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A theory of lattice thermal conductivity is formulated in which phonons are divided into propagating and reservoir

groups. At high temperatures, the groups are differentiated according to whether they occupy nondispersive modes
below or dispersive modes above the U-process combination frequency threshold. Below this threshold, only N
processes can be completed and it is assumed that there is no entropy production, Dissipation occurs in the rapidly

relaxing reservoir modes above the threshold, and the heat current is carried by the more slowly relaxing phonons in

the nondispersive modes. Appeal to the variational principle yields the result that the anharmonic relaxation rate for

propagating modes is determined uniquely by the scattering into the reservoir modes. The theory carries over

toward low temperatures with extrinsic resistivity providing reservoir relaxation in nondispersive modes as U
processes die out. An explicit expression for the required anharmonic scattering rate for transitions to reservoir

modes is adapted from existing acoustic absorption theory and combined with direct extrinsic scattering in the

conventional way to provide the total relaxation time for the thermal conductivity. Minimum zone-boundary

frequencies, maximum frequencies of nondispersive branches, a reservoir relaxation time, a Gruneisen gamma, and

parameters for boundary and imperfection scattering are used as adjustable parameters to fit experimental thermal

conductivities over broad temperature ranges for crystals of four major classes. Good to fair agreement is obtained

for reasonable values of these parameters in all cases. Low-temperature relaxation times for N-process scattering
into the extrinsic reservoir are in accord with conventional results except that they depend upon the purity of the

specimen.

I. INTRODUCTION

The calculation of heat conduction in nonmetallic
crystals is, in general, a complex problem.
Formulas advanced to span temperatures from
the boundary scattering regime to the Debye tem-
perature often require adjustable parameters that
do not necessarily possess direct physical sig-
nificance. Further, the formulas themselves are
usually specific to a single-crystal class. Re-
views of the theory have been given by Klemens, '2
Ziman, s and Carruthers, 4 and the books by Par-
rott and Stuckess and by Berman6 cover more re-
cent developments. Slack' has prepared the most
recent review, although he restricts his con-
siderations to temperatures of the order of, or
higher than, the Debye temperature. The present
article addresses the applicability of acoustic ab-
sorption theory to the problem of thermal con-
ductivity in the context of a division of thermal
phonon modes into two groups. The absorption
theory required can be drawn from the phonon-
Boltzmann equation approach of Woodruff and
Ehrenreich or the Landau-Rumer theory as ex-
tended to account for finite thermal-phonon life-
times by Simons and Maris. s Either approach can
be used as a starting point since they turn out to
be equivalent in the present domain of application,
as discussed in Appendix A of Ref. 10.

The physical basis for the separation of modes
into two categories, as described in Sec. II,
arises from the difference between low-frequency

nondispersive modes dominated by anharmonic
normal (N) processes, and higher-frequency
modes dominated by thermally resistive proces-
ses. The low- frequency "propagating" modes
carry the heat while the higher resistive modes
provide dissipation that permits heat to leave the
system. The resistive group is comprised to-
wards high temperatures of those highly disper-
sive, low group velocity modes near the Bril-
louin-zone boundary (8ZB) where umklapp- (U)
process wave- vec tor reduc tion occurs. Towards
low temperature, the resistive or "reservoir"
group drops below the BZB plateau into the non-
dispersive part of the spectrum where frequency-
dependent extrinsic resistive processes (isotope,
impurity, dislocation scattering, etc. ) become
important as U processes die out. In this region,
the distinction between the two groups becomes
temperature dependent in a clearly defined man-
ner, w ith the reservoir appear ing, in the high- fre-
quency tail of the thermal-phonon distribution.

Viewed from the standpoint of scattering theory,
the two-fluid theory is analogous to Mott's theory
of electrical conductivity of transition metals. "
The propagating phonons constitute a group with
I-process interactions among its members that
do not contribute to entropy production in the sys-
tem. Thermal resistance appears through at-
tenuation by scattering into the reservoir modes,
by which process entropy production occurs in
those modes. In the context of the phonon-Boltz-
mann-equation theory, the propagating phonons
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constitute an assembly of classical waves that
modulate the reservoir, causing it to depart from
equilibrium.

