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The electron-gas theory of ionic crystals is extended to include nonadditive {many-body) in-

teractions arising from the simultaneous overlap of the densities of several ions. The theory is

used to predict equilibrium geometries, lattice energies, and pressure-induced phase transitions

for the fluorides and oxides of the alkali and alkaline earth metals. The results are in good

agreement with electron-gas calculations assuming additive, two-body interactions between pairs

of ions. This comparison shows that the simultaneous overlap of three or more ions has only a

small effect on these crystals, and that for many purposes the simpler two-body approximation

is adequate. The predictions of lattice distances and energies agree with experiment to a typical

accuracy of 1 or 2%. In order to obtain this accuracy, it is necessary to calculate the electron

densities for the anions in a stabilizing potential well whose size is determined self-consistently

by the electrostatic potential of the crystal at the anion site. This shrinkage of the anion by the

crystal is also a kind of many-body interaction, but it can be handled within the framework of
an effective two-body interaction involving the stabilized anions. The corresponding cation ex-

pansion effect is also calculated, and shown to be negligible for the alkali and alkaline earth met-

al ions.

I. INTRODUCTION

The development of an adequate theory for the
structure and binding in crystals has been a problem
in solid-state science for many years. Such a theory
should not only give good agreement with existing
experimental deta, it should also be of predictive
value and be applicable to systems and situations
which are experimentally inaccessible.

To date, the most widely applied theories have
been of the semi-empirical Born-Mayer type, "in

which the binding in solids is described as sums of
pair interactions. The forces between pairs are writ-
ten in terms of an interaction potential with variable
parameters which are usually determined by empirical
fitting to experimental data. With a careful selection
of a flexible pair potential, the Born-Mayer model
can give good agreement with a large variety of ex-
perimental results, but because it is an essentially
empirical model, pair potential parameters deter-
mined with one set of experimental data may give
poor results when used to calculate the properties of
other systems. The range of applicability of the
Born-Mayer model is severely limited by the experi-
mental data available.

A purely ah initio theoretical model would not
suffer from these defects. In practice, however, most
quantum-mechanical models' have been too com-
plex to be applied to any but the simplest solid-state
systems. Often the mathematical difficulties encoun-
tered and approximations introduced to surmount
these difficulties make rigorous quantum-mechanical
theories of limited practical value.

Perhaps the most promising a priori theory of re-
cent years is the electron-gas theory of Gordon and
Kim (GK)."" Although originally used for molecu-
lar systems, it has been successfully applied to a
number of simple ionic crystals. "" This theory has
been the subject of much interest and a modified ver-
sion has been found to give excellent agreement
with the known structures and binding energies of
the alkali halides""'' and alkaline earth oxides. " ' In
addition, the theory was used to calculate the
compressibilities, elastic constants, and high-pressure
behavior of these systems. In contrast to other
quantum-mechanical theories, the electron-gas theory
is easily applied to larger and more complex systems.
It holds much promise for further development and
extension to a wide variety of solid-state problems.

In their treatments of ionic crystals, Kim and
Gordon""' and Cohen and Gordon (CG)' expressed
the binding energy of the crystal as the sum of a
point Coulomb or Madelung energy term and a
short-range contribution which was written as a sum
of pair interactions. The short-range interactions
were determined by the electron-gas theory. The ma-

jor features of the original GK' theory and the later
modified electron gas (MEG) theory' are that the
short-range pair interaction energy is split into kinet-
ic, exchange„correlation, and nonpoint Coulomb
electrostatic contributions, and each of these is writ-
ten as a relatively simple functional of the electron
densities. The net electron density of an interacting
pair is taken as a superposition of the atomic densi-
ties, which are calculated from Hartree-Fock atomic
wave functions.

23 1981 The American Physical Society



23 ELECTRON-GAS THEORY OF IONIC CRYSTALS, INCI.UDING. . . 901

The model is similar to the Born model in that the
binding energy of the crystal is written as a sum of
pair interactions, and many-body effects are neglect-
ed. However, no empirical parameters are intro-
duced. The systems treated were of high symmetry,
where the energy could be written as a function of a
single lattice constant, and the structure determined
by minimizing the energy with respect to this param-
eter.

This approach can be readily extended to any crys-
tal where the binding energy can be written as a sum
of pair interactions between the atomic components.
Since the short-range energy will depend only upon
the distances between pairs, the binding energy will

in general depend upon the six lattice constants and
the positions of each ion in the unit cell. The struc-
ture can be determined by minimizing the energy
with respect to these geometrical parameters.

Such a model would still ignore many-body contri-
butions to the energy, which are the deviations of the
net interaction energy of a many-atom system from
the pairwise additive approximation. In the electron-
gas theory there are three types of many-body contri-
butions. The first type manifests itself in the non-
linearity of the density functionals for the kinetic, ex-
change, and correlation energies. The second and
third types of many-bogy effects are due to two types
of changes an atomic charge density undergoes in the-
presence of the other charges in the system.
Changes in the electron charge densities from their
gas phase forms will affect all of the electron-gas in-

teraction energies including the Coulomb energy,
which once the densities are fixed, is pairwise addi-
tive. These changes in the charge densities are of
two types:

(1) Size changes which retain the net spherical
symmetry of the charge densities.

(2) Polarizations or distortion of the electron den-
sities from spherical symmetry leading to dipolar or
higher-order multipole interactions in the system.

The size changes were incorporated into the
theory" ' by determining electron-gas pair poten-
tials from spherical Hartree-Fock charge densities
which were stabilized by including a Madelung poten-
tial term in the Hamiltonian. This is a means of ac-
counting for size change many-body effects. Dipolar
distortions were also included~ by means of a shell
model. ' The model was applied to a number of
ionic halide and oxide crystals and excellent results
were obtained for most of the systems treated. Un-
fortunately, it is not clear whether the energy differ-
ences between the gas phase and the stabilized anions
were included in the latest calculations9 of the
cohesive energies in these systems. In addition,
they report "cohesive energies" for oxide crystals
which are the energies necessary to separate the crys-
tals into gaseous cations and 0 anions. These
results are compared to "experimental" cohesive en-

ergies. As was discussed in detail by CG,""' there
are several inconsistencies in this type of comparison.
Since gaseous 0' is unstable, electron-gas lattice en-

ergy calculations for oxides must employ stabilized
wave functions of some variety. The calculated
cohesive energies then refer to the energy required to
separate the crystal into the stabilized anions, not gas
phase ions. The "experimental" cohesive energies,
determined from thermochemical data, are also in-

complete. Experimentally, oxide crystals can dissoci-
ate into free 0 ions not 0' ions. Values for the
energy change in the process 02 (g ) 0 (g) +e,
which are needed to complete the thermodynamic cy-
cle, have been reported, ""but these are based in

part on Born-Mayer lattice energy calculations, which
are themselves suspect.

A more appropriate quantity, which is experimen-
tally accessible, is the energy necessary to separate an
oxide crystal into free 0 ions, free electrons, and
free positive ions. %e will return to this point later
in Sec. V.

The pairwise additive approximation could be ex-
tended to crystals where the binding is between
molecular units if the pair potentials were expressed
as functions of the distance between units and their
mutual orientation. Such a model becomes cumber-
some, however, and difficult to use since completely
general methods for calculating the interaction energy
between a pair of molecules by the electron-gas
theory have not yet been developed. Once again,
nonadditive many-body effects, thought to be impor-
tant in describing the binding in many crystals, "
would be neglected.

In this paper we present a general electron-gas
theory for the binding in crystals, based on the MEG
theory, which includes nonadditive and size change
many-body effects. No empirical parameters are in-

troduced into the theory and it is applicable to any
atomic ionic crystal. The method is readily extended
to molecular crystals. " For the present we confine
ourselves to systems of relatively high symmetry and
ignore polarization effects.

The relevant equations used to calculate the crysta1
binding energy by the MEG theory are derived in

Sec. II and a general technique for calculating the
electrostatic interaction in crystals is presented, De-
tails of the numerical methods used to calculate the
binding energy are given in Sec. III, along with tech-
niques for handling multidimensional numerical in-

tegrations. In Sec. IV, we discuss a method, similar
to that used in Refs. 7(b) and 9, for incorporating
size changes of the anion densities in the crystal en-

ergy calculations. In Sec. V, a self-consistent scheme
for including this effect in the calculations is pro-
posed. In addition, we discuss theoretically calculated
energy cycles which are appropriate for halide and ox-
ide crystals and may be directly compared to experi-
mental quantities.
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In this paper, we test the model on a representative
selection of highly ionic fluorides and oxides and

compare calculated equilibrium geometries and disso-
ciation energies with experiment. The importance of
size change and nonadditive many-body effects is as-
sessed by comparison of our results with previous
results""''" ' obtained from gas phase fluoride and

partially stabilized oxide. wave functions in a pairwise
additive approximation. The predictive value of the
theory is also tested by calculations of relative stabili-

ty of alternative structures for these systems. Results
of the theory for more complex and less ionic crystals
will be published at a later time.

The theory is first applied to LiF, NaF, MgO, and
CaO in Sec. VI A. The results are in excellent agree-
ment with experimental energies and geometries and

are significantly improved over the CG' results for
these systems. The results of calculations for these
systems in the 82 (cesium chloride) and B3
(sphalerite) structures are given in Sec. VI B. The
method gives the correct relative stability for these
structures for all but LiF, which is found to be most
stable in the 83 form. Possible sources of this error
are considered.

The results of calculations on BeF2, MgF2, CaF2,
and Na20 are given in Sec. VII. The calculated
results for dissociation energies and geometries of the
observed structures are in close agreement with the
experimental values. Comparison of the observed
structures with a number of'simple alternative struc-
tures is made. For all these systems, except CaF2„
the model predicts the correct structure. In CaF2, a

rutile structure is calculated to be slightly more stable
than the observed fluorite structure. The pressure-
induced phase transition is calculated for MgF2, from
the normal rutile form to the high-pressure fluorite
form. The transition pressure and the pressure-
volume equation of state are in reasonable agreement
with experiment.

that

Ws ——( Ws + Wg + Wx + Wc )/&i

p;(x) = X X p, (x —r,, ) (2)

where the sum over i in this and all subsequent ex-
pressions extends over the individual charge distribu-
tions in the unit cell. The vector r;t points to the
center of a charge distribution in the crystal and may
be written as

where r; locates a charge distribution in the unit cell
nearest the origin and ri is a lattice translation vector.
The sum over Tin Eq. (2) extends over all unit cells.
For simplicity we will take the p;(x) to be spherically
symmetric charge densities, although most of the fol-
lowing is easily adapted to the case of nonspherical
molecular charge densities.

For the present we make no assumptions about the
spherical charge densities; they may be determined
from gas phase or stabilized wave functions of some
sort. Then —N'~ refers to the energy necessary to
bring these charge densities to infinite separation. In
order to derive an expression for the binding energy
as a functional of the charge density, it is most con-
venient to treat the three electron-gas energy terms
separately from the electrostatic term.

