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It is shown theoretically that the superconducting state coexisting with charge-density wave

(CDW, its wave vector Q) is characterized by the spatially varying periodic order parameter

b, (Q) in addition to the ordinary uniform order parameter 5(0). Perturbational calculation

based on the linearized gap equation yields the depression of the transition temperature of this

state. The upper critical field H, 2(T) is derived from the Ginzburg-Landau (GL) equation

modified so as to include the effect of the CDW, and shown to exhibit a positive curvature in

H, 2(T) vs T curve when applied magnetic field is perpendicular to Q. The parallel H, 2(T) fol-

lows the ordinary GL theory, Physical implication of this result is discussed in connection with

highly anisotropic superconducting materials.

I. INTRODUCTION

Recently many experiments have been performed
on charge-density waves (CDW) in highly anisotropic
materials such as layered-type or quasi-one-dimen-
sional systems. Among them systematic experiments
on 2H-type layered transition-metal dichalcogenides'
have been done to show the existence of supercon-
ducting (SC) state at a transition temperature T,
lower than the CDW transition temperature Tmw. It
is natural to imagine that the CDW persists below T,
because the SC condensation energy (T,'/eF, eF is
the Fermi energy) is much smaller than that of the
CDW (Tc2ow /eF) when T, ( Tcow. In fact the re-
cent Raman scattering study on 2H-NbSe2' ( T, = 7.3
K, Tcow = 33 K) down to 2 K might be the first ex-
periment' which confirms explicitly the coexistence
of CDW and SC in such materials as far as the au-
thors know.

In this respect, the recent upper critical-field mea-
surement on Nbj „Ta Se2 raises an interesting ques-
tion and gives a clue to the long-unsolved problem:
The anomalous positive curvature in the H, 2(T) vs T
curve appears near T, as x decreases or TcDw in-
creases. This strongly indicates some interplay
between CDW and SC. It is reported that such
anomalous positive curvature in the H, 2( T) vs T
curve near T, also appears in other highly anisotropic
materials, NbSe3 (Ref. 4) and TaS, (Ref. 5), quasi-
one-dimensional polymer (SN)„(Ref. 6), and the or-
ganic superconductor' (TMTSF) 2PF6 at high pres-,

sure. NbSe3 and (TMTSF)2PFq exhibit a CDW tran-
sition at ambient pressure; TaS3 and (SN)„do not.
These experimental findings encourage us to investi-
gate the correlation between SC and CDW and lead
us to reexamine existing theoretical work. Note that
no one has yet succeeded in explaining the
anomalous positive curvature in the H, 2(T) curve

with reasonable physical grounds, although, in some
layered compounds intercalated with organic
molecules, some aspects of the anomalous behavior
in H, q(T) can be explaineds by the interlayer Joseph-
son phase-coupling model,

Recently Balseiro and Falicov' investigated
theoretically the coexistence problem of CDW and
SC in layered materials, and Bilbro and McMillan"
have also studied a similar problem in connection
with the martensitic transition in 315 type materials.
Both authors assumed a priori BCS pairing with oppo-
site momenta k and, —k under periodic lattice distor-
tion, In this paper we shall point out the possibility
of a different SC state. In the presence of CDW,
which strongly mixes up the conduction-electron
states near the Fermi surface to open CDW gap in
the energy spectrum, the stable SC state is such that,
in addition to ordinary order parameter 5(0), there
appears spatially varying order parameter 5(Q) to ad-
just itself with CDW of wave vector Q. A similar
possibility was investigated in the presence of fer-
romagnetism" and a spin-density wave. ""

II. STABILITY PROBLEM

We consider the stability problem" of the super-
conducting state which coexists with a charge-
density-wave state. The latter state gives rise to a
spatially periodic lattice distortion which exerts a
periodic potential on conduction electrons via
electron-phonon coupling. Here we only investigate
the case in which the superconducting transition tem-
perature T, is much smaller than that of CDW.
Therefore we neglect the reaction of the CDW state
due to the presence of superconductivity, and regard
the CDW state as an external perturbation on the su-
perconducting state. Thus the Hamiltonian we take
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0 = X(kCk~Ck~ —V X (Ck~Ck+g~+H. c.), (2.1)

where we assume V as a given parameter although V

is temperature dependent, of the order of Tco~ and
proportional to the order parameter of CDW. We
also assume that the wave number Q which charac-
terizes the CD% state is equal to 2kF, where kF is the
Fermi momentum. As is seen later, if Q & 2kF,
CDW hardly affects on superconductivity.