Improvement is obtained relative to the Callaway
approach4' '~2 by identification of N processes that
simply redistribute phonons among propagating
modes, and for which the entropy production and con-
tribution to the thermal current are negligible. When
the remaining entropy production is maximized,
the deviation from equilibrium of the distribution
function for the propagating modes is determined
uniquely in terms of the relaxation time for an-
harmonic transitions to reservoir modes. The
physical interpretation of the two-fluid theory
clarifies the nature of the N- and U-process re-
laxation times that influence thermal resistance.
These ideas will be formalized in the next section
with the choice of transition rates and definition of
propagation and reservoir phonon groups or
"fluids. "

In Sec. III, boundary, imperfection, and im-
purity scatterings Are incorporated with the an-
harmonic effect into a computational formula for
the thermal conductivity K. Comparison of theory
and experiment is carried out in Sec. IV for crys-
tals of four major classes with agreement com-
parable to or better than prior theory. Special
attention is given to I.iF because of the wealth of
studies available which have quantified the isotope
scattering contribution to its thermal resistivity.
High-temperature forms of the two-fluid expres-
sion for K are given in Appendix A. One of these
is the conventional T ' limit; the other is a very
high-temperature limit of the form previously ob-
tained by Slack. Finally, Appendix B contains a
discussion of the explicit relaxation-time forms
that arise from the two-fluid theory as contrasted
to conventional results. In Ref. 10, from which the
present article is condensed, additional compari-
sons are given for Ge, SiO&, and ZnSO4, which ex-
tend the results to five crystal classes.

II. TWO-FLUID ANHARMONIC RELAXATION
MODEL

A. Propagating and reservoir phonons in an ideal crystal

N processes, as is well known, should not con-
tribute directly to thermal resistance because
they conserve both energy and wave vector. How-
ever, an explicit fundamental expression of this
behavior has not heretofore been available. In an
ideal solid (viz. , one in which only anharmonic
interactions occur), U processes provide the nec-
essary mechanism to dissipate momentum and
create thermal resistance. This dissipation oc-
curs only in modes that satisfy a certain threshold
requirement. For a combination process q+q'
-q", where q represents phonon wave vector, q"
must exceed one-half of a reciprocal-lattice vec-
tor. For decays q- q'+q", the initial phonon
must have a frequency above the lowest available
BZB frequency. In both instances, the reduction
of wave vector by the amount of a reciprocal-lat-
tice vector occurs in modes that lie near or above
the lowest BZB frequency. Separation of modes
into those wherein only N processes can be com-
pleted, and those wherein U processes can be com-
pleted as well, permits a fundamental expression
of the restriction on the contribution of N pro-
cesses to thermal current. Because entropy pro-
duction is proportional to thermal current, the re-
quirement of no entropy production in modes be-
low the U-process wave-vector reduction thresh-
old is equivalent to the requirement that the
thermal current exchanged among these modes
vanishes. Thus the net thermal current associated
with modes below this threshold arises from tran-
sitions to modes lying above the threshold. The
fact that these two sets of modes usually have
dramatically different characteristics leads to
the utility of the proposed model for the computa-
tion of the anharmonic relaxation length.

Consider the total scattering rate for anharmonic
processes, '

BN,
Bt ~ ~A qq q")[N N ~ (N -+1)—(N +1)(N, +1)N „]+B(qq'q")[N, (N . +1)(N - +1)—N, N, -(N +I)]],e'a"

BN BN, BN,
Bt „„Bt„„„Bt

where (BN,/Bt)„NN is the sum over modes q' and

(2)

where N, is the occupation number of the mode
with wave vector q, and A(qq'q") and B( q'q)qre-
flect the transition rates for phonon combination
and decay processes, respectively. E'quation (1)
can be split into two terms,

. I

q" in which only normal processes can be com-
pleted (called "region 1"), and (BN,/Bt)„» is the
remainder of the sum, taken over modes q' and q"
in which U processes can be completed as well
(called "region 2"). The threshold for region 2
can be identified approximately from experimental
dispersion curve data showing BZB intersections.
It should be noted that the second term of Eq. (2)
includes both N- and U-process scattering con-
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tributions. We employ the Boltzmann equation