A. Electron-gas interaction energies

where H I.- is the electrostatic interaction energy per
unit cell and I~ is the number of formula units in the
unit cell. The remaining terms in Eq. (l) are, respec-
tively, the kinetic, exchange, and correlation interac-
tion energies per unit cell, which are calculated by the
MEG theory.

As our first approximation, we assume that the to-
tal electron density in the crystal can be written as a
superposition of the density of the individual units,

II. ELECTRON-GAS MODEL FOR CRYSTALS

In this section expressions for the crystal binding

energy, including nonlinear many-body interactions,
are derived from the MEG density functionals. %e
work within the static lattice approximation and con-
sider a set of fixed charge densities in a given crystal-
line arrangement. %e then define the binding ener-

gy, +~, as the crystal interaction energy relative to
the self-energies of the infinitely separated, fixed
charge densities. These charge densities may not be
experimentally observable species and thus W~ is

not, in general, an experimentally measurable quanti-
ty. The connection between H'& and experimental
dissociation energies will be made in Sec. V.

In the electron-gas theory we separate the
binding energy, H'~, into four contributions such

In the various electron-gas theories the total kinet-
ic, exchange, or correlation energy of a system of
electrons may each be written as an integral of the
energy-density functional for that term. The energy
density is a functional of the total electron density.
For a crystal, if the integral is written as extending
over a unit cell, the total energy per unit cell, includ-
ing the effects of nonadditive many-body forces, is
obtained. I he interaction energy for a given term
results when the self-energies of the individual
charge densities are subtracted from the total energy.

Let N'denote one of the three interaction terms,
W», W», or Wc, and 6 (p(x)) be the energy density
functional appropriate to that term. The electron-gas
interaction energy per unit ce)l is then

(3)
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where pE(x), Eq. (2), is the total electron density from all the overlapping charge distributions. The subscript V on
the first integration sign indicates an integration over a single unit cell of volume V, The remaining integrations are
over all space and account for the self-energies of the individual electronic densities. For the kinetic, exchange, ,
and correlation terms, respectively, the density functionals are""''

g ( ) (3~2) 2/3C p5/3

b ( p ) = —-' (3/m ) '/'Cg p'/'

1

Cc(—0.438r, '+ 1.325r, —1 47r, —.0 4r, . )p, r, ~ 10.0

Sc(p) = ~ Cc(001898 lnr, —0061 S6)p, 07 ~ r, ~ 100
Cz (0.0311 lnr, —0.048 + 0 009r, .lnr, —0.01 r, )p, r, «0.7

(4a)

(4b)

(4c)

where r, = (3/4n p)'/'. The coefficients Cx, Cq, and

C~ are the correction factors introduced in the MEG
theory. 6

The integrations indicated in Eq. (3) must be per-
formed numerically. Because each of the terms is

large, there will be considerable loss of accuracy if
they are separately integrated and then combined. It
is far more efficient if all the terms are combined
into a single integrand so that the interaction energy
is obtained directly. This is achieved by converting
the self-energy terms into integrations over a unit cell.

First we can write Eq. (3) as
fO

W = dxb(pE(x)) —XX, dx' (p;(x —7;))
I

where in the second term the integrations over space
have been converted into a lattice sum of integrations
over unit cells. The subscript VI indicates that we in-

tegrate over the unit cell with origin at rl. A change
of variables to x =x' —rI and a relabeling of the lat-

tice indices yields

1

IY = „'t dx 8(p (x)) —X X 8(p;(x —r;I))
[

Each of the electron-gas interaction energies can thus
be calculated in a single three-dimensional quadrature
over a unit cell of the crystal. Since the electron den-
sities fall off rapidly with distance, the indicated lat-
tice sums are easily performed. By choosing the cut-
offs for the density summations so that the energy
terms have converged, we include all the neighbors
that contribute to the binding. Since the density
functionals are nonlinear in the density, nonadditive
many-body effects are incorporated into the model
with no further effort.

B. Electrostatic interaction energy

Because of the long-range Coulomb forces in an
ionic crystal the electrostatic interactions are more
difficult to calculate than the short-range electron-gas
terms. We have developed a method, which is simi-

I

lar to the double sum formula of Ewald" for the
point Coulomb interactions, that evaluates the elec-
trostatic energy as sums in the direct and reciprocal
lattice, and a numerical integration that is con-
veniently combined with the integration of the
electron-gas terms. As before, we assume spherical
charge densities'„ the method is readily adapted to
nonspherical charge distributions.

We start by writing the total charge density, includ-
ing the nuclei, as

pr(x) = $ gZ;5(x —r,;) —p;(x —r I)
I

where Z; is the nuclear charge and 5(x) is the Dirac
delta function. The electrostatic interaction energy
may be written as the difference between the total
electrostatic energy per unit cell and the electrostatic
self-energies of the charge distributions in a unit cell.
The total energy per unit cell is given by

Wr = — dxpr(x)4r(x)
2 4

where

@r(x)= ' dypr(y)/Ix —yl

is the electrostatic potential due to pr(y). From the
periodicity of 4r(x), it follows that Wr may also be
written as

Wr = —, JI dx X [Z;8(x —r;) —p;(x —r;) ld&r(x), (6)

where we integrate over all space and sum over a sin-
gle unit cell.

The electrostatic interaction energy is obtained by
subtracting the self-energy terms from Eq. (6) which
yields

W~ = —, J dx X [ [Z;g(x —r;) —p;(x —r;) j4;(x) }
I

(7)
~here

4;(x)
= J dy[pr(y) —Z;5(y —r, ) + p;(y —r, )1/)x —y[

(8)
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If Q; is the number of electrons in the distribution p;(x) such that

Q; = J/dxp;(x —r;)

and

N, =Z, —Q;

is the net ionic charge on a distribution, the interaction energy can be split into four terms:

1

WM = —, J/dx„dy XN, S(x —r;) X X'N,j x —y

W = -'
JI d- d- X X X' N S(--- )

J 7 lx —yl
(12)

dx dy X X X' [Q;S(x—r;) —p, (x —7;)1 (13)

ro /1
W d ld X[QS( ) — ( — )j

l

(14)

The prime on the lattice sum in these expressions in-
dicates that the vector r~ =0 is excluded if i = j.

It is easy to see that Eq. (11) integrates to

I r; —r,(l

and is equal to the Madelung energy of the crystal. It
may be calculated by a variety of techniques' such as
the Ewald double sum formula. "

Let us now define

I (x) =q dy (16)

to be the electrostatic potential of the electron distri-
bution pj(y). It then follows that Eq. (12) may be
written as

(17)

This term gives the interaction of the monopole mo-
ments in the unit cell with the nonpoint Coulomb
part of the lattice potential.

We can show that the term W'2, which gives the in-
teraction energy of the nonpoint Coulomb part of the
charge distributions in the unit cell with the point
Coulomb part of the lattice potential, is identical to
W~. Integrating Eq. (13) over x, we find

Wp=
2 ~l dy g g $'N, S(y r,l)

' —I;(y —r;)—
y —r;

I

mations over i and j, and finally changing the lattice
summation from +1 to —1.

The terms W[ and W2 are calculated by performing
a simple lattice summation of the nonpoint Coulomb
potential at each nuclear site in the unit cell. Since
the nonpoint Coulomb part of the potential of a
spherically symmetric distribution falls off rapidly
with distance, these sums are rapidly convergent.

The remaining term to be calculated, N 3, arises
from the overlap of the charge distributions and is
more difficult to evaluate than the other terms. It
could be expanded and written as a sum of pair con-
tributions, and for many charge distributions each
pair interaction could be calculated analytically. In
practice, however, there is little advantage in using
this approach, and it is easier to evaluate this term
numerically. Since the electron-gas terms are to be
calculated by numerical integration, the most efficient
method for calculating this overlap term would be to
combine it with the evaluation. of the other terms.

'

As it is now written, however, Eq. (14) is poorly suit-
ed for multidimensional quadrature'„ the integrand is
singular at the nuclear positions. We can derive an
expression which is easily integrated numerically at
the expense of introducing two additional lattice sum-
mations. It will be seen, however, that the additional
terms add negligibly to the computational effort.

In order to bring Eq. (14) into a more tractable
form we will make use of techniques similar to those
employed by Bertaut' for the calculation of the
Madelung energy. Consider a lattice of normalized
spherically symmetric charge distributions, a;(y), of
arbitrary functional form. The total charge density in
the lattice will be

This is shown to be equal to Eq. (17) by first in-

tegrating over y, then switching indices on the sum-
p'(y) = X XQ, ~, (y —r, ) . (19)
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After adding and subtracting this density from the integral over y in Eq. (14), we split the result into four terms
such that

W3= W4+ Wg+ Wo —WR

where

j ] x —y
(20)

W =-, „I dxX[Q;g(x —r;) —p;(x —r;)lq dy
I x —y

4

Wp= —Jl dx X [Q;8(x —r, ) —p;(x —r;)] dy Xx'QJ4rJ(y —rJI) —pJ(p' rJI) —~x-yl
J 7

t I

W„=—
I dx X [Q;8(x —r;) —p;(x —r;) ] dy

p (y)

(21)

(22)

(23)

Since W4 has the same basic form as W2, Eq. (13),
it follows immediately from Eqs. (17) and (18) that

W4= —, XXX'Q; ' —1(r; r„)—
J I "I rJI

This term may then be combined with Eqs. (17) and

(18) to get a new term

I

function in Eq. (21) we have

Ws= —, X Q H;(0) — dxQ;p;(x —r;)H, (x —r;)
I

This can be combined into a single integration by
substituting Eq. (9) for Q;, and changing variables in

the second integration to get

W, = —,
' XXX'(Z, +W, ) ' 1,(r, r,—,)—

r; —rji
W = —X„dxp;(x)Q;[ H~( )0—H, (x)l . (26)

which is easily calculated as a rapidly convergent,
direct lattice summation of the nonpoint Coulomb
potential at each nuclear site in the unit cell.

Next we define

HJ(x) =
J dyo;(y)/Ix —yI (25)

to be the electrostatic potential of the charge distribu-
tion o J(y). Then after integrating over the delta

To evaluate this expression, we must calculate one
center integrals for each different charge distribution,
which depend only upon the p;(x) and o.;(y) chosen.
They are independent of the lattice geometry and wi11

not affect the position of the energy minimum. Thus
they need only be calculated once in the entire ener-

gy minimization.
The term that will be calculated numerically is Wo,

Eq. (22). This can be written as

Wp= —, J dx X [Q 5(x —r;) —p;(x —r, ) ] X X' [Q, HJ(x rJ ) —IJ(x rJ )—]—
I J I

where Eqs. (25) and, (16) have been used. An integration over the delta function and the substitution of Eq. (9)
then yields

Wp = —, „dx Xp;(x —7) [CIp(r;) Ipp(x) —P(0) +P (x —r;)]

where we have defined

Ipp(x) = X X,PJ(x —rJ()
J 7

(27)

and

PJ (x) = QJ HJ ( x) —1, (x) (28)

As will be seen below, this term is relatively easy to integrate numerically. In order to calculate it with the electron-

gas terms, the integration over space must be transformed into an integration over a unit cell. Thus we break up
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the integration over space into a sum of the form

Wo= —, X Jtv dx Xp;(x —r;) ld)o(r;) —d)o(x ) —P;(0) +P;(x —r;)]
/] I

I
This is then followed by a change of variables to x = x —r~, which allows the interchange of the order of lattice
summation and integration. Finally we make use of the periodicity of 2I)0(x), Eq. (27), and convert the lattice
sum to one over —

1 to get

Wo ———, ~ dx X Xp;(x —r, , ) [@o(r;)—d)0(x) —P, (0) +P;(x r)) ]—
I

(29)

In this form Wo is ideally suited for integration with
the electron-gas terms. It should be clear that for x
near a nucleus, where the density is sharply peaked,
the potential term in square brackets is very small.
In addition, since the choice of the cr, (y) is arbitrary,
an appropriate choice of these functions screens the
electronic potentials and makes d)o(x) and the P, (x)
smooth and small. This ensures that the conver-
gence of this term is no worse than that of the
electron-gas terms.