Let us consider the stability problem of the super-
conducting state under such periodic potential, start-

ing with the linearized gap equation for the spatially
varying order parameter A(r):

A(r) =gT X JI K (r, r', rn„)A(r')dr' (2.2)

K(r, r', con) = Gl(r, r', &on)Gl(r, r', —con), (2.3)

where Gt(r, r', co„) is the thermal Green's function for
an up-spin electron. In the following we omit the
spin index because the system is invariant with

respect to spin inversion. g is the effective attractive
interaction between conduction electrons. By the
Fourier transformation, Eqs. (2.2) and (2.3) become

A(q ) = gT X XK (q, q', o)„)A(q')
I

n

K(q, q', rn„) = X Gk, k, (rn„)Gk, k ( ru„)5(—kl+k—3 q)5(k2+k4 —q')
k —k

1 4

(2.4)

(2.5)

Since relevant wave numbers we must take into ac-
count are q =0 and Q, it is enough to pick up two

wave numbers in the sum of Eq. (2.4). Thus Eq.
(2.4) is rewritten as

I

potential, and defined through

1 —gT QK(0, 0, o)„) b (0) =0
"n

(2.g)

[1 —gK(0, 0)]5(0) +gK(O, Q)h(Q) =0

(2.6)

and

1 gT,
' $K (0—, 0, o)„)= 0 (2.9)

1 —gK (0, 0) gK (O, Q )
gK(Q, O) 1 —gK(Q, Q) (2.7)

which in turn determines 'the transition temperature
T, at which the superconducting state characterized
by the two order parameters A(0) and h(Q) appears.
We have defined K(q, q') = T X K(q, q', rn„). This

superconducting state is more stable than the ordi-
nary BCS pairing state with the opposite momenta k

and —k and must be energetically favorable if
T, & T,

' where T,
'

is the transition temperature of the
ordinary BCS pairing state under the spatially periodic

gK(Q, O)&(0)+ [1 —gK(Q, Q)]&(Q) =0 .

Then a nontrivial solution for 6(0) and A(Q) is ob-
tained when

In order to evaluate the matrix elements of the in-

tegral kernel K (q, q', cu„), we take free electron spec-
trum with the Fermi sphere of radius kF and

Q = (0, O, Q = 2k') in the cylindrical coordinate.
Then the relevant electron Green's functions are
given by

4) (Irn. (k+g)

k, &(0,

(2.10)

Gk „+g (a „)=,. (2.11)V

(I ~n —4k) (I ~n 4 ig) —1

The diagonal element K(0, 0, co„) of the kernel is
evaluated as

K(0, 0, con) = X[Gkk(con)G k k( —~n)+Gkk g(rnn)G k k+g( —~n)+Gkkpg(sun)G k k g( —con)] . (2.12)
k

The other kernels are the following:

K(Q Q n) X [ kk+g(n)G —k+g, -k( rnn+)kGk ~(n)Gk+g, —k+g( ~ )]n
k

(2.13)

K(0 Q, ~n) =K(Q, O, ~n) = $[Gkk(~n)G k+g k( m)n+G kk—g(m )nG k+g k+g( ~n)]
k

(2.14)
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We consider the effect of CD% perturbationally and
restrict our discussion to the lowest order of V/eF.
Within this approximation, it is easy to see that'
K(0, 0) =K'p'(0, 0) —(V/aF)~K"'(0 0)
K(Q, Q) cx ( V/aF)' and K(O, Q) = ( V/eF)K (O, Q)
when the order of T,/eF is neglected. Then Eq. (2.7)
is rewritten to the second order in V/eF as

1

—= K 'P'(0, 0) ——[K "'(0,0) —gK'(O, Q ) ]
g 6F

(2.15)

preciable portion of the Fermi surface is modified by
the presence of CDW'. Note also that the formation
of superconducting energy gap associated with 5(Q)
is anisotropic with respect to Q even when starting
with a spherical Fermi surface band. Thus the super-
conducting anisotropy is enhanced in low-dimensional
materials even more.

