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Light-induced electron-spin polarization in cubic crystals
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From general wave functions transforming irreducibly according to the double groups, general-

ized selection rules for the production of spin-polarized electrons in cubic crystals by circularly

polarized light are derived. Nonzero results are obtained for the b, and A direction, with equal

strength for spin-up and spin-down electrons of a particular transition, if right-circular polariza-

tion is changed to left-circular polarization. The strength depends on a parameter proportion &1

to the integral performed on the spatial parts of the wave functions. The results can be easily ap-

plied to hybridization effects and are confirmed by recent experimental data on tungsten.

I. INTRODUCTION

Photoemission of spin-polarized electrons induced
by circularly polarized light may serve as an experi-
mental method to obtain information on the electron-
ic structure of solids. ' The excitation of unpolarized
electrons into spin-polarized final states is governed
by selection rules which allow quite general predI[c-

tions on the spin polarization to be made once the
symmetries of the different electronic states are
known. Such selection rules in the past have been
derived by Koyama and Merz' and more recently by

Reyes and Helman, ' but their trestment of the prob-
lem does not exhaust all the information which may
be gained from group-theoretical methods. Especially
the question of how to take into account hybridiza-
tion effects has not been answered and this deficiency
resulted in severe discrepancies between theoretical
predictions and experimental results. ' It is therefore
the aim of this contribution to deduce those selection
rules on a very general level which allow hybridiza-
tion to be taken into account in an easy way.

part of the wave function transforms according to
one of the representatioris of the corresponding sin-
gle group. Proper linear combinations of spatial and
spin-wave functions can be easily constructed with
the help of coupling coefficients given by Koster
eI aI. 5

We now restrict our calculation to spin-polarized
electrons due to direct interband transitions induced
by circularly polarized light along the [100] direction
(C4„symmetry) and [1 ll] direction (C3„symmetry)
in cubic crystals. For the 5 direction (C4„) we have
four one-dimensional single-valued representations
and one two-dimensional representation for possible
spatial parts of the wave functions, while for A(C3 )
there are two one-dimensional representations and
one two-dimensional one. The effect of spin-orbit
coupling is introduced by multiplication of the
single-group representations with the spin representa-
tions (h6, A6).

The reduction of these products yields for C4„and
C3 symmetries:

1

X Q6 Q6 Q X Q6 Q6 Q2 X Q6 Q7

II. THEORY r

X Q6 Q7 Q5 X Q6 Q6+ Q7
(la)

The number of spin-polarized electrons, excited
with circularly polarized light in unpolarized metals
depends on the spin-orbit interaction and general
symmetry requirements. Therefore general selection
rules and the relative strength of different transitions
can be calculated without an explicit consideration of
the radial part of the wave functions involved.

In the presence of spin-orbit interaction, the sym-
metry properties of the electron-energy-band wave
functions P-„( r ) are described by the irreducible

representations of the double group corresponding to
the group of the wave vector k. These functions are
composed of a spatial and a spin part. The spatial

Al X A6=A6I' A2X A6=A62' A3X A6=A63+A43A53

(lb)
The representations are labeled according to
Cornwell, ' the subscript indicates the double group
representation, the superscript the single-group
representation from which it is derived; the A4A5
representations are taken together, because they are

. degenerate due to time-reversal symmetry.
We now present general symmetry-adapted func-

tions. The spinors [[u), ~P)) with l~) =
I ] ) and

~p) =
~ j ) generate the representations 56(A6). The

following functions define the spatial parts by specify-
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(2a)

A~'. u~ transforms as z

A2.' u2 transforms as s,

A3 ~ {II I Il+]} transforms as {s„—is», —(s„+ is» )}

(2b)

ing their transformation properties under C4„(C3 ):
transforms as z

w2 transforms as (x —y )
transforms as x y

{Il„,II»} transforms as {s„,s»}

Herein x,y, z denote the components of a polar vector
and s„,s„,s, those of an axial vector. The z com-
ponent is along LL and A, respectively.