Next, we develop an expression for the remaining
term, WR, Eq. (23). This term is conveniently calcu-
lated as a series in the reciprocal lattice of the crystal.
This series will be seen to converge rapidly provided
some easily satisfied constraints on the cr, (y) are im-

posed.
Since p'(x), Eq. (19), is periodic, it can be expand-

ed as a Fourier series in the reciprocal lattice
d

p'(y) = V ' XC(k)e '"'" (30)
k

I

where V is the volume per unit cell and the sum ex-
tends over all reciprocal-lattice vectors k. The expan-
sion coefficients are given by

C(k) = J dye'"'" g QQ, o;(y r,;)—

= Xe' I dye'"'"(r, (y)
aJ

J
(31)

Wq = WR+ WR' (32)

where

where the lattice summation and integration over a

single unit cell have been coriverted by a change of
variables to an integration over all space. We can in-
tegrate over the delta function in Eq. (23) and again
use Eq. (9). When Eq. (30) is then substituted into
the resulting expression and the k=0 term is separat-
ed from the remainder of the sum, we have

. and

2

W„' = (2 V) 'C(0) Jfdx I dy g p;(x —r;)

2

WR'= (2 V) ' X' C(k) Jtdx Jfdy gp;(x —r;)e '"'"

k I

1

lx-yl
l

1 1

lx-yl

(33)

(34)

The prime on the reciprocal-lattice summation indi-
cates that the term k=0 is excluded from the sum.
A straightforward integration over y reduces Eq. (33)
to

I

For spherically symmetric charge distributions it is
not necessary to evaluate W~ and WR separately,
since WR is identical to the k=0 term in the series

WR = 22r V ' C (0) „dx x~ (35)
WR =22r V ' XC(k) Xe ')t) (k)

where

(36)

The integrals over y in Eq. (34) may be evaluated us-
ing the identity $;(k) = Jl dx p;(x) ( I —e'"'" )/k~ (37)

J dye '7'r/lz —yl =42re '"'*/k'

This yields

)Vx"=2 V ' Z'C))x) Xx ' Jdxp(x)
k I

This assertion can be verified by examining the limit-
ing behavior of Eq. (37) as lkl approaches zero and
comparing the result to Eq. (35) for spherically sym-
metric p, (x).

For actual atomic charge distributions, the discon-
tinuous first derivative of the density at the nucleus
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g J(y) = (aj/n )'~'exp( —ajy') (38)

gives acceptable convergence of the overlap term Eq.
(29) and, at the same time, allows rapid convergence
of the reciprocal-lattice summation.

The efficiency of the calculation is further im-

proved by combining the calculation of O'R with the
evaluation of the Madelung energy, Eq. (14). In the

Appendix we generalize the Ewald double sum for-
mula" to the case of a lattice of Gaussians of dif-

ferent halfwidths. The Madelung energy may then
be calculated as

W~=2rr V ' X'F(k)B(—k) k2

causes $;(k) to fall off slowly with distance in the re-
ciprocal space. This presents no difficulty, however,
since the C(k) in Eq. (37) will converge as the
Fourier transform of the o&(y). We can guarantee
that O'R converges exponentially by choosing the
a&(y) as Gaussian functions or linear combinations
of Gaussians. For the crystal structures calculated
here we have found that a single Gaussian

vealed that the integrand of the kinetic energy term,
Eqs. (4a) and (5), increases by several orders of
magnitude within a small sphere surrounding each
nucleus where the charge density is very sharply
peaked. These spherical regions typically account for
5'/o of the total value of the integral. Similar
behavior was observed in the integrands of the ex-
change and overlap terms, but to a lesser extent. In
this case, standard multidimensional integration tech-
niques, ""would give-unreliable results unless an
excessively large number of integration points was
used. Thus an efficient quadrature scheme must pay
special attention to the regions around each nucleus.

Since the peaking of the kinetic and exchange
terms is obviously due to the behavior of the density,
convergence of the numerical integration can be im-
proved by forcing the density to be smooth within a
small sphere around each nucleus. The error intro-
duced in this step can be corrected for in a separate
integration. To make this clearer, suppose that W is
either the kinetic or exchange energy. From Eqs.
(4a), (4b), and (5) we see that both terms may be
written as

r t

+ —$$ $'N;N) —H)(r; —r), )i
II'= J dx J(x )

where J (x') has the form

(42)

where

—XN, 'H, (O), (39)
'n

J (x ) = C X Xp) (x —rq()

F(k) = $N;e (40)
-g g [p, (x -r„)1", (43)

and

B(k) = X Nje ~ „dy e'"'"aJ(y)
J

(41)

/
I

with n = —or n = —.We write this as a three-
3 3'

dimensional integration of an approximate integrand
I

which is smoother than J (x ), plus some correction
terms to be determined later. Thus we define

III. NUMERICAL METHODS
w= w'+Xw, ,

In the calculation of the binding energy, the energy
terms which require the greatest computational effort
are the electron-gas terms and the electrostatic over-
lap term, which are evaluated by a three-dimensional
numerical integration. This is a time consuming
operation because at each integration point a lattice
summation of the density and the screened potentials
P&(x r;, ) is required. T—he integrand is evaluated
more quickly if cubic spline interpolation is used to
find the cube root of the densities and the potentials.
A significant savings in computer time is also gained
by interpolating the quantities @(k), which appear in
the reciprocal-lattice summation.

For a given lattice geometry, an efficient evaluation
of the energy results from the choice of a quadrature
technique which requires relatively few integration
points. Test calculations on alkali halide crystals re-

where

W'= Jt dx J'(x)

The O'; are the corrections to the quadrature over a
unit cell of the approximate integrand J'(x). In
J'(x) we use the altered densities

p(r), r ~S;
p (r) =

(a;+br ), r (5;, (45)

with r = ~x —r;~~. The parameters a; and b; are fixed
by requiring continuity of the density p; (r) and its
first derivative at 8;. Whereas the correct J(x), Eq.
(43), has large peaks and a discontinuous first deriva-

tive at the nucleus, J'(x), calculated using Eq. (45),



908 CARL MUHLHAUSEN AND ROY G. GORDON 23

is relatively flat and has continuous first derivatives
everywhere. As will be shown below, this gives re-
markably improved convergence of the integrations.

The W; in Eq. (44) are determined by integrating
the difference between the actual and approximate
integrands within the small spherical region of radius
8; about each nucleus. It is possible to derive an ex-
pression for the H; that is easy to calculate and yet
holds to a high accuracy.

Consider the inteyrand of Eq. (42) after a change
of variables to x = x —r;. Let

f;(x) = , pj(x+r, —r,, )

p;(x)

and separate the density of the charge distribution
centered at x=0 from the others. in J(x+r;). This
gives

panded by the binomial theorem to obtain

J(x+r;) =C [p;(x)]" nf;(x)

+ ,
'

n (n——1)f,'(x ) +

—$ X' [p, (x+ r; —
rjI ) ]"

It is clear that the leading term is much larger than
the rest, so that

1

J(x+r;) = irC g $'pj(x+r; rjl) [—pj(x)]"
J I

The correction terms in Eq. (3) are then approximat-
ed as

'I

W, =nC Jl dx X X' p, (x+r; —r I)
l J I

r

J(x+ r;) = C [p;(x) ]"[1+f; (x) ]"—[p;(x) ]"

—$ X' [p, (x+ r; —rjI ) ]"

Within a small sphere around the nucleus

f, (x) « 1, and the above expression may be ex-

x [ [p, (x)]"-'—[p,.'(x)1»-' }, (46)

where we integrate over the small sphere of radius 5,
centered at r; ~

The above expression lends itself to a further ap-
proximation since the first term in square brackets is
much more slowly varying than the other factor in

the integrand. The spherically symmetric densities in

this term may be expanded in a Taylor series about r;
to obtain

pj(x+r; —r,;) =p, (r; —rI)+[)x+r; —
rjl~

—(r; —rjl)] „' +
dr r-}r.—f. Ii Jl

Then since for small ~x}

(x+r; rjl( = (r; ——r,l([1+x (r; rjI)/(r; —r,—;)']
we have

x (r; —r,;) dp,pj(x+ r; —
rjl ) = pj(r; rjf) +— (47)

When this term is substituted into Eq. (46) and the angular integrations are carried out, all terms depending upon
the derivatives of the density vanish and there remains

1

W;=4rrnC gg'p, (r; —rI) J dxx'[[p;(x)]" ' —[p,'(x)]" '
} (48)

Note that the expression to be integrated here in-

volves a one-dimensional quadrature that does not
depend upon the lattice geometry. The integral in

Eq. (48) need only be calculated at the start of an en-
ergy minimization, and each W; is then relatively
simple to calculate as the geometry of the lattice is
varied.

As was noted earlier, convergence difficulties also

I

appear in the direct numerical integration of the elec-
trostatic overlap term. This is due to the peaked na-
ture of the screened potentials, P;(x), in the vicinity
of a nucleus, which is in turn a result of the differ-
ences between Gaussian and actual charge densities
close to the origin. The problem may be alleviated
by choosing large exponential parameters for the
Gaussians, but then the reciprocal-lattice summations
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P, (r), r «8/
P r

c/+d/r2, r ( 5/, (49)

will be slowly convergent. Fortunately, it is possible
to avoid these difficulties with an approach similar to
that used for the kinetic and exchange terms.

The electrostatic overlap term can be approximated
by replacing the actual charge densities with those of
Eq. (45), and the actual screened potentials by

where e; and d; are determined by requiring continui-
ty of P (r ) and its first derivative at r = g;. This
makes the approximate integrand of &p smooth and
well behaved.

