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Temperature dependence of the L;-I",energy gap in gallium antimonide
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Electroreflectance spectra are reported for GaSb near the I"",-I"6direct transition and the I'",-L
~ indirect transition.

At 30 K the L;-I",gap is 0.063 eV. The temperature variation of the L;-I",gap in the linear region is of the order of
—1.8)&10 'eV/K '.

The recent development of high-quality optical
fibers in the 1.3- p, wavelength range' increases
the usefulness of Ge or III-V compounds such as
GalnAs, GaInAsP, GaAISb, and GaA1AsSb (Refs.
2-4) which present energy-gap values well adapted
to this wavelength.

Within a systematic study of the GaAlSb system
we had to determine precisely the band structure
of these compounds, especially the band crossing
I",—L;. It was essential for us to know the exact
energy-gap values of GaSb and its temperature
dependence.

Information on the band structure or GaSb has
been obtained from various investigations' '4. Ex-
perimental evidence has shown that L, local equi-
valent minima of the conduction band of GaSb was
slightly higher in energy than the lowest I", mini-
mum. The L; -I", gap was determined by fitting
the experimental data obtained by various trans-
port measurements. "" These investigations have
yielded different values of the temperature coef-
ficient of this energy gap ranging from -3&&10 ' to

8)&]0-4 eV K-& ~~ ~6

Here we present the first direct measurements
of the I'", —I:,and I'", —I", transition energies and
their temperature variations, using a heterojunc-
tion-barrier electroreflectance technique. De-
tails of the heterojunction barrier ' and the optical
technique are given elsewhere. '" The data are
stored in a computer.

In a previous study of the interband masses as-
sociated to the A4, —A; and A", —A; transitions in
GaSb (Ref. 14) we had to obtain very-high-purity-
single-crystalline material. In this present work
we used these crystals, grown by one of us. Cry-
stals were obtained by the Bridgman method from
antimony-rich liquid solution at growth rates of
7 &10 ' cm/s. They are p type, with carrier con-
centrations 2x10"cm a and Hall mobility 800 cm'/
V s at room temperature, 10~'cm a and 3800 cm'/

Vs at 77 K.
The weak second-order I",—L;, transition was

very difficult to observe: The associated structure
expected in the 0.9-eV energy range did not appear
in our low-field ~ electroreflectance spectra in
spite of a good sensitivity ' (AR/R)-7x10 '). The
necessary electric-field increase induced Franz-
Keldysh oscillations" "which could hide the ex-
pected signal, but in proper experimental condi-
tions this transition was observed with a signal-
to-noise ratio of 2.

Illustration of typical experimental spectra we
have obtained are given in Fig. 1. We can observe
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ElectrorefIectance spectra of GaSb near the
fundamental edge (Eo) and the Z'(-L& transition (L) for
different temperatures. The first Franz-Keldysh os-
cillations are noted 1.2. The 30-K computer-filtered
spectrum is inserted.
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that the 1 ", —L; transition (noted L) is quite well
separated at low temperature, while its high-tem-
perature proximity combines it with the Franz-
Keldysh oscillations associated to 1 ", —I'6 transi-
tion (noted Zo). We have verified the nondepen-
dence of this transition-energy position on the ap-
plj.ed electric fieM. The offset we observe at high
energies is due to the large A", , —A; transition
(8,) located at 2.19 eV." '4

To determine precisely the structure of the L
transition from our experimental data we first
subtracted from the experimental spectra the the-
oretical electroreflectance spectra with calculated
Franz-Keldysh oscillations associated to E„and
the calculated offset attributed to the E, transition.
On the FFT (fast Fourier transform) of the ob-
tained spectra we have eliminated the high-fre-
quency component. The inverse Fourier trans-
form of this modified FFT represented the exact
spectrum attributed to the I. transition with a sig-
nal-to-noise ratio better than the initial spectrum
(see insert in Fig. 1).

From, the energy value of the peak obtained by
this method we can determine the exact I",—L6
transition-energy gap, subtracting from the ob-
served peak the 17-meV value corresponding to
the GaSb LA~ phonon~' responsible for the main
structure in phonon-assisted indirect transition. "
The I'~6 —L; gap at 30 K is 63 meV.

Figure 2 represents the temperature dependence
of the Eo and I transitions. The Eo measurements
have been deduced from low-field electroreflec-
tance spectra and the precision of the results ap-
pears better than that related to the high-field
electroreflectance measurements of the weak g,
structure. We have also reported in this figure
the variations of the first Franz-Keldysh oscilla-
tions (noted as 1 and 2 on Fig. 1) energy positions
to illustrate that there is no confusion between
these oscillations and the L structure.

A least-squares fit in the linear range (100, 300
K) gives
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FIG. 2. Temperature variation of the fundamental

edge (Ep) of GaSb, the first Franz-Keldysh oscillations
and the observed 1'$-L~& transition (L). The dotted line
represents the temperature variation of the I'g -L6 gap.

—= —5.3x10-' eV/K,
dL

thus we can deduce d(L; —1",)/dt = —1.8 x10-' eV/
K.

The 7' and L minima conduction bands are pro-
jected to equalize at 401 K.

Our dZo/dt value is in good agreement with pre-
vious theoretical" and experimental" results.
The other existing studies of the L; —I", tempera-
ture coefficient were based upon a fitting of dif-
ferent magnetotransport measurements; our re-
sults stem from a direct measurement and yield
greater accuracy.
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