BN,
Bt „„dT (3)

in the linearized approximation where c, is the
group velocity of phonops in mode q. The small
deviation function 4, is defined as

BN0i, -=- (N, —N, )
(

'
)

(Eq. 7.71 of Ref. 3). No-=No(&o) is the occupation
number [exp(x) —1] of the equilibrium Bose dis-
tribution where x =—8(d/(kNT), and these latter sym-
bols have their usual significance of the reduced
Planck constant, angular frequency, Boltzmann
constant, and absolute temperature, respectively.
In the presence of a temperature gradient, 4, can
be expressed in terms of 7((f), a "total" relaxation
time, "~according to

C = - k&u r(q) c, ~ V T/T . (5)

We now write the Boltzmann equation using the
separation of Eq. (2), multiply it on both sides by
(- 4,/T), and sum over all modes of region 1:

aN. C aN. C

( ~~ ~em ~ (t) ~~ ~mR &

where J& is the total thermal current carried by
region-1 modes, J» the portion due to phonon
flow via scatterings into other region-1 modes,
and J» is that due to flow via scatterings into
region-2 modes. The above hypothesis sets J»
=0, which produces the result

J1 JNR ~

Expressing (3N, /()t)ANR in the relaxation-time
approximation

(8)

aN.
ANR

5N,

~ANR (f)

where 6N, -=N, —N,', Eq. (6) now yields

5N, If&@, c, ~ = g&
~ V T .7(q) - VT

)J ( ) ~ANR
(10)

Comparison of this result with the basic expres-
sion for J&,

J, = 5NS~, c, ,
q( )

indicates that r(q) = rANR(q) is a solution to Eqs.
(6) and (10) obeying Eq. (8). It is not unique, how-
ever, because any other 7(q) of the form v(q)
=

TANR ((I) + n r, is also a solution as long as & T,
satisfies the relation

gu, c, cos 8,7 q
' . 6

dN.') (VT '
V'1

6N h(d, '( c, ~ =0. (12)

The sum on the right-hand side (rhs) has been re-
expressed in terms of 7(q), and 8, is the angle be-
bveen c, and ~T. We now recognize the two terms
on the left-hand side (lhs) of Eq. (6) as S„„and
S», respectively, the rates of entropy production
per unit volume due to scattering wholly within
region 1 (NN), and from region 1 to region 2 (NH)
(cf. Eq. 7.8.5 of Hef. 3). The prefactor on the rhs
of Eq. (6) is the thermal conductivity K& of the
region-1 modes as given by Klemens (Eq. 46 of
Ref. 2) so that the entire term is the total entropy-
production rate in region-1 modes. We now as-
sert, as the basis for the proposed two-fluid mod-
el, that the net entropy production due to NN scat-
terings vanishes. This property is expected of
isolated N processes, but normally attributed to
them only when a displaced Planck distribution
exists [viz. , a distribution such that v(q) in Eq.
(5) is independent of q]. In the presence of this
special distribution, the entropy production of N

processes vanishes for each scattering. We ad-
dress here a more general situation where the
entropy rate does not vanish for each individual
scattering, but instead cancels in the mode sum.
We write Eq. (6) as

(JNN+~NR)' VT=J)' VT (7)

This nonuniqueness in v is due to the possibility
that NN scattering, whose contribution vanishes
in the mode sum, might affect the distribution by
rearrangement of phonons among the modes. How-
ever, any such rearrangement leading to 4z, ~ 0
will dec~ease entropy production and therefore
cannot be admitted. Substituting 6N, =- c, V Tr(q)
dN,'/dT into Eq. (12) we obtain

~ VT
8(b, 7) =- g cm cos28, ' C(q), (13)

(() ~ANR ( f)

where C(q) —=5(d,dNO/dT and S(b v) is the entropy
production due to the deviation ~7„, which is seen
to be inherently negative. The general variational
principle of the linearized Boltzmann equation ''
can therefore be invoked to require 47, =0 to
maximize the entropy production due to the ANR
scattering that remains after S» has been set to
zero. This condition removes the nonuniqueness
of 7(q) and establishes that the departure from
equilibrium of modal populations in region 1 is
limited only by the NR scatterings. Thus we ar-
rive at the result