The errors introduced into the overlap integration
can be corrected for in much the same way as for the
kinetic and exchange terms. By examining the in-

tegrand of Wo, it can be shown that the correction
term to be added for each nucleus is of the form

'1

W/= —, „dx XX'Pj(r; —rj/) —Pj(x+r; rj/) —[p, (x) —
p (x)]— XX'pj(x+r; rj/) —[P (x) —P (x)]

J 7 J 7

This expression is simplified considerably by expand-
ing both the Pj(x+r; —'rj/) and pj(x+r; —rj/) in Tay-
lor series about r;. The leading terms in the expan-
sion of the Pj(x+ r, —rj/) cancels with the constant
term and after integrating over angles we are left with

W, -2sr XX'pj(r; —rj/) dxx [P(x) —P (x)]
J 7

(50)

As was the case with the exchange and kinetic energy
terms, the part to be integrated here is independent
of the lattice geometry.

For the three-dimensional quadratures of the ap-
proximate integrands we have obtained very satisfac-
tory results using the method of Conroy' and a tota1
of 1154 integration points in the unit cell. In Table I

we give the results of a number of trial calculations
for the NaF crystal. Since the energy is invariant to a

TABLE I. Contributing terms to the binding energy in Nap. The results for al) trials except trial 12 are based on a primitive
rhombohedral unit cell with o. =60 and a =6.3498 a.u. All energies are given in a.u. (1 a.u. =627.5 kcal/mole).

Total Exchange Kinetic Correlation
Trial W& fEq. (1)] W&(10 ') W&(10 ') Wc(

Overlap

Wo (10 )

Nonpoint
Coulomb

electrostatic
(WE —WM)(10 &)

Net
short
range

( W, —WM)(10-') Key

1

2

3
4
5

6
7

8
9

10
11
12

—0.314 27
—0.353 32
—0.353 02
—0.352 23
—0.352 20
—0.352 1&
—0.352 17
—0.352 20
—0.352 20
—0.352 15
—0,35245
-0.35228

—0.282 25
—0.276 81
—0.27697
—0.277 13
—0.277 13
—0.277 16
—0.277 14
—0.277 13
—0.277 13
—0.277 14
—0.277 14
—0.277 14

1.161 26
0.771 21
0.774 39
0.781 92
0.781 92
0.782 32
0.782 37
0.782 01
0.782 16
0.782 37
0.782 37
0.782 01

—0.023 458
—0.023 460
—0.023 458
—0.023 463
—0.023 462
—0.023 456
—0.023 461
—0.023 461
—0.023 459
—0.023 460
—0.023 460
—0.023 465

0.203 59
0.191 60
0.191 57
0.192 68
0.192 87
0.192 86
0.192 98
0.193 20
0.192 73
0.056 575
2, 235 58
0.191 47

—0.106 05
—0.112046
—0.11205
—0.11150
—0.11141
—0.11141
—0.11136
-0.11125
—0.11148
-0.111 17
—0.114 19
—0.112 11

0.749 46
0.358 89
0.361 89
0.36982
0.370 05
0.37028 .

0.370 41
0.370 17
0.370 09
0.370 60
0.367 57
0.369 28

a, b,c
a,d, c
a, e,c
f,b,c
f,g,c
f,e,c
f, h, c
i, h, c
j,h, c
f,h, k

f, h, l

f,m, c

'Calculated using exact densities and screened potentials.
Nuclei shifted by (0.4766X 10, 0.159879, 0.246534) from positions in h.

'Exponential parameters for Gaussian functions (see text) are o. =1,0 a.u. ' and a =0.7 a.u. '.
Na+ F

Nuclei shifted by (0.11199, 0.079879, 0.24047) from positions in h.
Nuclei shifted by (0.011, 0.022, 0.033) from positions in h.
Calculated using Eqs. (45) and (49) with 8 +=0.4 a.u. and 5 =0.4 a.u.

Na+
~Nuclei shifted by (0.47657 x 10, 0.15988, 0.2265) from positions in h.

i i 1"Na+ nucleus located at (0,0,0) and F nucleus located at ( 2, 2, 2
) with respect to primitive unit-cell axes.

'Calculated using Eqs. (45) and (49) with 8 +=0.3 a.u. and 8 =0.3 a.u.
Na F

&Calculated using Eqs. (45) and (49) with 8 +=0.5 a.u, and 8 =0.5 a.u.

"Exponential parameters changed to a +=1.2 a.u. ' and a =0.9 a.u. '.
'Exponential parameters changed to a =0.8 a.u. ' and o.„=0.5 a.u. '.

NI
Calculated using conventional cubic unit cell with a = J2(6.349g) a.u.
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uniform translation of all the ions in the unit cell, the
convergence of the integrals can be checked by shift-
ing the origin of the unit cell with respect to the ions,
leaving all other geometrical parameters fixed. A

large number of pseudorandom shifts can be generat-
ed by attempting to minimize the energy with respect
to the origin of the unit cell. This is the procedure
followed in the first six trials in Table I, and we re-
port the maximum changes in the energy discovered
in the minimization attempts. In the first three trials
in Table I, the exact densities and screened potentials
were used, while in the remaining trials the approxi-
mate functions, Eqs. (45) and (49), were used. In
the first and fourth trials both the Na+ and F nuclei
have been displaced from their conventional positions
at (0,0,0) and (—,—,, —,), such that the Na+ nucleus

coincides with one of the integration points. The
peaked nature of the exact kinetic energy integrand is

revealed when the first trial is compared to the
second and third, where no integration points fell

close to the nucleus. The kinetic energy term, W~, is

about 0.04 a.u. higher in the first case than in the
next two cases, and the binding energy is significantly
changed by this error. The convergence of the ex-
change term, W~, and the overlap term, Wo, is

better but still not satisfactory. Due to the partial
cancellation of these terms, the total short-range en-

ergy, W& —WM, in the first trial is about twice the ac-
tual value, while in the next two trials it is about
0.001 a.u. too low.

The use of Eqs. (45) and (49) and the correction
terms in trials 4 through 7 improves the convergence
dramatically. All of the terms agree to within at least
three significant figures and binding energy Wa is

accurate to four. This is more than sufficient to en-
sure that the energy minimum can be found to within

the accuracy of the electron-gas theory.
Obviously, the results of this quadrature scheme

will only be meaningful if they do not significantly
depend upon the choice of the parameters 5, and o,
In trials 8 through 11 these parameters were varied
from the values used in the previous trials, and the
agreement of the various terms is excellent. The
results of trials 8 and 9 show that the results do not
critically depend upon choice of the radius 5, and the
results of trials 10 and 11 show that the nonpoint
Conlomb electrostatic energy WE —WM is not terribly
sensitive to the choice of o». In trial 11, however,
the chosen Gaussian parameters are too small and
fail to adequately shield the actual electrostatic poten-
tial of the electron distributions. It is best to adjust
the n, so that the overlap term, Wo, is of the same
order of magnitude as the kinetic and exchange term.

As a final test of the numerical method, in trial 12
we optimized the NaF structure based on the conven-
tional cubic unit cell which contains four formula
units. The results are essentially the same as the
results of the energy minimization in trial 7, and

IV. IMPROVED CRYSTAL CHARGE DENSITIES

The two distinct approximations made in the
electron-gas theory are that the energy can be calcu-
lated from the density functionals in Eqs. (4) and
that the total density of the system can be written as
a superposition of the charge densities of the separat-
ed species. Improvements to the model can be made
by using more exact density functionals and by using
a better description of the density in the interacting
systems. For neutral closed-shell systems the super-
position of the gas phase charge densities should be a

very good approximation. The excellent results that
have been obtained for rare-gas interactions, thus
make it appear that the density functionals are ade-
quate and that attempts to improve the. model for
charged species should focus on describing induction
effects on the charge densities.

As was discussed in the Introduction, the perturba-
tions that occur in an atomic charge density when it
is placed in the electrostatic potential of the crystal
lattice are twofold. The size change effect is due to
the spherically symmetric part of the potential which
causes contractions and expansions of the charge dis-

tribution with no loss of spherical symmetry. Polari-
zation effects are due to electric fields and their gra-
dients in the lattice which distort ions from spherical
symmetry. The size change effect occurs in all types
of ionic crystals while polarization will only be signifi-
cant in crystals of low symmetry where there are
large gradients in the electrostatic potential. In this
paper we will limit ourselves to size change effects
only.

A simple model for calculating ionic wave func-
tions and charge densities in crystals has been pro-
posed by Pachalis and Weiss {PW),' which is based
on the earlier work of Watson. " In this model the
crystalline potential is approximated by the potential
created when a charged spherical shell is placed
around the ion, The potential term

V, {r)=
{51)

where —N; is the charge on the shell and ro its ra-

dius, is then added to the H ~miltonian of the system

show that the integration with 1154 points can be
used for much larger unit cells than the primitive
NaF cell. Further tests on systems with larger unit
cells revealed that 1154 integration points are insuffi-
cient to guarantee convergence of the short-range en-

ergy when there are ten or more atoms in the unit
cell. For the larger unit cells these errors do not ap-
pear to result from the behavior of the integrand near
the nuclei. Thus the integrations require about 100
points for each ion in the unit cell.
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and the wave function and charge density of the ion
are then obtained by the Hartree-Fock self-
consistent-field (SCF) method. Since the crystal is
electrically neutral it is physically reasonable to take
the charge on the shell to be the opposite of the ionic
charge and to use the radius of the shell as a variable
parameter to approximate the actual crystal potential.
The shell potential stabilizes the anion. It decreases
the effective size of an anion and expands a cation,
although the effect is much more pronounced for the
anions.

We have performed our own SCF calculations us-
ing the program of Laws and co-workers, "modified
to include matrix elements of the potential &;(r).
We have repeated and duplicated Watson's'0 calcula-
tion for the 0 ion with a shell charge of +2 and a
radius of 2.66 a.u. , but have been unable to obtain
agreement with any of the crystal ion wave functions
reported by PW and must conclude they are in error.
This conclusion is confirmed when the PW results for
0' at a shell radius of 2.646 a.u. , using a basis set of
ten orbitals, is compared with Watson's calculations
obtained with a smaller basis of only seven functions.
The total energy reported by PW is —81.511357 a.u.
and is considerably higher than Watson's value of
—81.7484 a.u. . The PW calculations with the larger
basis set should have produced a total energy slightly
less than Watson's result. We have further checked
our calculations by determining a wave function for
F with a +1 shell charge and r0=0.0. This is
equivalent to increasing the nuclear charge in the
Hamiltonian by one and when the same basis set as
that used by Clementi and Roetti'2 is employed, we
obtain the same total energy and expansion coeffi-
cients as reported in Ref. 22 for Ne.

Since the inclusion of the shell potentials can have
a large effect on the wave functions, it is not always
appropriate to use the same basis sets in the shell sta-
bilized calculations as used for gas phase ion calcula-
tions. To ensure that our results are at the Hartree-
Fock limit we have used the same sized basis sets as
used by PW and Clementi, and for each different
shell potential have individually optimized the orbital
exponents.