As shown above there are three types of L6 and h7
functions, while for the [111]direction three A6 and
one pair of A4A5 functions exist, each type being
derived from a distinct single-valued representation.
The corresponding basis functions follow from the ta-
bulated coupling coefficients and are listed below, in
a labeling scheme suggesting itself in the C4„and C3„
symmetries:

III6. —l/2= II'I IP)'

A2, l/2=~2IP);
I

Iil2, —&/2= /II'2 Ip) '

III6, I/2
= I la)

$7, I/2 +21I2&

I

42. l/2= /a'2~I)
(3a)

(/~x+ ~») l~&;
1

2

(i II„—u») la);1

2

(/~ ~») I p&
1

2

q2, l/2= (/~. + ~, ) I p) ~

1

2

@6, —I/2 ~ I lp&;

d'6, —I/2
= /I/2 IP ) '

46, ]/2

@6, l/2
2

+3 1
(II Ilp) —iII+l II2) ); @s= (/II-l lp) I/+I llr) )

1

2

(3b)

d'6, —I/2
= II-l II2); +6, I/2

= —II+I IP)

It should be noted, that we omitted wave functions

transforming as 5 x 46. This is not due to a group-
1

theoretical argument, but, for reasons resting on the
practice of band-structure calculations. In the Ap-
pendix A we have tabulated the angular parts of
s,p, d,f functions (spherical harmonics) transforming
like the basis functions of the single-valued represen-
tations. As an interesting result no linear combina-
tion of spherical harmonics with L', ~ 3 transforms as

5, under C4„.
Therefore for electric-dipole transitions with

hZ =+1 no transitions from or to a d level can oc-
1

cur for Z & 4. On the other hand, for example, in

the Green's-function method spherical harmonics
with g «4 can be omitted without serious loss of ac-
curacy. 7

We now consider a transition of the system from
state X„" to the state X'&', induced by the electric vec-

tor of incident light. The transition matrix element is

M' / = (x'/'l6 Qlx„"'&
V V V

(4)

where ~ describes the polarization of the incident
light and Q is the electric-dipole-moment operator.
The wave functions belong to the representation 6;
and 5/, while the operator 6 Q may belong to 5„.
Then M'i ~ is zero unless b, k x b„contains lL&. Thus,

V V

knowing the transformation properties of the opera-
tor, we can deduce the selection rules for circularly
polarized light, because such nonzero matrix ele-
ments have to be assumed to produce spin-polarized
electrons.

The operators Q„iQ» with 6 = (1/J—2) (x —iy )
and Q, +iQ» with 6+= (1/J2)(x +iy") correspond to
right-(left-) circularly polarized light propagating in

the -z direction. They both transform as b, 5 and A3,
respectively. The reduction of the products restricted
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to the single group results in necessary conditions for nonzero matrix elements:

Qs x Q) ——Qs~M' s &0

hs x A2 ——bs M~ s ~0
y

hs x b, , =ds M2 -s &0

hsxhs=b)+b, i+62+5 r~M 'WO; M 'AO; M &0

(Sa)

A3 x A( =A3 M' &0

A3X A2=A3~M' 'WO

A3 x A3 A} + A2 + A3 ~ M ' W 0; M ~ O' M & 0

(Sb)

For the 5 direction we can expect spin-polarized elec-
trons due to transitions between the doubly-
degenerate state b, s and b,

, h2 or 5, and vice versa,

while for the A direction those between A3 and
A

) A2 A3 can occur.
From this it is obvious that the condition of g„and

g» belonging to the same irreducible representation
requires a principal axis of an order higher than 2.
This serves as a necessary condition for a nonzero
spin polarization. In order to calculate the matrix
elements M', ' and the resulting electron-spin polari-

V V

zation we make use of the ",generalized Wigner-
Eckart theorem" developed by Koster', The matrix
elements (liy' IQ~I&'„) and (4, IQ„I@'„') with p, =xy
are equal to a known matrix times a constant in-

dependent of v, v', and p, . To derive these matrices .

we remember that Q„lg'„) involves the spatial func-
tions Q„l and Q„u». The four functions are now
projected with the help of the coupling coefficients
onto the irreducible representations A, ,A2 and b, , of

C4„, because g» transforms as s„and —g„as s» of

desired matrix. For example,

(46, —I/2 IQpal$6, 1/2) = ( lv) IQ„I I l. + Uy) (p ip)
2

= —,
'

(IQy —Q-) (~ilg, l~. ) (pip) .

We obtain

0 e (p)
(6a)

where 2dJ = (w, Ig»lv„) and e+(a) means that left-
circularly polarized light produces e electrons. The
parameter do can be further reduced to a radial part
only using the angular parts of the wave functions
given in the Appendix &, or completely if wave func-
tions from band-structure calculations are available.

