) = [aA WV/1 (1 —a)]t

and, from Eq. (E7)

K(t) = at

(61)

(62)

F(t) = [1/(VW)' "](1—n)a„t

X exp( —{ [1/(VW)' "]a„t'"]) . (57)

For pseudounimolecular reaction it follows then

(N„(t))= N„(0){[AWV/1 (1 —a)]t ] . (63)
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This result has been obtained by Shlesinger. For
bimolecular reaction, the expression (62) for K (t)
implies that

(N(r)) ~ [aln(r/r;)] (64)

with t; a constant. These differences between the
predictions of our P(r) and that of Scher and
Montroll's will now be discussed in conjunction
with experimental data of dispersive diffusion and
dispersive transient transport in a-Si:H.

In amorphous Si dispersive transient transport has
been observed in time-of-flight drift-mobility
experiments. The observed transient current I(t)
has the characteristic t " dependence for t && t,
where t, is the "transit time" and the t '
dependence for t » t, in accordance with the
CTRW theory of Scher and Montroll based on
their g(t). This same characteristic of I(t) follows
also from our f(t). A derivation of the t "depen-
dence for t « t, has been given in Sec. II C (see
also Ref. 12). The absorbing electrode boundary
will give the t ' "' behavior for t » t,. Thus
both our P(t) of Eq. (4) and that of Scher and Mon-
troll can account for the dispersive transient trans-
port. There is one important difference. Our pre-
diction on the transit time t, is that its activation en-

ergy is given by an apparent activation energy E,
related to the microscopic activation energy Ez via

Eq. (34). This prediction is in agreement ' '

with experimental data on a-Si02 and a-As2Se3.
Recently, evidence for dispersive diffusion of elec-

trons in a-Si:H has been found in diffusion-control-
led electron-hole (bimolecular) recombination stud-
ies by Vardeny et al. They found that the ob-
served time evolution of the photoinduced midgap
absorption can be explained by bimolecular recom-
bination [Eq. (E6)] with time-dependent rate K(t) of
the form Bt " and that n has the same value as that
determined by transient transport measurements.
The latter strongly suggests that both dispersive dif-

fusion and transient transport are due to the same
cause. Thus one expects that any model which can
describe transient transport must also be able to
derive the dispersive diffusion-controlled bimolecu-
lar recombination rate K (t) = Bt " We .have seen

that our model based on P(t) of Eq. (4) fulfills this

expectation while Scher and Montroll's model based
on their P(t) cc t ' does not Their .model gives

K(t) = at ' and the decay follows Eq. (64) which

is different from the observed time dependence by
Vardeny et al. In actual experiments the Nq (0)
depends on the distance x from the sample surface

—QLx
due to the attenuation e of the exciting laser
light in a sample of thickness d such that

Nq (O,x) = Nz (0) exp( —aL, x). Then the bimolec-
ular reaction Eq. (60) must be integrated over x as
well. This being taken into account and in terms of
a reduced time r = ta„'" "'/VW, the 1(t„(t)model

predicts that

(Nz(t)) = [Nq(0)/(I —n)r' "]ln[ (1+ r' ")/[1+ r' "exp( —aLd)] ]

in agreement with the results of Vardeny et al. and their experimental data of excess carrier recombination
in a-Si:H. On the other hand, the itjsM model with AM

——t ' gives

Nq (t) = [aL a In(r/rp)] ln[ [1 + aNp In(t/tp)]/[I + aNp In(t/tp) exp( —az d)] ]

where Np ——Nq(t = tp) and r p is a reference time.
This prediction of the lfrsM model is in contradiction
with experimental data.

The failure to derive both transient transport and
dispersive diffusion-controlled bimolecular recom-
bination from Scher and Montroll's g(t) will cast
doubt on the general applicability of their assump-
tion of g(t) ~ t ' for t —+ co. This remark ap-
plies also to an exponential-distribution-of-traps
model" which uses a distribution of release times of
the form t

For pseudounimolecular reaction, it follows from

Eqs. (E10)—(E12) and the expression for F(t) as

given by Eq. (57) that the reaction rate at long times

according to the 1(t„model is given by

KM(t) = [M/( VW)' "]'(1 —n)a„t " (65)
and
(N~(t)) = Nq(0) exp( —

[ [M/(VW)' "]a„t'" ])
(66)