0.05—

OQ2-

O.OI—

F self-
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anions. The crystal charge densities can be represent-
ed by SS densities. The crystal binding energy may
be calculated from these densities, either including
nonlinear many-body effects as in Sec. II or in a pair-
wise interaction approximation. ""' In the latter
method pair potentials are calculated from SS wave
functions, and from lattice sums of the pair interac-
tions, the binding energy is obtained. If the equilibri-
um geometry of the crystal is found by minimization
of the binding energy with respect to the geometrical
parameters of the crystal, then the value of W~ at the
minimum refers to the interaction energy of the crys-
tal with respect to the SS densities at infinite separa-
tion and not the free, gaseous ions. This energy can-
not be found experimentally since the free SS ions do
not exist.

In Fig. 1 the variation of the equilibrium binding
energy in LiF with shell potential is shown. Over the
range of shell potentials considered, W~ is seen to be
a monotonically decreasing function, since, as the an-
ion shrinks, the lattice continues to contract and the
binding energy decreases. Thus the minimization of
8'z with respect to geometry and shell potentials can-
not be used to determine the equilibrium properties
and 8& should not be compared to experimental en-
ergies, as has been done in a number of previous pa-
perS 9p I 1p 12

A thermodynamically meaningful energy for sys-
tems containing cations and singly charged anions is
the dissociation energy, D„of the crystal into free
cations and anions, which can be measured experi-

V. EQUILIBRIUM PROPERTIES AND EXPERIMENTAL
THERMODYNAMIC ENERGY CYCLES

K~ -GBS

LLI

-0.59

oe

There are a variety of procedures by which the
shell stabilized (SS) charge densities of the previous
section may be used to calculate the equilibrium
geometry and energy of a crystal. Some of these
methods, as used by others, have lead to errors and
results which are not directly comparable to experi-
mental quantities, so that we must be careful in the
use of the SS densities.

Let us first consider crystals with singly charged

-0.40

-041

-042

FIG. 1. Variaton of self-energy, crystal energy, and bind-

ing energy with shell potential in LiF. The self-consistent
and minimum crystal energy points are indicated.
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mentally for most systems. To calculate it-theoreti-
cally we need to know the self-energy difference
between the SS ion and the f'ee ion. This is given by
the difference between the expectation value of the
free ion Hamiltonian (i.e., with the shell potential re-

moved) with the SS wave function and the Hartree-
Fock energy of the free ion. We assume"" that
correlation energy differences, in this case, are negli-

gible. The self-energy term is easily found during the
SCF calculations and is plotted in Fig. 1 as a function
of shell potential. It is generally a small but signifi-
cant positive or destabilizing quantity which rapidly

increases at high shell potentials.
The crystal energy or —D, is given by the sum of

the binding energy and the self-energy change. From
Fig. 1, it is seen that this quantity attains a broad
minimum as a function of site potential. If the ener-

gy functionals were exact or satisfied a variational
principle, the correct procedure would be to minimize
—D, as a function of geometry and shell potential.
Since the minimum in the crystal energy is very flat
and there are errors in the energy functionals on the
order of a few percent, there is no physical reason to
distinguish between points close to this minimum.
Instead we may choose an arbitrary but consistent
criterion to pick the shell potential, provided it gen-
erally places us in the flat region of the minimum.

A simple, but physically reasonable, method of fix-
ing the shell potential is to choose ro in Eq. (51) such
that &;(r) matches the potential at the site of the an-
ion nucleus. Stabilization of the cation, .in a number
of test cases, was found to have a negligible effect.
This method of choosing anion shell potentials is
easily incorporated in a self-consistent manner in the
crystal energy minimization with respect to the
geometrical parameters of the lattice. An initial SCF
calculation can be performed with the shell potential
chosen as a rough estimate of the anion site poten-
tial. The geometry is then varied to find both the
minimum energy and the actual anion site potential

- at the minimum for this density. A new SS wave
function is then calculated with ro chosen to match
the previous site potential and the new SS density is
used in the next energy minimization. Self-
consistency is achieved when the shell potential of
the SCF calculation matches the anion site potential
at the energy minimum to within a few percent. This
iterative procedure normally gives convergence of the
crystal energy within the range consistent with the ac-
curacy of the electron-gas approximation. As will be
seen in the next sections, this gives excellent results,
typically within 1—2% of the experimental dissocia-
tion energy and lattice parameters.

In their recent study, Mackrodt and Stewart9 used
SS wave functions to calculate equilibrium binding
energies and lattice parameters in a pairwise additive
approximation. The shell potential was chosen to
match only the point Coulomb part of the electrostat-

ic potential. Apparently self-energy changes of the
anions were not taken into account and calculated
binding energies were compared directly with experi-
mental dissociation energies.

An additional consideration arises in the case of
crystals with multiply charged anions such as 0' .
The oxide ion is unstable in the gas phase and its
heat of formation is not an experimentally measur-
able quantity. Reported" ' values of this quantity
have been obtained in part by semiempirical lattice
energy calculations and actually refer to the crystal-
line (i.e., stabilized) 0 ion in a series of crystals.
Since the degree of stabilization varies from crystal to
crystal, it is meaningless to report "experimental"
heats of formation of the 0' ion. As was discussed
in Ref. 7(b), the experimentally accessible quantity is

the dissociation energy of oxide crystals into cations,
singly charged 0 ions, and free electrons. This
quantity can be compared to purely theoretical ener-
gies. To the equilibrium binding energy of the crys-
tal, obtained with a self-consistent SS density, we add
the difference between the self-energies of the gas
phase 0 ion and the SS 0' ion in the absence of
the shell potential. Since the number of electrons
changes between the two species, it is necessary to
consider correlation as well as Hartree-Fock energy
differences. Until atomic correlation energies are
more accurately known, we assume the correlation
energy to be the same in all the SS oxide wave func-
tions and take the correlation energy difference
between 0 ('P) and stabilized 0' ('S) to be 0.083
a u 7(b), 23

~ ~

VI, RESULTS FOR LiF, NaF, MgO, AND CaO

The equilibrium geometries and dissociation ener-
gies of LiF, NaF, MgO, and CaO have been calculat-
ed from the pairwise MEG theory by Cohen and
Gordon. In order to examine the effects of many-
body forces and the SS densities on the equilibrium
properties of crystals, we have applied the model
presented here to these systems. First let us consider
the face-centered-cubic (81) phases of these crystals.

A. Properties of the B1 phase

Experimentally the most stable forms of the lithi-
um and sodium fluorides and the magnesium and
calcium oxides are the face-centered-cubic structures.
Our results for these systems are given in Table II
along with the CG results. Experimental values for
the nearest-neighbor distances, R„and dissociation
energies, D„are also provided. Where possible we
have used data for 0 K in determining the experi-
mental energies and report experimental values for
R, extrapolated to 0 K. In other cases we give exper-
imental results for 298 K, since the temperature
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TABLE II. Equilibrium geometries and dissociation energies for LiF, NaF, MgO, and CaO in the B1 phase.

Crystal Re(a.u. )' —8'&(a.u. ) ' De(a ;(r;)d —N. /r ]. f
0

LiF B1 Two body, free ionl'

Many body, free ion
Many body, SS ion, partly converged

Many body, SS ion, self-consistent
Experimental

4.03
4.071
3.884
3.854
3.806h

0.3833
0.3774
0.4036
0.4072

0.3833
0.3774
0.3969
0.3979
0.3933'

0.430
0.450
0.454

0.0
0.0
0.435
0.465

2.30
2.15

NaF B1' Two body, free ion~

Many body, free ion
Many body, SS ion, partly converged

Many body, SS ion, self-consistent
Experimental

4.61
4.638
4.504
4.490
4.378"

0.3377
0.3353
0.3507
0.3522

0.3377
0.3353
0.3475
0.3482
0.3472'

0.372
0.388
0.389

0.0
0.0
0.378
0.392

2.65
2.55

MgO B1& Two body, SS ion, & partly converged
Many body, SS ion, partly converged
Many body, SS ion, partly converged

Many body, SS ion, self-consistent
Experimental

4.33
4.33&

4.120
4.101
3.955'

1.388
1.3777
1.4870
1.4958

1.119
1.1087
1.1484
1.1510
1 1571

0.813
0.850
0.853

0.376"
0.376"
0.833
0.851

2.66
2.66
2.40
2.35

CaO B1 Two body, SS ion, ~ partly converged
Many body, SS ion, partly converged

Many body, SS ion, self-consistent
Experimental

4.67
4.711
4.568
4.545"

1.2988
1.2907
1.3454

1.0298
1.0217
1.0302
1.007&

0.745
0.765

0.376"
0.376"
0.756

2.66
2.66
2.646

'Nearest-neighbor distance in atomic units.
bDifference between the total crystal energy per formula unit and the total self-energies of the cations and SS anions.
'Energy per formula unit necessary to separate the crystal into gas phase ions.
Electrostatic potential at the nuclear position of the anion.

'Shell potential used in the SCF calculation.
Shell radius in atomic units,

~Reference 7,
"Experimental value at 0 K, compiled by Tosi, Ref. 2.
'Kittel, Ref. 25, p. 121.
jFace-centered-cubic structure.
"Calculated from the wave function of Watson, Ref. 20, with —N, =1.0.
'Experimental value at 0 K, quoted by Cohen and Gordon, Ref. 7.

Compiled from data in Ref. 26 at 0 K.
"Reference 11, at 298 K.

dependence of these quantities is small.
The precision of the numerical integrations is in-

creased by basing the calculations on a primitive unit
cell rather than the larger conventional cubic unit
cell. For any face-centered-cubic lattice it is possible
to perform the calculations using a rhombohedral
unit cell' which occupies one-fourth the volume of
the cubic cell. For the 81 phase calculations the an-
gles between the lattice vectors were fixed at 60' and
the length of the lattice vector a was varied in the
energy minimization. In addition, the position of the
anion in the unit cell was varied with the cation fixed
at the origin. In all cases there was no significant de-
viation of the anion position from ( —,, —,, —,), which is

in accord with the observed geometries.
In applying the correction factors of the MEG

theory6 to the many-body numerical integration of
Sec. II, we have chosen to use the correction factors
appropriate for the nearest-neighbor pair. Thus for
NaF and MgO correction factors for a system of 20
electrons (16 valence) were used, while for LiF and
CaO the correction factors for 12 and 28 electrons
and 10 and 16 valence electrons, respectively, were
used. For the first two systems the correction factors
apply for the more distant neighbors as well. For LiF
and CaO the chosen correction factors are intermedi-
ate between those appropriate for anion-anion and
cation-cation second-nearest-neighbor interactions.
For LiF results obtained with the correction factors
for 20 electrons differed by less than 1% from the
results reported in Table II for 12 electrons.

%'e may first examine the effects of the nonaddi-
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tive many-body forces on the equilibrium geometry
and energy in these crystals by comparing our results
using gas phase F or Watson's' 0' charge densities
with the results of CG using the same densities.
Generally, with these wave functions our model
predicts a slightly smaller dissociation energy and a
slightly larger nearest-neighbor distance at the
minimum than the pairwise interaction model of CG.
Except for the D, value of CaO, this makes the
agreement with the experimental geometries and dis-
sociation energies worse than the CG results by a

very small amount. The greatest change is in the
results for LiF, where our D, value is 1.5% smaller
than the CG result.