J, =J„„=- c,'css'S, c„„„(q)C(q))VT' (14)
q( )

with J» now independent of transition rates
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among the NN modes, and the factor in large
parentheses is again K,. The above considerations
are represented in Fig. 1, drawn to indicate that
no heat current can escape region 1 (the propaga-
tion region) due to anharmonic processes (the role
of extrinsic resistive processes as depicted in the
figure will be discussed presently). The excita-
tion within this region must escalate to modes
within region 2 (the reservoir region) to exit the

specimen.
Because of its importance to the above argu-

ments, we now examine the single-mode relaxa-
tion-time approximation of Eq. (9). The scattering
rate (SN,/Bt)„„R for a region-1 mode can be ex-
pressed as~

BN,

AIR

6N,
TANR(~)

C,.—4,- P,' ' d'q'd'q",
q (0)

where P', ' are transition rates as defined by

Ziman, with the integral taken over all q' and q"
in region 2. This shows that the validity of Eq.
(9) hinges upon the relative magnitudes of C,. and

4,- over region 2 compared to 4,. Our two-fluid

model is predicated on the expectation that there
exist reservoir modes nearly in equilibrium com-
pared to the propagation modes such that'4

4...4,- «4, and A...A, «A„where A, is the
relaxation length for mode q. These conditions
are satisfied if

c'(OR) cR(ORT(OR)

c'(Op) cp(o&TARR(&z')
(16)

where R and P refer to reservoir and propagation
groups and the caret signifies any mode in the

group. There is generally a large group of modes
with low to zero group velocity near the BZB which
we assume will constitute reservoir modes satis-
fying Eq. (16). Furthermore, the thermal conduc-
tivity is proportional to A, so we propose that this
same characteristic permits the direct contribu-

tion of such modes to K to be neglected. Thus
propagating phonons carry the heat in the two-

fluid model. We see from the above discussion
that this model closely parallels the problem of
absorption of a monochromatic acoustic wave by
an assembly of thermal phonons. The approach
proposed herein was, in fact, stimulated by the
formulation of the Woodruff-Ehrenreich (WE)
theory, based on the indirect approach of Blount, "
which already contains the idea of a reservoir that
provides for dissipation of propagating phonons
undergoing anharmonic scattering.

B. Anharmonic relaxation rate for propagating phonons

The relaxation length of a single mode is the
absorption length for a sound wave of the same
frequency, given by Landau-Rumer (LR) or pho-
non-Boltzmann equation theory. ' '6 For com-
bination processes q+q'-q" with restriction of
q' and q" to lie within the prescribed reservoir,
this theory yields the absorption length A„& for
N-process transitions into the reservoir, ac-
cording to"

2pc~
y&T&CR"'(4 tan '(2G)T)

y r ——[(cr/c T )y (TL ) L )b C T"'

y 2 R(TT T)gC(v)] (gC(v))-( (16)

where the Gruneisen constant y, is defined by
Maris, and &C~"' and &C~' are individual specific
heats of the longitudinal and transverse phonons in

the reservoir group. Strictly speaking, 7. , along

The density is designated p, c& is an average
sound speed for modes of polarization j, b CR"' is
the specific heat per unit volume of the selected
reservoir modes with average relaxation time 7,
and ~ is the frequency of the incident propagating
phonon. The Gruneisen constant y&2 is defined rela-
tive to the sum of the two polarization terms of the
acoustic theory. ' For example, in an approxima-
tion of partial equality of longitudinal and trans-
verse sound speeds, y~~ is given by

EXCITATION

ENERGY

PROPAGATION MOOE$

N PROCESSES

(REGION 1)

SLOW

RES I ST I V E

PROCESSES

//
RESERVOIR MODES

FAST RESISTIVE

(REGION 2)