These results for pseudounimolecular reaction have

been obtained earlier by Shlesinger. Shlesinger
was motivated by the same ideas of Scher and Mon-
troll that randomness such as intersite hopping
distance will introduce a distribution of event times.
Previously it has been proposed that the hopping-
time distribution r ' of Scher and Montroll [see
Eq. (9)] is rather universal for randomness as evi-

denced by the successes of Eq. (9) when applied to
dispersive transient transport. However the use of
t ' distribution in pseudomolecular (and also in
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bimolecular) reaction fails to obtain E (r) = Bt, a
result which is required in order to explain the elec-
tron scavenging data in glasses of Miller" and of
Baxendale and Sharpe. These are pulse radiolysis'
experimental results on the decay of trapped elec-
trons in aqueous glasses by reaction with impurity
molecules whose concentration is much larger than
that of the electrons (M ~~ 1). Apparently this is

the reason for Shlesinger to seek another trial
hopping-time distribution function. It is a happy
coincidence that he has chosen the fractional ex-

ponential form that we have derived from our fun-

damental physical picture. In another example of
photoluminescence decay in a-Si:H, this prediction
is also in accord with the short-time decay data.
This has been pointed out by Vardeny et al.

IV. SUMMARY AND CONCLUSIONS

In this work we have extended our unified theory
of low-frequency (long-time) fluctuation-dissipation
properties of condensed matter to the consideration
of several problems that are connected with dif-
fusion. The entire consideration is based on the
same universal correlation function P{t) that has
been derived microscopically and applied successful-

ly in several areas of low-frequency responses. The
important results we have derived here include (1)
the emergence of 1/f spectrum for diffusion trans-

port; (2) a modification of Einstein's formula
(r ) = 6Dot; (3) time-dependent diffusion coeffi-
cient and time-dependent transient mobility; (4) a
generalized Nernst-Einstein relation between the
time-dependent diffusion coefficient and transient
mobility; and (5) diffusion-controlled unimolecular
and bimolecular reaction rate and its time depen-
dence that is in accord with experimental data. We
have also contrasted these results with the corre-
sponding ones that follow from Scher and
Montroll's model with their g(t) of t ' for large
times. Somewhat surprisingly, Scher and Montroll's

P(t) fails to reproduce the observed behavior of both
the bimolecular electron-hole recombination decay
and the unimolecular photoluminescence decay in
a-Si:H which shows also dispersive transient trans-
port. Reinterpretation of the dispersive transient
transport in a-Si:H by thermalization of electrons in
an exponential distribution of traps has arrived at a
g(t) of t ', and hence it cannot account for the
recombination decay. On the other hand, our g(t)
can reproduce all these three features.

This work was supported in part by ONR.

APPENDIX A: MATHEMATICAL
TOOLS OF CTRW

In this appendix we collect only the mathematics
of the CTRW description of Montroll and
W'eiss ' ' that we use throughout the remainder of
this paper. These mathematical results are stated
without proof or derivation. The purpose of this is
to help the reader for easy access to the necessary
mathematics and for accurate reference to the
specific results we invoke from the CTRW litera-
ture.

Random walk at regular time intervals on a
periodic lattice I I ) can be handled through the
random-walk generating function G(l, z) defined

20,21

G(l g) = g z"P„(l)
n=0

where P„(l)is the probability that a walker is at lat-
tice site I after n steps. G (lg) satisfies

G(l~) —z gp(l, l')G(l', z) = 5i,o, (A2)
where p (l,l') = probability for walk from 1' to l
(independent of time). The form for G (l, z) on an
s-dimensional finite lattice of N' lattice points with
periodic boundary conditions is

(A 1)

This paper is intended for the presentation of the
derivations of the results of our unified model when
specialized to diffusion. Needless to say, there is a
large amount of experimental data on various as-

pects of diffusion. We shall make contact with the
experimental data in the future. It is expected that
analyses of diffusion, with the unreserved belief in

the validity of the classical diffusion equation and its
consequences such as the original Einstein's formu-
la, may have to be reexamined in the framework of
our present theoretical predictions. Diffusion is a
very common phenomenon in condensed matter. It
occurs in metal, semiconductors, insulators, poly-
mers, liquids, biochemical, and organic substances.
Our predictions are characterized by a single
parameter n, the infrared-divergence exponent, and
0 & n & 1. Starting from n = 0 which recaptures
the classical diffusion phenomena, as n increases
and at each n we have well-defined predicted modi-
fications of the classical results. Such easy access to
the theoretical results will facilitate the comparison
between theory and experiments in the future.
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Gz{l,z) = X *+exp
—2~ik 1 y 2+k
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where k = [ ki, . . . , kJ, . . . , k, I with kj being in-

tegers and 0 & kj & N —1. The structure function
A(2irk/N) = gtp(t) exp(i k 1 ). Gz(t, z) can be ex-

pressed as a sum of a singular and nonsingular
part20, 22

G~(t, z) = 1/N'(1 —z) + $(t g) (A4)