There is a simple explanation for this effect. The
many-body forces, in the electron-gas approximation,
arise from the mutual overlap of three or more
charge distributions. From the nonlinear form of the
electron-gas energy functionals it is easily seen that
this leads to the reduction in magnitude of each of
the electron-gas interaction energies from the two-

body results. Near the equilibrium configuration of
the crystal, the magnitude of the attractive exchange
term is decreased the most. The net short-range po-
tential is thus more repulsive, which increases the lat-

tice parameter and reduces the dissociation energy.
We-find that the electron-gas nonadditive many-

body effects are small and lead to very little change
in the results from two-body calculations. This may
be a deficiency of the electron-gas model. In their
study of He3, Lloyd and Pugh' found that the
electron-gas model seriously underestimated the mag-
nitude of three-body interactions in this system. It
should be noted, however, that the electron-gas
theories generally give poorer results for systems with
few electrons, such as helium, than for systems con-
taining larger numbers of electrons. Conclusions
based on the He3 system cannot be assumed to apply
to larger systems.

While the inclusion of many-body forces in the
model leads to very small changes in the results, the
use of the SS charge densities improves the agree-
ment with experiment remarkably. In the case of
LiF, the anion site potential of 0.430, obtained from
the energy minimization with the gas phase F wave
function, was used as a guide in selecting ro for the
next SCF calculation. The new F density was more
contracted than the gas phase density and when used
in the next energy minimization gave significantly
improved values of R, and D, . The smaller R, value
led to a higher anion site potential, and a final SCF
calculation was performed with r0=2.15. This new
wave function was used in an additional energy
minimization which gave convergence of R, and D,
to less than a percent difference from their previous
values. The anion site potential in the final minimi-
zation matched the shell potential to within 2.4%.
While H q continues to decrease as the degree of the

shell stabilization is increased, this trend is opposed
by the increase in the self-energy ( —Wa —D, ) of the
F anion. The final (self-consistent) LiF result in

Table II gives R, and D, differing by 1.3% and 1.2%,
respectively, from the experimental values. ' This
is a considerable improvement over the CG results.

A similar procedure to that outlined above was fol-
lowed for the remaining systems in Table II. The
successive SCF calculations and energy minimizations
were repeated until the potentials matched to within a
few percent, there being little additional change in R,
and D, after this. This criterion for self-consistency
appears to be sufficiently stringent for our current
purposes and requires only a few iterations before be-
ing met.

The pattern observed for NaF, MgO, and CaO is

similar to that for LiF. The CG results for NaF gave
an R, value some 5.3% too large and D, too small by
—2.7%. The present model with r0=2.55 reduces
these errors to 2.6% and 0.3%, respectively. The
results for MgO and CaO are similarly improved. For
MgO the self-consistent result agrees with the experi-
mental R, by 3.7% and D, by —0.5%, while for CaO
the deviations for R, and D, in the self-consistent
result are 0.5% and 2.3%, respectively. Overall for
these systems the agreement with the experimental
geometries and dissociation energies is as good as can
be expected from a model that neglects long-range
dispersion forces and lattice vibrations.

B. Properties of the B2 and 83 phases

A sensitive test of any solid-state theory is its abili-

ty to correctly predict the relative stabilities of dif-
ferent crystal structures. In this regard there are
three highly symmetric cubic phases of interest. In
the 81 phase, treated in the previous section, the
ions are sixfold coordinated. Tetrahedral coordina-
tion is found in sphalerite or 83 structures, whereas
in 82 or body-centered-cubic structures the ions are
eightfold coordinated. The relative densities general-
ly increase in the order 83-81-82 so that the 82
phase is most favored at high pressures.

A number of semiempirical theories'" overesti-
mate the stability of the 81 phase relative to the 82.
Recently, it has been shown ' that the same theories
also predict that at zero pressure the 83 structure will

be the most stable form of LiF and NaF rather than
the 81 phase in which these compounds are actually
found. To test our theory we have calculated the
properties of the 82 and 83 phases of the systems
treated in Sec. VI A. The results are given in Table
III. The preferred structure at zero pressure is deter-
mined by the sign of AD„which is the difference
between the calculated dissociation energy of the 82
or 83 phase and the 81 result. Differences were
taken between results obtained from comparable
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TABLE III. Calculated geometries and dissociation energies for the 82 and 83 phases of LiF, NaF, MgO, and CaO. Nota-
tion is the same as in Table II.

Crystal Z, (a.u. ) D, (a.u. ) +, (r; ) ' Ng/ro 4D~ (kcal/mole)'

LiF 82" Two body, free ion'
Many body, free ion

Many body, SS ion, self-consistent

4.36
4.436
4.240

0.3568
0.3505
0.3671

0.399
0.416

0.0
0.0
0.435 2.30

—16,6
—16.9
—19.3

LiF 83d Many body, free ion
Many body, SS ion, partially converged

Many body, SS ion, self-consistent

3.716
3.564
3.537

0.3836
0.4006
0.4014

0.440
0.460
0.463

0.0
4.35
4.60

2.30
2.15

3.9
2.3
2.2

NaF 82

NaF 83

Two body, ' free ion
Many body, free ion

Many body, SS ion, self-consistent
Many body, free ion

Many body, self-consistent

4.89
. 4919

4.745
4.340
4.252

0.3237
0.3206
0.3336
0.3335
0,3453

0.359
0.371
0.377
0.385

0.0
0.0
0.378
0.0
0.392

2.646

2.55

—8.8
—9.2
—9.2
—1.1

—1.8

MgO 82 Two body, ' SS ion, ' partially converged
Many body, SS ion, ' partially converged

Many body, SS ion, self-consistent

4.59
4.598
4.379

1.0565
1.0470
1:0773

0.777
0.807

0.376
0.376
0.833

2.66
2.66
2.40

—39,2
—38.7
—46.2

MgO 83 Many body, SS ion, ' partially converged
Many body, SS ion, self-consistent

4.012
3.805

1.1161
1.1490

0.824
0.861

0.376'
0.851

2.66
2.35

4.6
—1.3

CaO 82 Two body, ' SS ion, ' partially converged
Many body, SS ion, ' partially converged

Many body, SS ion, self-consistent

4.93
4.903
4.822

0.9801
0.9773
0.9776

0.725
0.732

0.376
0.376
0.756

2.66
2.66
2.646

—31.2
—27.9
—33.0

CaO 83 Many body, SS ion, ' partially converged
Many body, SS ion, self-consistent

4.355
4.261

1.0183
1,0191

0.754
0.769

0.376
0.756

2.66
2.646

—2. 1

—7.0

'Difference in dissociation energy in kcallmole between this result and the result for the 81 phase.
Body-centered-cubic structure.

'Reference 7.
dSphalerite structure.
'Calculated from the wave function of Watson, Ref. 20, with —N; =1.0.

wave functions, i.e., either the free ion F wave
functions or Watson's 0' wave function in both
cases or SS wave functions that correspond to the
self-consistent results in the respective structures.

With the exception of LiF, the present theory
correctly predicts the 81 phase will be the most
stable structure for these systems. Although we find
that the 82 phase will be substantially less stable
than the 81 phase in all cases, the 83 phase is seen
to be surprisingly close in energy to the 81 structure,
and in the case of LiF the 83 form is calculated to be
the most stable structure. In contrast to most of the
semiempirical theories considered by Narayan and
Ramaseshan, "we get the correct result for NaF,

From the results for LiF and the rather small cal-
culated energy differences between the 83 and 81
phases for the other systems, it appears likely that
the present model, like the Born-Mayer models,
overestimates the st'ability of the 83 phase. There

are a number of physical effects neglected by or only
partially accounted for in the theories that could ex-
plain this. We may examine these individually.

It has been suggested" that many-body forces are
the determining factor in the relative stability of dif-
ferent crystal structures. In LiF, where the anions
overlap considerably, this is likely to be ore impor-
tant than in the other systems we consider here.
Comparing the present LiF results using a free F
wave function with the CG results for the 81 and 82
phases, we see, however, that the nonadditive
many-body effects in the MEG theory tend to desta-
bilize the more dense 82 phase by 0.3 kcal/mole.
For the relative stability of the 83 and 81 phases,
the many-body forces probably favor the 83 phase
rather than the 81 phase and are no doubt small.

The recent semiempirical theory' of Narayan and
Ramaseshan (NR), in which the ions were treated as
elastically compressible, but nonspherical, succeeds in
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predicting the correct structures for all the alkali
halides. The contraction of the anions, which we
represent by the use of the SS charge densities, is a
similar effect except that we constrain the ions to
remain spherically symmetric. It is apparent from the
results in Table III that the use of the SS charge den-
sities does indeed stabilize the 81 phase relative to
the B3. This can be viewed as a result of the effec-
tive increase in the cation-anion size ratio. In view
of the NR results one might think that the nonspher-
ical distortions would increase the stability of the 81
phase. This is doubtful, however, since nonspherical
distortions are more probable in the more open 83
structure, and this effect would tend to stabilize the
B3 relative to the 8 1.

Qualitative arguments based on cation-anion size
ratios, suggest that a further contraction of the anion
density would increase the stability of the 81 phase
relative to the 83 and, perhaps, give the correct pre-
diction for the most stable structure. In the present
model, only the effect of the electrostatic portion of
the crystalline environment is incorporated into the
Hartree-Fock calculations. The valence electron den-
sity can overlap with the neighboring core densities in

violation of the Pauli exclusion principle. The model
could be further refined to estimate these overlap ef-
fects, by including an effective repulsive pseudopo-
tential, representing the neighboring cores, in the
Hartree-Fock calculations. This would lead to more
contracted anion densities. However, the remarkably
accurate results obtained from the present theory,
suggest that anion contraction due to the overlap ef-
fects, has a relatively minor effect on the overall
crystal energy and geometry.

The use of the GK correlation energy functional,
Eq. (4c), to represent the dispersion or van der
Waals's interactions is another possible source of er-
ror. The short-range pair potentials obtained by
GK '"'' with this functional showed an exponential

decay at large separations rather than the correct
—C;,/R6 attraction. The theory presented here thus
underestimates the attractive van der Waals's forces.
Since these forces stabilize the more dense phases,
this error could underestimate the stability of the 81
phase relative to the 83 phase.

Although accurate values for the C;,. coefficients
for the ion-ion dispersion forces are not known, we
can make reasonable estimates for the coefficients
and the net dispersion energies in these crystals.