III. LINEARIZED GL EQUATION AND
UPPER CRITICAL FIELD

V2 1 (1-p),
T,p geF2 gN(0)

n+-
p = —' [gN (0) ]' $, ln

n & OP+ — F/
2

(2.16)

, (2.17)

This clearly shows T, ) T,
' because of the presence

of the off-diagonai term K'(O, Q ) as far as this has
an appreciable value, that is, the superconducting
state with 5(0) and 5(Q) is always more stable than
the simple BCS state. Note that when the wave
number Q differs from 2kF, the off-diagonal element
K(O, Q) simply vanishes because the mixing of wave
functions of conduction electrons near the Fermi sur-
face due to CDW' formation does not become effec-
tive and hardly affects on superconductivity. There-
fore the ordinary Cooper pairing becomes stable.

We evaluate explicitly the matrix elements of the
integral kernel in the Appendix using three-dimen-
sional Fermi sphere model. [Note that deviation
from the spherical Fermi surface model further stabi-
lizes this modified superconducting state because the
anisotropy of the Fermi surface enhances the off-
diagonal element K (Q, O). Thus we can expect more
favorable situation in actual highly anisotropic materi-
als. ]

Substituting Eqs. (A8) and (All) into Eq. (2.15)
we obtain

In order to elucidate physical implication of the
modified pairing state, we now consider the upper
critical field H, 2(T) semiphenomenologically under the
presence of magnetic field with different directions.
The simplest argument to determine H, 2(T) is to use
the linearized Ginzburg-Landau (GL) equation"
which is modified so as to be consistent with the
above discussion given in Sec. II. We start with the
linearized gap equation (2.2) to see what kind of
terms come into play additionally in GL equation in
the presence of CD%:

ls(r) =g J~~ K(r r+ R )h(r +R )d3R

(3.1)

K (r, r +R ) = T XK (r, r + R, cv„)

Expanding ls(r +R ) around R, and neglecting the
higher-order term in ( V/eF)', we arrive at the fol-
lowing GL equation:

(a;+2b; cosQ r.)
8'a(r)

i x,y,s Bxi

+ [gK (0, 0) —1]h(r)
—2gK(O, Q) cosQ res. (r) =0, (3.2)

where

where coD is the Debye frequency and T,o is the tran-
sition temperature for the unperturbed superconduc-
tor ( V=O). A rough estimation yields p=0.98
when eF =3000 K, T p= 5 K and gN (0) =0.2 are
employed.

Thermodynamic properties of this superconducting
state with the two order parameters h(0) and 5(Q)
are not much different from the ordinary BCS state
because the ratio A(Q)/5(0) is of the order of
( V/eF) which is assumed to be small. Therefore
correction of thermodynamic quantities to the BCS
state may be of this order at most. However in high-

ly anisotropic materials such as layered-type com-
pounds or quasi-one-dimensional systems, the ratio
h(Q)/6(0) should be enhanced enough to be ob-
served in thermodynamic quantities by a careful mea-
surement because in highly anisotropic materials ap-

a, = X Jt K(q, q )e " R,'d'R

r

= —,~(3)gN (0) +O7 &F V

o' Tc, &F
(3.3)

h;=X K(q+Q, q)e "sR d3R —0—V
I

e

gK(0, 0) —1 =gN(0) InT/T

(3.4)

(3.5)

vF is the Fermi velocity and ((3) is the zeta func-
tion. Therefore up to the linear order in ( V/eF) this
equation reduces to the Mathieu-type differential
equation, and differs from the ordinary GL equation.
The new equation has an additional potential term of
the form K'cosQ r which comes from the presence
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of the off-diagonal element K (q, q + Q) in the in-

tegral kernel. This potential term is due to the pres-
ence of COW.