For infinite unit cell or lattice (N ~ oo ), the
singular part vanishes as N ' but P(z, t), which then
becomes identical to G(z, l), develops new singulari-

ty of a weaker type such as in one dimension and in
three dimensions it even converges as z ~ 1. For
example, in one dimension G(Op) = (1 —z )

and in a simple cubic lattice

G(Og) 1.516 —(3/m)(3/2)'r (1.—z )'r +-
We will also be interested in the concept of first-

passage time. If F„(l)is the probability that ran-
dom walker reaches the point l for the first time
after step n, the generating function of the F„(l)
i 20—22

(A7)

Q'(l, u) = G(l ~ = P'(u))

where

lt*(u) = f e "'p(t)Ct

(A8)

(A9)

It then follows from Eqs. (A7) and (AS) that the
Laplace transforms of P(l, t) are simply related to
G(tz) by

are interested in functions like P(l, t) and F(l,t), the
probability' of being at I at time t and the probabili-

ty for reaching I for the first time at time t, respec-
tively. Montroll and Weiss have shown '

P(l, t) = f Q(t, r)%(t —r)dr,

where +(t) = f ttt(r)dr is the probability that

walker remains fixed in time interval (O,t), and

Q(l, t) is the probability density for the random
walk to reach 1 at time t (not necessarily for the
first time). The Laplace transform Q*(l,u) is relat-

ed to the generating function G(l p) defined by Eq.
(Al) as

F'(t~) = g F„(t)z" .
n=l

(AS)
P*(l,u) = G(l~ = g*(u))[1 —P*(u)]/u

(A 10)

The generating functions G(tz) and F(tp) satisfy

F(t~) = [G(l,z) —5t0]/G(o, z) . (A6)

The generating function F(l g) for the special case
of an s-dimensional finite lattice of 1V' lattice points
will be denoted by F~(t~).

CTRW is introduced by Montroll and Weiss to
consider the situation when the jumps do not occur
at regular time intervals, but are made according to
the hopping-time distribution function P(t) such as
those given by Eq. (5) and Eq. (9). In CTRW we

F*(l,u) = F(tp = li*(u)) (A 1 1)

Again, whenever specialized to an s-dimensional
unit cell or lattice of N' lattice points, the functions
P, Q, and F will be denoted by P~, Q~, and F~ for
clarity because we shall have to distinguish the cases
for N finite and for N infinite in the long-time
behavior in later sections.

Similarly the Laplace transform of F(l,t) can be ex-

pressed in terms of the generating function F(l p) of
Eqs. (A5) and (A6) as

APPENDIX 8

We have the following:

Str (co) = (8(b N )/rrII ) Re f dk [(sin kl)/k ]/[ice + (A,„co/2)k (i co)"]

Taking the real part of the integrand and letting 3 = A,„c0,one can obtain

Str(to) = (8(AN )/irQ)[cos(nm/2)/Ac@"] f dk(sin kt)/[ k + k 2'' "[sin(nor/2)]/A + (ei' "/A) I

The roots of the denominator of the integrand are

(Bl)

(B2)

k = +i (co' "/A)'r e+'~r-
Applying the residue theorem and defining co„=(A /21 )' ", one can obtain Eq. (27).

(B3)



24 DISPERSIVE DIFFUSION TRANSPORT AND NOISE, . . . 1061

APPENDIX C APPENDIX D

In three dimensions the non-Markovian diffusion

equation from Eq. (12) is

f P(t —r)V p(r, r)dr . (Cl)
Bt 6 o

The Green's function for Eq. (C 1) satisfies

Bt 6 f P(t —r)V'G(r, r)dr+ 5(t)5(x)

We consider the Green's-function equation

5 G(x, t)
2 bE 'd 5 G(x,r)= —2cobE d r t —r

+ 5(t)5(x) (D 1)

and its Fourier-Laplace transform G~ (k,u) which
can be solved by the same transforms of Eq. (Dl)
and is given by

(C2)
G*(k,u) = [u + 2cobEikg*(u)] (D2)

(C3)

In the same manner as in going from Eq. (16) to
Eq. (17), we get

G*(k,u) = [u + cok P*(u)/6]

In the time domain where g(t) 0: t "and its ex-
pression together with its Laplace transform is given
as in Eqs. (21) and (22), then P* as given by Eq.
(23) can be approximated for A,„u '+" « 1 to give

In the earlier-time regime when g(t) ~ t

G*(k,u) =—[u + (A,„co/6)k u "] (C4)