From a Drude model analysis of the long-range
dispersion forces in atoms the coefficient of the
asymptotic potential for homonuclear pairs is found
to be

where n; is the electronic polarizability and N; is the
effective number of polarizable electrons. For the
ionic systems considered here the crystal polarizabili-
ties are known' ' and, following a suggestion in Ref.
28, we can take N, to be the same as the value deter-
mined for the isoelectronic rare-gas pair. For the
heteronuclear pairs the results in Ref. 28 also yield

C/J 2CIICjj cxj 'Rj / ( CjjAj + Cjj (xi )

Values for these coefficients are listed in Table IV.
The result obtained for Li+ in this way agrees well
with the recent theoretical value" of C;; =0.0783 a.u.
The remaining values are in fair agreement with ear-
lier estimates. ' "

Once the coefficients are determined it is straight-
forward to determine the net van der Waals's energy

8'y =-CR /R,

where R, is the nearest-neighbor distance. For the
cubic crystals under consideration here, CR may be

e

determined from values for the lattice sums given in

TABLE IV. van der Waals's. coefficients. All quantities are given in a.u.

ion pair CIJ

Li+Li+
Na+Na+

F F
Li+F
Na+F

M g 2+M g2+
Ca2+Ca2+
02—02—

2+02—

Ca2+02

Q 193Q"
1.721b
5.122b

0 6343c
7 8078c

11.1820'

1.433
3.940
3.940

3.940
5.506
3.940

0.076 12
3.3609

17.256
0.9838
7.3410
0.7520

38.940
55.663

5.100
45.542.

"'Reference 28. Reference 29. 'Reference 30.
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Ref. 2. The results of these calculations are listed in
Table V. Since the dispersion forces are partially ac-
counted for by the MEG correlation energy, a better
estimate for the error in our results is Wv in Table
V, in which the contributions from the nearest neigh-
bors have been subtracted from the total. The MEG
correlation energy generally gives an adequate
description of the van der Waals's effects from the
nearest neighbors but underestimates the interactions
with the next nearest neighbors. The errors in the
dispersion energy in our results are seen from Table
V to be less than 10 kcal/mole. If the effects of the
next nearest neighbors are subtracted as well ( WP in

Table V) the net result is small, which indicates that
contributions beyond next nearest neighbors are
minor.

The errors in the net dissociation energy that result
from the MEG correlation energy are small, and at
least for the lighter systems, will be largely canceled
by the neglect of the zero-point energy in the calcula-
tions. For LiF and NaF in the 81 phase the total vi-

brational energy at 298 K is' 4.43 and 3.90 kcal/mole,
respectively. Since this is well below the Debye tem-
perature for these crystals, this should be a fair esti-
mate of the zero-point energy. For MgO and CaO
the zero-point energy has been calculated" to be 3.5
and 2.7 kcal/mole, respectively. Thus in the heavier
systems the magnitude of the dispersion energy is
considerably larger than the zero-point energy, and
for these systems a better estimate of the dispersion

energy may be necessary.
The errors in the present calculations from the

sources discussed thus far lead to small errors in the
dissociation energy. Their effect on the relative sta-
bility of the different phases may be more important
since, as we have seen, the differences in energy
between phases can be quite small. For the relative
stability of the 83 and 81 phases the dispersion en-
ergy stabilizes the 81 phase by up to several
kcal/mole. In the case of LiF, 5 Wv in Table V is
—1.236 kcal/mole and is not quite enough to give the
correct order of stability of the two phases, with the
dissociation energy of the 81 phase of LiF calculated
to be a little less than 1 kcal/mole below that of the
83 phase. For the 82 and 81 structures a more ac-
curate description of the dispersion energies reduces
the relative stability of the 81 phase by several
kcal/mole. Although this does not change the order
of stability at zero pressure, it may have an important
effect on the high-pressure behavior.

The relative stability of the different phases will

also be affected by differences between the zero-point
energies in the different structures. This is difficult
to estimate quantitatively. The zero-point energy is
probably lower in the structures of lower density.
When the zero-point energy is large, as in LiF, this
would favor the 83 phase over the 81, canceling ef-
fects due to dispersion forces. In the heavier systems
the zero-point-energy differences will be smaller and
of less consequence.

TABLE V. van der Waals's energies in different phases. All energies are in kcal/mole,

Crystal Ie cl
0 a, b —Wv' —Wvd H v" v' v

LiF 81
82
83

2.15
2.30
2 ~ 15

3.854
4.240
3.537

4.241
4.242
3.490

3, 109
3.425
2,228

0.611
1.007
0.484

0.002
—0.751

0.316
-1.236

0.395
-0.127

NaF 81
82
83

2.55
2.646
2.55

4.490
4.745
4.252

5.134
5.523
4.228

1.761
2.274
1.1 1 1

0.441
0.911
0.418

0.389
—0.906

0.513
—0.650

0.470
—0.023

MgO 81
82
83

2.35
2.40
2.35

4.101
4.379
3.805

11.160
12.851
9.036

7.123
9.220
4.819

1'.541
2.866
1.128

1.690
-2.124

2.097
-2.304

1,325
—0.413

CaO 81
82
83

2,646
2.646
2.646

4.568
4.822
4.261

26.613
28.119
24.548

7.740
9.932
5.451

2.868
3.990
2.330

1.506
-2.065

2, 192
-2.290

1.122
—0.538

'Shell radius,
Nearest-neighbor distance.

'Total van der Waals's energy.
dvan der Waals's energy minus nearest-neighbor contributions.
'van der Waals's energy minus first- and second-nearest-neighbor contributions.
Difference between van der Waals's energy in 81 phase and 82 or 83 phase.
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VII. RESULTS FOR BeF2, MgF2, CaF2, AND Na20

In this section we consider results for three of the
alkaline earth fluorides and sodium oxide. These
systems are well suited for the application of the
present theory since they are highly' ionic and are
found in structures of relatively high symmetry.
First, we examine the calculated results for the
geometries and dissociation energies for these sys-
tems in their experimentally determined structures.
The many-body results are compared to two-body cal-
culations obtained by a generalization of the methods
of Ref. 7 to more complex crystal structures. The
experimental structures, again provide examples of
four-, six-, and eightfold coordination of the cations.
Next, as a further test of the theory, we consider the
relative stabilities of alternative crystal structures for
these systems.

A. Results for BeF2

BeF2 has a high-temperature modification with the
high cristobalite structure. ' As a first approximation
this crystal type is based on a fcc lattice with the ions
in sites of high symmetry. Since this is a high-

temperature phase, it is likely that the reported atom-
ic positions represent an average over sites of lower

symmetry about which the ions vibrate.
A primitive rhombohedral unit cell was again used

in the calculations for this system. Cations were

placed in the positions (0,0,0) and ( 4, 4, 4 ), while
1 I 1

anions in the basis were placed at ( —,, —,, —,),
( —,, —,, —, ), ( —,, —,, —, ), and ( —,, —,, —, ) with respect to5 1 1 1 5 1 1 1 5

the primitive unit-cell axes. In order to reduce the
computation time in the calculations, the atomic posi-
tions were not varied in the minimization; the only
variable parameter was the length of the unit-cell
axis.

The free ion results for BeF2, in Table VI, show
that the nonlinear many-body effects in this system
act to increase the dissociation energy and reduce the
length of the lattice axis. Thus at the small intera-
tomic distances encountered in this system the dom-
inant nonlinear many-body effect is the reduction of
the kinetic interaction energy. Both free ion results
give rather poor agreement with the experimental
values of these quantities. On the other hand, the
self-consistent results obtained with the SS ions are
in extremely close agreement with the experimental
results, which is surprising considering the high elec-
tronegativity of beryllium compared to the metals
considered previously.

B. Results for MgF2

Crystalline MgF2 is found to have the same struc-
ture as rutile. ' This is a structure with a somewhat

lower symmetry than the cubic structures considered
thus far, but since the polarizability of the F anion
is small, polarization effects in this crystal should be
of minor importance. The unit cell is tetragonal and
contains two formula units. The Mg'+ ions are locat-
ed at (0,0,0) and ( —,, —,, —,), while the anion positions

are given by (+u, +u, 0) and ( —, +u, —, +u, —). The1 1 1

parameter u determines the equilibrium anion posi-
tion within an isosceles triangle formed by the ca-
tions. In the calculations reported 'in Table VI the
lengths of the a and c axes were varied along with
the parameter u.

The results for MgF2 again demonstrate the signifi-
cant improvement obtained from the use of the SS
densities instead of free ion densities. Both the two-

body and many-body free ion results for the lengths
of the lattice axes show rather large positive devia-
tions from the experimental results and the calculated
dissociation energies in these cases are too small.
The many-body results give a slightly larger unit cell
volume and smaller dissociation energy than the
two-body results, which is the effect found in the
previous section. Since the site potentials in MgF&
(and BeF2) are significantly larger than the site po-
tentials typical of the alkali fluorides, the F ions in

MgF2 and BeF2 are considerably more contracted
than in NaF and LiF. As a result the unit cell
volume of MgF2 calculated from gas phase wave
functions by the many-body method is 21.7% larger
than the experimental value. The self-consistent
result obtained with an SS density gives a unit-cell
volume that is only 2.9% larger than the experimental
value and the calculated dissociation energy is only
0.15% smaller than the experimental value, This
difference can hardly be regarded as significant,

C. Results for CaF2 and Na20

The fluorite structures of CaF2 and Na20 are well

known, " and it is again possible to base the calcula-
tions on-a primitive rhombohedral unit cell. In these
calculations the length of the unit-cell axis was varied
in the minimization. In addition, for CaF2 the cation
position was fixed at the origin and the coordinates of
both the F anions were varied in the search for the
minimum energy. For Na20 the same procedure was
followed with the cation and anion positions reversed.
Again no significant deviations from the experimen-
tally determined positions of ( ~, 4, 4 ) and ( ~, ~, ~

)
1 1 I 3 3 3

were found. The results of these calculations are in-

cluded in Table VI.
The results for these systems are similar to those

observed previously. For both systems, the non-
linear many-body effect is primarily a reduction of
the exchange energy. The self-consistent result for
CaFq gives a dissociation energy slightly greater than
the experimental value at 298 K. The greater calcu-
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lated value is in part due to the neglect of vibrational
energy in the model and is similar to what was ob-
served for CaO.

For Na20, many-body calculations using
Watson's' 0' wave function gave a lattice constant
4.9"k too large and a dissociation energy that was too
small by 1.9%. The use of an SS density led to a sig-
nificant improvement in

~ a
~

and a very slight de-
crease in D, .

D. Alternative structures for BeF2,
MgF2, CaF2, and Na20

The relative stability of possible alternative struc-
tures for the alkaline earth fluorides and Na20 can be
determined in a manner similar to that of Sec. VI. In
the sequence BeF2, MgF2, and CaF2, in the experi-
rnentally determined structures, the cation coordina-
tion number passes from four to six to eight. Thus,
a useful test for the theory is to consider each of
these compounds and Na20 in the high cristobalite,
rutile, and fluorite structures. An additional struc-
ture of interest here is the CdI2-type hexagonal lattice
in which the cations are also sixfold coordinated.
Here the unit cell contains a cation at the origin with

anions at (+ —, , + —,+ u). The parameter u, along
1 2

with the lengths of the two lattice axes a and c, was
varied in the energy minimization.