In a similar way we obtain

g»v„—g„v» = a~

0
QIA', ) =do'

~+(p)
. (6b)

~ 2 gy vx + gx vy = a 2

gy lly gx +x

(6)
The remaining transition matrix elements follow in a
straightforward manner from the fact that the spatial
part of p', „ is w& and belongs to 5, thus forming

nonzero matrix elements which are proportional to
(wllgylvx) = (w, lg„lly). It is found

Let us consider the transition h, 6
5' described by6

, I Q I/6„) with k, X' = + —, . The spatial part of
, is w~ and belongs to b ~. This forms a nonzero

6, g

scalar product with aI only. Therefore, the nonvan-
ishing matrix elements are those proportional to

0
Qlel, .) =d2

( )

—e+( p)
0

(6c)

w( y lfx — w) x +y

With this result in mind it is easy to calculate the

0 +~ (p)
0 (6d)
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where 2do2 = (a, lg, lu»). Finally we obtain with fo = (ui lg-lu+i),

—o~(p)
(6e)

0
(@o „ I o ' 0 I C'o. a ) =. fo ~2

—&2o (p)
0

r

(0,', lo'QIANA. i) =do + ( )
i

-o (p)
(6f)

0 —iJ2o (P)
, (7c)

Ai'. Q+u i+ Q u+i =, bi

A2'. Q upi Q+u i
= bg (7)

A3 ~ Q+u+i b i, Q u i
= bqi, with Q+ -Q„+ ig»

This yields the following matrices for the transitions
of interest

where 2do = (w, Ig~lu~).
The results are as follows:
(i) Spin polarization produced by left- and right-

circularly polarized light have the same magnitude,
but opposite sign.

(ii) Equivalent transitions between initial states of
a distinct spatial part and those of final -states with

the same spatial part are equal in magnitude and pro-

duce the same sort of electrons but with different po-
larization of the light.

(iii) The relative strength of transitions to dif-

ferent spatial parts of the final state are proportional
I

to do '.do '.do .
For convenience the results are tabulated in Table

I. This general result is in agreement with calculation
of Reyes et al. ,

' derived from special wave functions.
The same arguments can be applied to the case of

the A direction. x +i& transform as + s„—is~ of A3

and Q I@3) can be projected onto

with fo
= (u 2 I g- I u+i ),

(7e)

—io (a) —o+(p)
(@4@slo'Ql@o, ) ) =fo ( ); (p)

t i

with fo3 = (u ilg+Iu+i). lt is interesting to note,
that the last transition in Eq. (7e) is allowed by gen-
eral symmetry arguments but becomes accidently
zero, because u+ ~ forms only nonzero matrix ele-
ments with b+, while the first one vanishes if the

double group is applied. The last transitions
(@' IQI@o „) with v' = 4, 5 have not been considered

by Reyes. ' This is probably due to the fact that they
calculated only one set of d functions transforming as
A, while in general there is a second one as can be

seen by inspection of the corresponding compatibility
table. This additional set has been added in Appen-
dix A. Since f electrons are taken into account we

get two further transitions A6 A4A5 and A6 A6

producing spin-polarized electrons. Again our gen-
eral statements (i)—(ii) are fulfilled, because the
states A4A5 are degenerate due to time-reversal sym-
metry and have to be considered together. Table II
collects the results obtained.

TABLE I. Electron-spin polarization for the b, direction. Initial states are on the left, final ones
on the top. The table shows the results for right-circularly polarized light; to obtain those for the

opposite case e and P have to be interchanged.

Q2 Q2 g5

gl

Q2

g2

g5
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TABLE II. Electron-spin polarization for the A direction. Notation as explained in Table I.

A6 A43A3)

A26

A43A35

A63

III. HYBRIDIZATION EFFECTS
AND APPLICATIONS

The very general calculation enables us to take into
account hybridization easily. The most general forms
of wave functions transforming like A6 or A7 are

= ( + a7'bedo + b7 bedo ) e—(a) + c7 aedo e (p)
(10)

From this it is obvious that in general an electron-
spin polarization less than 100% must be expected,
depending on the degree of hybridization. Further
information can be extracted from a discussion of the
parameter do in Eq. (10). These parameters describe
the radial and the angular part of an unknown matrix
element between a 5' level and a 5" level, with

I

v = 1, 2, 2'. From the table in Appendix A do and do
are determined to be zero if the initial level has d-

band character and the final one is p-bandlike, be-
cause there are no p functions transforming like 5'
and A2. Thus, if o. electrons are observed, the tran-
sition should be of the type p d, provided f func-
tions may be neglected. The parameter do is
nonzero, except for a transition of the type p s, be-
cause no s function transforming like 55 exists.