G*(k,u) = (u + 2cobEikk, „u„)
By definition,

(D3)

provided that A,„u '+" « l. By definition

G+(k u) —f dte " f dre '"' G(i t)
0

(C5)

which, when the factor exp( —i k r) is expanded in

powers of ( k r ), gives the term that is proportional
to (k r) as

Iz —— f dte "'f drr G(r, t)

/2 oo

gg e
—Qf

6

t + 00

G*(k,u) =- f dt e "' f dx e ' G(x, t)

I i
—— 2c obEik A,„u— +" (D6)

Expanding e ' in powers of (ikx), the term linear
in kis

Ii ——f dt e "' f dx( ikx)G(x—,t)

ik f dt—( (tx))e
0

Correspondingly from Eq. (D3) another expression
for I] is

The last equality follows from the physical meaning
of the Green's function G ( r, t). To solve for
(r (t) ) we expand in powers of k the result (39)
for G*(k,u) which gives

G~(k, u) = u '[1 —(A,„co/6)u" 'k +- ]

On comparing Eq. (D5) with Eq. (D6), we get

f e "'(x(t))dt = 2cobEA.„u +"
0

Inverse Laplace transform of Eq. (D7) yields

(x(t)) = 2cobEA,„t'"/I (2 —n) (D8)

On comparing Eq. (C7) with Eq. (C6) for the k
term, we obtain

Inverse Laplace transform of Eq. (C6) gives

(r'(t)) = 6D„t'

with

D„=A,„co/6I (2 —n)

(C7)

(C8)

(C9)

(C 10)

Another way of arriving at the result of Eq. (D8) is

by the CTRW method. The result which has al-

ready been given is

(x(t)) = iI '[ g*(u)/u [1 —g*(u)] ], (D9)

where l the mean displacement for a single hop is

2cobE Substituting the ex. pression (17) for 1(*(u)
into Eq. (64), one can obtain the result (D8).

APPENDIX E

The master equation obeyed by the P(N, t), the
probability that the number N (a random variable)
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of unreacted molecules in the system at time t for a
unimolecular reaction, is

rIP (N, t)
dt

= K(r)[(N + 1)P(N + l,r) —NP(N, r)]

(El)

It has been emphasized by Shlesinger that the

rate K (t) is the conditional probability of the reac-
tion to occur in the time interval (t,t + dt), given

that no reaction occurred in the interval (O, t) as-

suming that the stochastic process starts at t = O.

Solution of the problem requires the calculation of

E(t) for given P(t) which can be carried out by
CTRW mathematical techniques as summarized in

Appendix A. From the knowledge of K(t), the
mean number (N(r) ) of unreacted molecules is

(N(t)) = Noexp —f K( r)d r (E2)

where No is the initial number of molecules.
For irreversible bimolecular reaction
2 + 8 ~ C, the master equation satisfied by P(N, t}
h@s the form

dP (Ng, t)

dt
= K '(r) [ (N~ + 1)[Ns(0) —N„(0)+ N~ + 1]P(Nq + l, t) —Nq [Ns(0) —N„(0)+ N„]P(Nq, t} ]

(E3)

where the E '(t) is the conditional probability of the

bimolecular reaction. From Eq. (E3) it follows that
the mean (N„(t))satisfies

d (N„(t)) = —E '( t) [Ns (0) —Xg (0)]
dt

x (N„(r))—K'(r)(N„(r))' .

(E4)

—= —K (r) (X„(r) )

On the other hand if Nz (0) = Ns(0), we have the
genuine bimolecular rate equation

d (Ns(r))
dt

= —K '(r) (N„(r)) ' . (E6)

From the mathematics of CTRW it is more direct
to calculate F(t}, the unconditional probability den-

sity for the first coincidence ' at time t, than the
conditional probability density E(r}. E(t) can be
obtained once F(t) is known, through

K(r)=F(r)/f F(r)dr .

It can be shown from Eqs. (E2) and (E7) that

(E7)

If the initial (t = 0) number of 8 molecules Ns(0)
is much larger than that of A molecules N„(0),then

Eq. (E4) reduces to a pseudounimolecular rate
equation

d (X„(t))
dt

K'(t)N~(0) (N„(r)—)

F~(t) = MF(t) 1 —f F(r)dr
M —1

(E9)

where F(t) is the probability per unit time for a par-
ticular B molecule to reach the 3-molecule site for
the first time. Substituting F~(t) for F(r) in Eq.
(E8) and Eq. (E7) and performing the integration in

Eq. (E8) yields

(Nq(t)) = N„(0)( f F(r)dr
M

(E10)

and the reaction rate defined in Eq. (E5) is given by

KM(t) = Fir(t)/ f F~(r)dr (El 1)

(N(r)) = N(0) f F(r)dr .