EXTERNAL
HEAT
BATH

FIG. 1. Energy flow in the two-Quid model.
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with the Gruneisen gamma, should be included in
the specific-heat-weighted modal sum. However,
neither is usually known well enough to warrant
such an accurate treatment, so they are con-
sidered to be reservoir averages herein; in the
same spirit we make the assumption of crystal
isotropy throughout. Although the derivations that
yieM Eq. (1V) do not include U processes, by
definition of the reservoir the N-process transi-
tions involved span the same modes q' and q" for
which U processes are permitted. Therefore we
assume U processes can be included by appropri-
ate adjustment of the Gruneisen constant y&2. Use
of Eq. (1V) implies neglect of the contribution of
optic modes to the propagation group; we include
them only in the reservoir. Nondispersive optic
and other high-frequency modes with significant
group velocity and relaxation times may contribute
to thermal conduction. Since we formally omit
them from the polarization sum for propagating
modes, their presence will result in the infer-
ence of an excessive value for the Grtineisen
gamma from the fit to experimental data (since
this parameter normalizes the overall magnitude
of K). We obtain the ANR transition rate from
Eq. (17) in a mean phonon approximation as

(„, ',IfkBx' exp(A)D, (~)
[exp(x) —1]' (20)

where D, (&u) is the fractional density of states of
polarization j, and 9t is the number of unit cells
per unit volume.

C. Low-temperature reservoir due to extrinsic resistivity

The above considerations apply to an ideal crys-
tal with only anharmonic interactions. Towards
low T, extrinsic scattering such as that due to
isotopes, impurities, dislocations, and crystal
boundaries becomes more important than U pro-
cesses in real crystals as a source of thermal
resistance. For this reason, we now consider
such extrinsic effects with regard to the distinc-
tion between propagation and reservoir modes,
beginning with the specific case of the Rayleigh

2~ m

(19)

The Debye mean sound speed, obtained from the
usual average of c, ' over all directions and polar-
izations, is denoted c, ~„ is the reservoir
threshold angular frequency, ~Rc is the frequency
at which the reservoir spectrum is cut off, and

y is a mean Gruneisen constant. C„'&' is given
by3

n—= V«, 1-M; 2 — 4rc3 (22)

where P, is volume per atom, f, is the fraction of
unit cells of mass M„and M is the average unit-
cell mass.

Although in real crystals no modes will be
totally free of resistive loss, we suppose that a
propagation region can still be defined if extrinsic
resistive scattering is negligible compared to an-
harmonic resistive scattering. Thus for the
propagation region we require, on the average, '9

~ANR(+P) ~NB(+P) ' (23)

By contrast, for the reservoir region we must re-
quire

~RB (+R) ~ ANR (+P ) (24)

for this region to be in thermal equilibrium rela-
tive to the propagation region. v„and ~p repre-
sent frequencies anywhere in the reservoir and
propagation regions as in Eq. (16). There is now

no threshold for onset of dissipative loss, and
these strong inequalities cannot be satisfied over
all of each region. However, a natural procedure
is to separate the regions at the boundary of equal-
ity betwen the two scattering rates:

~ANR (+R) ~RB (+R) (25)

such that v & co„ implies region 1 and v & co~ im-
plies region 2. ~„now refers specifically to the
frequency at the boundary between the two regions
that is a solution to Eq. (25). With this definition,
Eqs. (23) and (24) are satisfied only' as weak in-
equalities (& and &, respectively). However, in

the case of RS, the strong inequalities (23) and

(24) become valid a short distance away from the
boundary established by Eq. (25) because of the
strong variation of 7.RB(&o) with frequency compared
to 7»'R(&o). Therefore we still expect strong in-
equalities to hold true on the average and conse-
quently the boundary defined by Eq. (25) to behave
as a threshold. In view of the relative behavior of
the two transition rates, we will also have
~Re»(&uR) «uP v(&uP), with the inequality becoming
strong again a short distance from the boundary.
This enhances the validity of the single-mode re-
laxation-time approximation [cf. Eq. (16)]. It is
also true that 7 „N'R(~) will no longer include a U-

process contribution when transitions are com-
pleted in the extrinsic reservoir region below the
wave-vector reduction threshold. We neglect this

C

scattering (RS) transition rate ORB(&u) for impurity
and/or isotope scattering, ' '7'