Finally we discuss in some detail the more complex
situation of a 47 h7 transition. %e have

I

7 g=g7iI7 g+67$7 g+c757, x

(initial state),

i = a7 {1{ r + b7 {l{ i + c7 {17 (12)

Ae, 7
= a4e, e+7bele, 7,

(initial state),
I

i = a7{l{ t+ b7{l{ i + c7 1„{{

(final state), with ae, . . . , c7 describing the degree of
hybridization. Let us consider for example right-
circular polarization, i.e. , Q along e . Then

(final state), and therefore

(0 lie- Ql{1{7,x) ( c7 a7do +c7 b7d{) ) e( a)

+(+a7 c7do b7 C7do )e (p)
(13)

Neglecting f functions we conclude in a similar way,
that the production of spin-up electrons requires an
initial state with p character and a final one with d-

wave function. Spin-down electrons are achieved by
a d-type initial state and a final one with p character.
Consequently an electron-spin polarization less than
100% requires p-d hybrids for both the initial and the
finai state of a {{{7 A7 transition, as long as fwave-
functions are disregarded. For the case of the A

direction similar results may be deduced.
Unfortunately, very few experimental results on

electron-spin polarization in single crystals have been
published. %e therefore briefly comment on the
electron-spin-polarization measurements on tungsten,
recently presented by Zurcher ef al. ' With the help
of our general results we may get an insight into
several simplifications used in this paper to derive
some quantitative results. According to this work
two transitions labeled T{(47 h7) and T7(he b7)
contribute to the spectrum. Hybridization has to be
taken into account for both transitions, because a
spin polarization much lower than 100% was ob-
served. For the T~ transition p-d hybrids are claimed
which is in agreement with our general results de-
duced above. On the other hand, only two distinct
spatial parts (d', h7) have been taken into account

for the 57 levels, while in general three contributions
are expected, cf. Eqs. (11) and (12). From the
band-structure calculation used by those authors a
contribution of the hq level smaller than that of the

67 and 57 levels seems reasonable, But a zero one
seems doubtful, since on the other hand for the T2
transition a hybridization of 5~6 with 5', which is at

6

least equally separated in energy, must be introduced
to explain the observed spin polarization. As simple
relations between the coefficients b7, c7, b7, c7' do not
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TABLE III. Spatial parts of the wave functions transforming irreducibly under C4„and C3„.

Representations Spherical harmonics

C4„symmetry

YO 0~1~3

( Y2 + Y-2) 2+1~3

( Y2 Y-2), 2~1~3

(
— ( y]' + y] ' ), ( y}' —y] ' ) )42 V2

[
' (y3+y ), — (y,' —y )}

V2 42

1~1~3

C3„symmetry

Y2,0 0~1~3; (Y,' —Y )

( Y3 + Y3 )

(y-1 yl)
{y2 y-2)

1~1~3
2~1~3

exist, it is felt that a quantitative interpretation of the
T& transition requires more detailed information on
the band structure of tungsten, calculations of which
are in progress. Similar remarks apply for the T2

transition, because it has the same final-state sym-
metry as T~.

IV. CONCLUSION

changed to left-circular polarization. The strength
depends on a parameter proportional to the integral
performed on the spatial part of the wave function.
The results can be easily applied to hybridization ef-
fects, responsible for electron-spin polarization less
than 100'lo. In addition predictions on hybrids are
made and are confirmed by experimental results on
tungsten.

Starting with general wave functions transforming
irreducibly according to the double groups of C4„and
C3 we calculated generalized selection rules for the
production of spin-polarized electrons in cubic crys-
tals by circularly polarized light. Nonzero results are
obtained for the b, and A direction, with equal
strength for spin-up and spin-down electrons of a

particular transition, if right-circular polarization is

APPENDIX A

Here we present the spatial parts of the wave func-
tions transforming irreducibly under C4„and C3„as
defined by Koster et al. ~ The functions are normal-
ized and given in the phase convention of Condon
and Shortley (see Table III).

'P. Zurcher, F. Meier, and N. E. Christensen, Phys. Rev.
Lett. 43, 54 (1979).

K. Koyama and H. Merz, Z. Phys, B 20, 131 (1975).
3J. Reyes and J, S. Helman, Phys. Rev. B 16, 4283 (1977).
M. Tinkham, Group Theory and Quantum Mechanics

(McGraw-Hill, New York 1964).
5G. F. Koster, J, O. Dimmock, R. G. Wheeler, and H. Statz,

Properties of the Thirty-Two Point Groups (MIT Press, Carn-
bridge, Mass. , 1963).

6IJ ~ F. Cornwell, Group Theory and Electronic Energy Bands in
Solids (North-Holland, Amsterdam, 1969).

7B. Segall and F. S. Ham, Methods in Computational Physics
(Academic, New York, 1968), Vol. 8, p. 251.

G. F. Koster, Phys. Rev. 109, 227 (1958).