The lattice network is divided into Nq(0) identical

units, each having V lattice points and containing
one 3 molecule. For pseudounimolecular reaction

[Eq. (E5)], each unit cell contains M 8 molecules
where necessarily 1 « M & V. For geniune bi-

molecular reactions [Eq. (E6)], each unit cell con-
tains one 3 molecule and one B molecule. Periodic
boundary conditions are employed.

Shlesinger, in his consideration of pseudouni-

molecular reactions, places each 3 molecule at the
origin and considers the M B molecules as indepen-
dent and initially having equal probability
1/( V —1) of being located at any of the V —1 lat-

tice positions in the unit except the origin. For
M p& 1 pseudounimolecular reaction, Shlesinger
has emphasized for M-independent B molecules that
the relevant quantity to calculate is when the first B
molecule arrives at the 3-molecule site. This first-

passage time density FM(t) is given by
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When M = 1, F~(t) and KM (t) are identical to
F(t) and K(t), respectively. It is interesting to note
a simple relation between K~(t) and K(t), which
can be derived by direct substitution of Eq. (El 1)

into Eq. (E9), and has the form

K~(t) = MK(t) (E12)

F(t) = g (V —1) 'L 'F*( l,u)
10+0

(E15)

In a genuine bimolecular-reaction process [Eq.
(E6)], if one molecular species says the A's have a
diffusion constant much smaller than that of the
B's, then to a good approximation we can consider
that the A's are fixed at the origin of each unit cell
and one B molecule per unit cell is diffusing. This
is similar to the M = 1 case of the
pseudounimolecular-reaction model of Shlesinger.
If we consider a system in which there are N„(0)A
molecules and N~(0) B molecules at time t = 0, we
can deduce the reaction rate K'(t) of Eq. (E6) from
Eqs. (E5) and (E12) for M = 1 as

K'(t) = K (t)/N&(0) = K(t)/X~(0) . (E13)

The genuine bimolecular reaction, Eq. (E6), is

solved to give

t
(N„(t))= Nq(0)/ 1+N~(0) J K'(r)dr

(E14)

Hence if we calculate F(t) by the CTRW method
as has been done by Shlesinger, we can solve the
pseudounimolecular problem for M g& 1; and the
bimolecular reaction through Eqs. (E7), (E12), and

(E14).
Shlesinger obtains an expression for the Laplace

transform F*(u) of F(t). F(t) is the sum of the

probability densities for reaching the origin from

any of the V —1 lattice points, each weighted by
1/( V —1). In the notations and definitions of
CTRW functions given in Appendix A,

One should note that any quantity in Appendix A
is for random walk starting out from the origin 0 to
1; however, this is the same as that for the reversg

direction random walk from 1 to 0 of interest here.
We observe that from Eq. (All), Eq. (E15) can be
rewritten as

1LF(t) = g F(l,z = 1(*(u))
(V —1)-1+0

(E16)

The right-hand side of Eq. (E16) is related to the

generating function Gk(z) (in Montroll's notation),
the probability that a walker originally not at the
origin and randomly placed in the ( V —1) lattice
positions will arrive at the origin for the first time in

a given number of steps [see Eq. (4) of Ref. 22],
given by

Gk(z) = QF(1~)1

(V —1) t~0
(E17)

Then from Eqs. (E18) and (E16) we get the result
first obtained by Shlesinger

F{t)=L '[1/(V —1)]

X [[ [1 —f~( )]uG(O,z.= g*(u)) ]
' —1]

(E19)

Note that G (Op), as given by Eqs. (A3) —(A6), have

already been evaluated by Montroll for various
lattices in different dimensions. Hence we can at
once obtain F(t) by substitution of our model P(t)
into Eq. (E19). Alternatively from Eqs. (Al 1),
(A6), and (A8) we see that

Montroll has already evaluated this, which, in our
notations is [see Eq. (6) of Ref. 22]

Gk(z) = 1/(V —1)[ [(1 —z)G(0~)] ' —l I

(E18)

F(t) = L ' g G (1 p = Q*(u))/G (O,z = Q*(u))
{V—1) 1+0

g Q* ( l,u)/Q*(O, u)
7+0

The last expression is Shlesinger's result if we
identify his R ( l, t

~
10) with our Q( l, t). Of

course the expressions (E19) and (E20) are
equivalent. Here is an example that through the
self-contained summary of CTRW mathematical

(E20)

r

tools in Appendix A, the much earlier result of
Montroll can be identified with the recent
rederivations by Shlesinger, notwithstanding the
fact that the notations of these authors are very dif-

ferent.
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