(21)

For isotope scattering, e is given by
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effect in view of the lack of quantitative knowledge
of anharmonic transition rates. The present con-
siderations define the anharmonic scattering rate
in a given propagation mode; when we compute the
thermal conductivity, it will still be necessary to
account for the direct resistive (e.g. , Rayleigh)
scattering out of the mode. The above inequalities
also ensure that this latter rate is a small con-
tribution to the direct scattering in region 1. This
is illustrated in Fig. 1 by the arrows labeled "slow
resistive processes" that connect propagation
modes directly to the external heat bath. (Com-
bined point-defect and anharmonic scattering as
considered by Carruthers may also connect
propagation and reservoir modes as illustrated
in the figure. )

The specific heat of the low-temperature reser-
voir arises from nondispersive acoustic modes
because zone-boundary and optic modes will be
unoccupied. Therefore the Debye approximation
provides &Ca'"' as needed for a solution to Eq.
(25) (Refs. 3 and 21):

9npBs T
t~

t exp(t)dt
w TD ] .„[exp(t) —1]' '

R is the gas constant, n the number of atoms per
unit cell, s the number of primitive cells per
molecule, zo the molecular weight, and T~ the
Debye temperature kc„(6n~ast)'~3/k~. We expect"
that &us» 1 (although less than ~7~), except at

very high T, so tan '(2&us) = w/2. Eq. (19) be-
comes

~AgR(~) = QH(~a)T'~,

where Q= 9wymns Rk~/(45'wc~T~} and H(x) is
t4 exp(t)dt

[exp(t) —1]2 '

Use of Eqs. (21) and {2V) in Eq. (25) yields

xa =QTH(x„)/a

(2V)

(28)

from which the acoustic phonon frequencies to be
included in the reservoir in the presence of Hay-
leigh scattering can be computed.

Equation (29) can be solved numerically or by
use of a table of H(x) prepared from existing
tabulations. ~~ LiF forms a good illustration. ~'~3

%e estimate y by use of the thermal expansion
value yth=l 63 24 Use25 of n=2, c.=4.96x los
cm/sec, T~=V34, along with the remaining stan-
dard constants, yields Q=0.16 sec 'deg 5. Curve
B in Fig. 2 shows the reservoir boundary deter-
mined by Eq. (29) for this Q and o =0.03 sec 'K 4

for specimen 2 of Ref. 17. Line A shows the U-

process wave-vector reduction threshold {6.2
THz) obtained from the dispersion curves for LiF
as the L& (TA) normal-mode frequency (Table I
and Fig. 4 of Ref. 26). Curve C will be discussed
below. The values of x„ for c~rve 8 from 10 to
37 K range from 6.5 to 8, not substantially dif-

7.0—

6.0

5.0

x 40

3.0

2.0

ANT
ON

T

1.0

0
0 10 20 30 40 50 60

T( K)

70 80 90 100

FIG. 2. Illustration of the two-fluid concept by a specific example. Region 1 is the normal-process dominated and
region 2 the resistive-process-dominated region of the v-T plane. Line A is the lowest zone-boundary intersection fre-
quency where U processes begin. Curve B is the locus of points for which the a~b~rmonic transition rate into modes
above B equals the isotope scattering at that frequency. Curve C is the reservoir boundary for which dislocation and
anharmonic scattering are equal for all frequencies. Line D represents the dominant phonon frequency.
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ferent from a straight line. Line D is the domi-
nant phonon" frequency 1.5ksT/L The position of
line D shows that for this relatively pure crystal
the RS reservoir lies well into the thermal tail of
the phonon distribution. Equation (27) is further
discussed in Appendix B and shown to be similar
to certain of the N-process relaxation rates in-
ferred from Callaway analyses. "" In addition, it
leads indirectly to some of the U-process rates
likewise inferred. '7' '