Hereafter we only treat the following semi-

phenomenological gauge-invariant GL equation with an
anisotropic mass under a magnetic field

r

t
A

—(P' —2ieA) (0 —2ieA)h(r)
201

+K'cosQ(r —rp)h(r) = b(r), (3.6)
2m )'(T)

where g(T) is the coherence length [g '(T)
~ ( T, —T ) j, K' a constant of the order of

I/iaaf O O

0 I/m 01

m
0 0 1/m,

(3.7)

Then we write Eq. (3.6) as

( V/eF)/g'(0), A the vector potential, (1/m ) the
effective-mass tensor, and rp= (xp,yp, zp) is chosen
so as to select the lowest eigenvalue. When K'=0,
Eq. (3.6) reduces to a conventional GL equation"
with an anisotropic effective mass.

Let us consider a layered-type crystal with uniaxial
symmetry, and assume

r 't

2mA 2 g 2m'Ay g 2n A—I I + ——I
Qx 40 Qy 40 Qz

+K cosQ(z zp) h(r) = h(r)1

g'( T)
(3.8)

with e2=M/m, and 4p(= he/2e) is the flux quantum. We have chosen the yz plane as the layer plane (Q llz),
and gq(T) is the coherence length perpendicular to the layered plane.

A. 0in xy plane: 0,2(P)

Denoting $ as the angle from x axis in the xy plane, we can choose the vector potential A as
A=H(z sing, o,ycosg). Then Eq. (3.8) reduces to

'2
2

2

—izh sing —e
2

—e ——iyh cos$ +K cosQ(z —zp) A(r) = A(r)1

8x Qy2 Qz g,'(T)

with h =2~H/@p In order to find out the lowest eigenvalue which gives the highest field H, 2, putting

A(r) =exp(ik x+ik~y +ihyz cos$)g(z)

we obtain

(3.9)

(3.10)

d(k„—zh sing)'+e (k~+zh cosq5)' —e', +K cosQ(z —zp) g(z) = g(z)
gj'( T)

(3.11)

Since the lowest eigenvalue occurs at k„=k~ =0, it becomes
r

d—e', + (hz )'(e'cos'P+ sin'P) + K cosQ (z —zp) g (z) = g (z)
dz g'(T) (3.12)

It is hard to solve the eigenvalue problem of this
equation in general. We regard the cosine potential
K cosQ(z —zp) as a perturbation. A similar argu-
ment is given in Ref. 9. The unperturbed equation
of Eq. (3.12) is nothing but a simple harmonic oscil-
lator problem and hence the eigenvalue E„ is given
by

E„=(2n +1)eh (p) (e'coszQ +sin'p)'i2 (3.13)

and the eigenfunction is written in terms of the Her-
mite polynomials. The first order shift 5E of the
lowest eigenvalue (n = 0) due to the cosine potential

is easily calculated as
1

SE=—~K(exp —,z . z «, , (3.14)
eQ2

4h e'cosz$+sinzg 'i'

where we have chosen zo to minimize the energy.
Inserting the lowest eigenvalue, we obtain h„(P)
= 2~H„(y)/a, as

1 = eh. 2(g) f (P) —~K I exp- gn2

gg( T) 4h, 2(qh) f (Q)
(3.15)

f (P)=(e cos /+sin P) i
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It is noted that as long as h, q(@) ( Q'/8 f ($) is ful-
filled, H, z($) has a positive curvature near T, . In
order to observe this anomalous temperature depen-
dence of H„(@),the exponential factor in Eq. (3.15)
should have an appreciable value. This is possible
when (1) H, (z$) is large enough because the
wavelength of CDW ordering is of the order of lattice
spacing in layered-type compounds, and/or (2) the
wavelength Q

' of CDW ordering is relatively long.
Note that in 2H-NbSez ( T, = 7.3 K) the upper critical
field H, q(T) parallel to layer plane reaches 100 kG at
around T/T, =0.5. However we should remark that
in such high field we might resort to a more sophisti-
cated method to calculate H, q(T).