For BeF2, the results in Table VI indicate that the
four-coordinate cristobalite structure is correctly
found to be much more stable than any of the struc-
tures exhibiting a higher coordination number. For
MgF2, the rutile structure is correctly predicted to be
the most stable, but the dissociation energy for the
high cristobalite structure is very close to rutile result.
The CdI2 and fluorite structures are substantially less
stable than either of these. The model incorrectly
predicts that a rutile-type structure for CaF2 will be
7.3 kcal/mole more stable than the observed fluorite
structure. A more exact treatment of the dispersion
energies would lower this difference, but in view of
the results in Sec. VI, it is unlikely that it could re-
verse the order of stability. The antifluorite structure
is correctly predicted to be most stable in Na20, but a
sixfold coordination of the oxide anions is seen to be
rather close in energy to the eightfold structure. In
no case is the CdI2-type structure competitive with
the rutile-type structures for these ionic compounds.
Once again, in the case of MgF2 and CaF2, the model
seems to predict excessive stability for the structures
of lower coordination number.

electron-gas theory. In a recent experiment, it has
been shown that at high pressure rutile MgF2 under-
goes a structural transformation to a denser, distorted
fluorite-type structure. In this section, as an addi-
tional test of the present theory, we compare calculat-
ed results on MgF2 at high pressure with these exper-
imental results.

Since the observed high-pressure phase in MgF2
appears to be only a small distortion from a true
fluorite structure, ' the pressure dependence of the
free-energy difference between the rutile and undis-
torted fluorite structures was calculated. Energy
differences between the distorted and undistorted
fluorite forms should be small. In the static lattice
approximation, the free energy, G, and equilibrium
geometry of a given phase at pressure P is obtained
by minimizing

G = —D, +PV

where V is the volume per formula unit, with respect
to the structural parameters. Calculations using both
the many-body and two-body models were performed
at a series of' pressures up to 700 kbar. Since the an-
ion site potential increases as the lattice is compress-
ed, more highly stabilized wave functions, consistent
with the higher site potentials, were used at the
higher pressures. The calculated compression curves
for both phases appear in Fig. 2, along with the ex-
perimental results. "

The overall agreement between the theoretical and
experimental pressure-volume curves is good,
although the calculated unit-cell volumes are general-
ly too large. Nonlinear many-body effects are dif-
ferent in the two structures. For the rutile form the
many-body results give a more contracted lattice than
the two-body results. The opposite effect occurs in
the fluorite phase where the two-body model leads to

230 p

220'

~ 210
D

E
o 200

ln ~

~ 19Q

180

17Q

E. Pressure induced phase transitions
in MIF2

The prediction"" of a phase transition in CaO, "
has proven to be an important application of the

I I I I I I I

100 200 300 400- 500 600 700
PRESSURE (kbar)

FIG. 2, Pressure-volume curves for MgF2 in the rutile-

and fluorite structures. Experimental points are from Ref.
36,
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a denser crystal. The calculated percent volume
change at the experimental transition pressure is
5.5% and 5.0% in the two- and many-body calcula-
tions, respectively, and agrees well with the experi-
mental value of 5%.

The transition pressure is found from the point at
which the free energies of the two phases are the
same. At 296 K the experimental transition pressure
is found to be —300 kbar, ' and, from the tempera-
ture dependence of the transition pressure, at 0 K a
transition should be observed at —325 kbar. The
calculated transition pressures were found to vary
widely with small changes in the model. A two-body
calculation with r0= 2.15 for both phases gives a tran-
sition pressure of —430 kbar. Since the site poten-
tial in the rutile form is higher than in the fluorite,
another, more refined, calculation was performed
with r0= 2.0 for the rutile structure and r0= 2.15 for
the fluorite. This gives better agreement with the
site potentials at higher pressures and a slight stabili-
zation of the rutile phase occurs. This causes a large
change in the transition pressure, however, increasing
it to —650 kbar. Larger errors occur when the
many-body model is applied to these structures. No
transition is found in the regime of 0 to 700 kbar.
Extrapolation of the calculated free energy curves
gives a transition pressure of about 1500 kbar for
the many-body calculation.

The different nonlinear many-body effects in the
two phases arise from the variation of the many-body
forces with distance and differences in the nearest-
neighbor distances in the two structures. At very
short separations the dominant many-body interac-
tion is a reduction of the repulsive kinetic energy
term, while at longer distances the reduction of the
attractive exchange interaction is most significant. In
the rutile form of MgF2 nearest-neighbor distances
are shorter than in the fluorite structure. This leads
to a higher site potential in rutile MgF2. In addition,
this means that as the lattice is compressed, the pri-

mary many-body effect is the reduction of the net
kinetic energy and greater stabilization of the la'ttice.

In fluorite MgF2, however, the nearest-neighbor dis-
tance is longer than in the rutile structure and there
are a greater number of more distance neighbors.
This causes a net reduction of the exchange energy
and an increased repulsion in the many-body calcula-
tions. A net destabilization of the fluorite phase rela-
tive to the rutile results.

This overall behavior may be incorrect because of
the neglect of long-range dispersion forces in both
the two-body and many-body calculations. These in-

teractions lead to a smaller lattice and an increased
relative stability of the more dense phase and so
would tend to cancel the many-body effects. Thus a
more accurate calculation of the phase relationships
should include both dispersion and many-body ef-
fects, although in view of the results of Sec. V, it is

unlikely that this would greatly alter the results. On
the other hand, it can be argued that the simpler
two-body model, neglecting both dispersion and
many-body forces, is more appropriate for the calcu-
lation of phase relationships than the use of many-
body forces, including dispersion.

Although the two-body model gives better agree-
ment with the experimental transition pressures than
the many-body model, it still underestimates the sta-
bility of the fluorite phase. Since the density of the
two phases is also too small, it may be that an addi-
tional stabilization, and consequent shrinkage, of the
anion density is required. In addition to improving
the agreement with experimental densities, this
should increase the stability of the fluorite phase by
increasing the effective cation to anion size ratio.

Although further refinements of the theory are re-
quired before transition pressures can be calculated
accurately, the present methods can give reasonable
predictions of the likelihood of transitions between
two phases. The pressure-volume curves and the
volume change at transition can be predicted with ac-
ceptable accuracy.

VIII. SUMMARY AND CONCLUSIONS

The modified electron-gas theory, incorporating
several many-body effects, presented here gives ex-
cellent results for the geometry and dissociation ener-

gy of highly symmetric ionic crystals. Stabilization of
the anion wave functions by a simple electrostatic
model leads to significant improvements in the calcu-
lated results over previous methods. The nonlinear
many-body effects included in the theory are smaller
and of less importance. The model is sometimes de-
ficient in its ability to predict the relative stability of
various crystal structures and seems to favor struc-
tures of lower coordination number in a number of
cases. Errors of this type appear to be due to factors
other than simple dispersion forces; it may be neces-
sary to include the effect of Pauli type, nearest-
neighbor repulsions in the determination of the anion
wave function.

When applied to the prediction of pressure-induced
phase transitions, the model appears to again un-
derestimate the stability of the higher density modifi-
cation, which leads to overestimation of the transition
pressure. Volume changes on transition and calculat-
ed compressibility curves agree reasonably well with
experiment.
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APPENDIX: POINT COULOMB POTENTIALS AND

INTERACTION ENERGIES IN IONIC CRYSTALS

@M(x)= XX
NJ

j
(Al)

The notation is the same as in Sec. II. Consider a
lattice of spherically symmetric charge distributions
for which the net charge density is

The Ewald double sum formula" is a very efficient
method for the evaluation of point Coulomb site po-
tentials and Madelung energies in ionic crystals. In
this section we generalize the method to the case
where the lattice of Gaussian functions introduced by
Ewald is replaced by a lattice of arbitrary functions
with density given by Eq. (19). In the Ewald method
all the Gaussians are assumed to have the same
halfwidths; here we allow the functions o, (y ) to
vary at different sites in the unit cell. This results in

some small modifications to the formulas given by
Ewald.

First let us derive a rapidly convergent expression
for the point Coulomb or Madelung potential

4&~(x ) = C +4n V ' X' 8 ( k )
k

(AS)

where C is a constant and we exclude the k = 0 vec-
tor from the sum. If we require the average potential
in a unit cell, calculated from Eq. (AS), to be the
same as the average potential calculated by integrat-
ing Eq. (A3) over a unit cell we find that

C=V 'gN QJJ~d~x HJ(x —r,, )
J I

(A6)= V ' XNJ J~ dxH, (x)
J

Note that if all the a, (y ) are identical as in the origi-
nal Ewald method this term vanishes. It is con-
venient to define

coefficients are given by

8(k) = QNJ g Jt d y e'" "c'r, (y —
r&1)

J I

Ik r.= QNJe J J d y
e'"'" o, (y )

J

where, as in Sec. II, the lattice sum and integration
over a single unit cell has been converted into an in-

tegration over all space. We have also made use of
i kyar(

the relation e '=1 which defines the reciprocal
lattice. Since the a, (y) are normalized and the unit
cell is neutral 8 (0) =0.

The lattice potential is found by solving Poisson's
equation

'vr'dM(x) = —4m pM( x )

with Eq. (A4) for pM(x) to obtain

pM(y) =XX&, (oy rjl) . — (A2)

GJ(x) =H, (x) ——1
(A7)

'This is similar to Eq. (19) with the Q, replaced by the
ionic charges NJ The electrostatic potential in this
lattice is

4~(x) = X XNJ „d y
x —y

as the nonpoint Coulomb part of H, (x ). This then
gives for the point Coulomb potential, Eq. (A I),

4&~(x) =4~(x) —X XNJG&( x —r,I)
J 1

= x QNJHJ(x —r,I) (A3)

The substitution of Eq. (AS) into this expression
then yields

where HJ ( x ) is defined by Eq. (25) .
An expansion for 4~( x) in the reciprocal lattice

can also be found. Since p~(x) is periodic, it has
the Fourier series representation

4M(x) = C +4m V ' $' 8( k )
k

—$ XNJG, ( x —rp) (Ag)

p~(y) = V ' XB( k )e '"'" (A4)

where k is a reciprocal-lattice vector. The expansion

For reasonable choices of the o.
& ( y ) each of the

summations will be rapidly convergent.
If we consider a lattice with a defect at x = r;, the

electrostatic potential is

—ik x
4 (x) =4~(x) —N/~ x —r;~ = C+4n V ' XB( k ) —X X'N&G, ( x —r&1) —N H(x —r;)

k

(A9)
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where the term r& =0 is excluded from the direct lat-
tice sum if i =j. The Madelung energy, Eq. (11),
may be found from Eq. (A9) since

by

&J(x ) = (2/Mm) J dy e ~ /x = erf(mix )
0 X

WM = —, X„dxNg( x —r;)4 (x)

When Eq. (A9) is substituted into this expression
and the integration is performed, the result is Eq.
(39). The'constant term in the potential adds noth-

ing to the interaction energy because of the neutrality
of the lattice. For completeness we give the explicit
results when the o.&(y) are chosen to be Gaussians as
in Eq. (38). The electrostatic potential is then given

and the Fourier expansion coefficient is

J
Both of these functions will fall off rapidly with dis-
tance for a wide range of values. Finally, we note
that in this case

H;(0) = 2aj/v~m
and

C=—m X
J
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