B. H tlz; Hc~z

Taking A = (O, Hx, 0), we rewrite Eq. (3.8) as

8 98
/AX 6

2x2 Bp Qz2

+K cosQ(z —zp) h(r) = A(r) . (3.16)1

gg( T)

We assume A(r) = exp(ikry )g, (x)g, (z) and choose
k~ =0. Then the above equation reduces to

r

d2
+ (ehx )' g~(x) = E~g~(x)

dx2
!

and

(3.17)

—K cosQ (z zp) gz(z) = Ezgz(z) . (3.18)
2d'

dz

Therefore the lowest eigenvalue of the former equa-
tion gives H,*z (T) as

H* (T) = +o

2m'(0) e T,
(3.19)

IV. CONCLUSION AND DISCUSSION

We have shown that in the presence of CDW with
a wave number Q(=2kr) the stable SC state is

The upper critical field H,'z ( T) parallel to Q (or
parallel to the layer plane) does not exhibit a positive
curvature but follows the ordinary linear behavior
near T, as expected by the conventional GL theory.
It should be noted that upon decreasing temperature
the ratios H, z($)/H;q and H„-/H,", do increase,
which is sharply contrasted to the prediction from the
conventional GL equation where these ratios are
temperature independent. The temperature depen-
dence of H, z/H, z, the ratio of perpendicular to paral-
lel upper critical field, have been observed in layered
compounds such as 2H-NbSe2. '

characterized by the two order parameters: One is
the spatially varying pairing 6(Q) whose static wave
is given by the wave number Q same as CDW, and
other the ordinary Cooper pairing h(0). We show it

by examining the linearized gap equation under a
periodic lattice distortion due to CDW perturbational-
ly, assuming a second-order phase transition. This
stable SC state turns out to be easier to coexist with
CDW compared with the ordinary BCS state.

It should be pointed out that the spin-density-wave
(SDW) perturbation, '4 which is spatially periodic spin
alignment, breaks the time-reversal symmetry. Su-
perconductivity in such a case is heavily suppressed
compared with the present CDW case where the
time-reversal symmetry is not broken. Therefore su-
perconductivity in a CDW can exist relatively easily.
[We should remark that this modified pairing state is
influenced by the presence of normal impurity
scattering because 5(Q) is not time-reversal pair.
However since we only consider the system where
CDW, which is also formed by non-time-reversal
pairs, is fully developed, it is not unreasonable to as-
sume that h(Q) is not suppressed by normal impuri-

ty scattering. ] A similar calculation in SDW case
shows that the stable superconducting state is nothing
but the ordinary BCS state in which the effective at-
tractive interaction gN (0) is simply reduced by the
SDW perturbation.

As is mentioned before, since this static spatially
varying order parameter spontaneously breaks the
spatial symmetry, it is expected that the Goldstone
boson as a collective mode appears. This is because
the spatially varying condensate wave function d, (Q)
can slide without energy loss just like the phase
modes in CDW. We expect that this stable SC state
might be detected by measuring various thermo-
dynamic quantities in low-dimensional materials.
However the most promising way is to measure the
upper critical field. A qualitative difference in the
temperature dependence of H, 2 is expected, depend-
ing upon relative directions between the applied mag-
netic field and the wave vector Q. In this connection
the recent experiment' of H„( T) on the layered-type
compound Nb~ „Ta„Se2 is interesting, in which the
anomalous positive curvature in H, 2 parallel to layers
near T, is suppressed as x increases or Tc& is
lowered. This suggests importance of the interplay
between CDW and superconductivity, and is qualita-
tively understood by the present theory. Therefore it
is highly desirable to measure H, q(T) more carefully,
especially when the applied magnetic field is in the
layer plane where we expect the temperature depen-
dence of H„different for parallel to Q and perpen-
dicular to it. In 2H-NbSe2 CDW is characterized by
the triple Q, therefore it may complicate the situa-
tion.

We do not consider in this paper the reaction of
CDW state due to the onset of superconductivity, re-
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garding CDW perturbation &'as an external potential.
This is valid as far as T, is much smaller than TCD
as the case in 2H-NbSe2. We also do not consider
the possibility of a CDW state in the presence of su-
perconductivity (the case T, ) Tcow). These prob-
lems remain for future work.
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APPENDIX: EVALUATION OF THE INTEGRAL KERNEL K (q, q', co„)

1. Diagonal element K (0, 0, co„)

Substituting Eqs. (2.10) and (2.11) into Eq. (2.12), we can evaluate lt'(0, 0, co„) in the form

K(0, 0, co„)=2 (i~n 4—g) (-C~—n 4 g)—-
k &O [(i con —4) (icon —(k g) —V ] [( ico„——gk) ( i co„——$k g) —V ]

2

+2X
k [( n fk)( '~n 4k —g) V ][( tenn ck)n( econ 4k —g)

(Ai)

If we subtract and add the term

1

t, &O (tknn 4)( tCOn 4-k)
(A2)

then, Eq. (Al) reduces to

«~. —4)(—i~n —4)+ V'
E(0, 0, co„)=2 X-

k [(econ —(k)(tenn —4 g) —V'][( tenn ——4k)( Icon pk g) —V']

—2
k, &O (i~, 4k)( t'~n —4 k)—

We define the integral l„of the first term of Eq. (A3) as

X
2C+4V~

AA'

(A3)

3 = t' —t(2i co„—L+ L) + (i co„——L+)(i co„—L ) —V2

A = t 2 t ( 2i co„——L+— L) + (i co„+L—+) (i co„+L ) —V2

C = —(3 +A') —t(L+ —L )+2co2 —L+L + (L )'

(A4)

where we have introduced the cylindrical coordinates (kn, k&, k, ), t = kn2/2m, and L- = k2/2m + k, 0/2m. After
some rrianipulation we obtain

( '2

lk =— dk, dt ++4'co'+ ' + V2k=
(2 )3 — o

(AS)

We evaluate it perturbationally to the second order of ( V/eF), that is,

II, = I1+f2

1/2 2 2
yg l $ X 46pX ctJ~ + 2l 6tJ~X

I1= 3-2 dx- ln
(2~)3 o 2 jx 2i co„x'—4eFx —co2 —2i co„x

1/2
21rm 4 V2 t d

l71

(2n )3 ei o 2 (x2 4e x &2)2+4~2x2
c

(A6)
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where x = k,'/2m. In view of the fact that c«„/eF is very small these integrations are performed as

27TN (0) ~N(0) V'

8.,' (A7)

where N(0) =tn't'eP'/42m' is the density of states at the Fermi energy. Therefore we obtain

K(00„) mN(0)
I

1 V

8 e,' (A8)

2. Off-diagonal element K(0,0, ao„)

Substituting Eqs. (2.10) and (2.11) into Eq. (2. 14), we evaluate K(O, Q, cu„) as

K(O, Q, (o„)=X, t+ k,'
2m

t

2V 2am "d~ x &~&~ Iln, — ln =-

4y ( y'+ ~.') 6(2 « ~.y 642
where

f~ 2 =i ru„—x +y, y = [ (k Q/2m ) 2+ V2] ~I2

Neglecting the order of Ot„/eF and the terms higher than the second order of ( V/eF), we obtain

~NOV
8&FI~&l

3. K(00, ~„)

(A 1 0)

(A 1 I)

It is straightforward to show in a similar way from Eq. (2. 14) that
t '2

K(Q, Q, co„).=wN(0)0, +X, (t+L ) +co„——]/2 k, Q

&F k AA' 2 m
(A12)

The second term is of the order of T,/eF smaller than the diagonal element K (0, 0, co„) and can be neglected.
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