It should be noted that the criteria established
to separate propagation and reservoir regions are
average as well as approximate conditions. propa-
gation modes of one polarization may extend above
the U-process combination- threshold of another
polarization, and we expect to use some charac-
teristic of the boundary between the regions as an

adjustable parameter. Figure 3 illustrates the
modes involved in the two roles on a dispersion
curve diagram. The frequency of the BZB mode
(usually highly dispersive) wherein the lowest U-

process frequency combination can occur is desig-
nated ~R„. This is the reservoir threshold at high
temperatures. The nondispersive portions of the
TA and LA branches constitute the propagation
modes so that ~~ as shown in the figure is their
(approximate) cutoff. Towards low temperatures,
extrinsic resistive processes lower the reservoir
into the nondispersive modes to the onset frequen-
cy ~R. Thus these modes may act in both propaga-
tion and reservoir roles as determined by the
amount of extrinsic resistivity. Since at sufficient-
ly low temperatures all occupied modes are non-
dispersive, these dual-role modes constitute the
entire reservoir. For dislocation scattering we
use the transition rate y~' due to Klemens where

6 measures the scattering strength'.

yg ——T5g .
This has the same frequency dependence as v A„„,
so it will not . reate reservoir characteristics
along the lines of our previous discussion. Never-
theless, it can limit the validity of the two-fluid
model at low temperatures. The boundary for
equality between v D' and v„„'„is

(31)

Since this is independent of frequency, for reser-
voir boundary frequency above &u», w»„(&u)
& pc'(&u) for all &u, and vice versa for boundary
frequencies belo~ coRD. Curve C in Fig. 2 shows
the critical frequency &u»/(2m) as a function of T
for 6=7500 sec 'K ' (specimen 2 of Ref. 17). Be-
cause H(x) has a maximum value H(0) = 25.98, be-
low the minimum temperature T„=(0.038495/
Q)' 4, Eq. (31) cannot be satisfied and dislocation
scattering dominates 7»R for all frequencies.
Thus at sufficiently low T, dislocation scattering
will cause the observed reservoir boundary to
drop below &u„of Eq. (29) for RS, and the division
into two groups of phonons loses signficance near
T„. Fortunately, T„appears in the ballistic re-
gime (for reasonably pure crystals) where bound-

ary scattering is becoming domimant and anhar-
monic processes are dying out. Therefore we
neglect dislocation scattering in the determination
of the reservoir.

Boundary scattering, insofar as it is independent
of frequency, does not lead to reservoir behavior,
so we neglect its effect on the determination of the
reservoir. Like dislocation scattering, it will be
included only in the direct resistive transition rate
used to compute K.

III. COMPUTATION OF THE THERMAL
CONDUCTIVITY

A. Resultant mean phonon relaxation length

~RU

We now reduce the anharmonic thermal-con-
ductivity expression implied by Eq. (14) to a mean
phonon approximation. The fractional density of
states D&(ra) [cf. Eq. (20)] in the approximation of
a spherical surface in wave-vector space can be
written~'

D,. (a)) =qi2/[2z2cq((u)st] . (32)

FIG. 3. Frequency limits for propagation and reser-
voir modes on an idealized phonon dispersion curve dia-
gram. The U-proce ss (high-temperature) reservoir
threshold frequency is denoted co„„, whereas the onset
frequency of the low-temperature, nondispersive reser-
voir is cuR. A typical cutoff at the highest nondispersive
propagating mode is designated cop.

The group velocity c&(~) in Eq. (32) cancels
against the same factor in the expression for K,
reducing the sensitivity of K to the effects of dis-
persion. The nondispersive approximation qz

—w/
&& is taken for the remaining factor q&~ and a "mean
phonon" relaxation length A(~) is defined by

3A(&u)/ci = A„i/cd + 2A„„/c2r, (33)
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where A„~ and A„~ are to be obtained from Eq.
(1V). Thus K becomes

&a(&aT/0)* "v x4exp(x)A(x)dx
F C [exp(x)-1]' ' (34)

B. Reservoir specific heat and relaxation time

The density of states for dispersive reservoir
modes was taken as a constant function of fre-
quency from the U-process reservoir threshold
~» to the end of the spectrum, designated ~Rc.
All optic modes were assigned to the reservoir,
along with acoustic modes of small group veloci-

where xv= Tv/T, and Tv=(hc /k)(6v X)'~3 refers
to acoustic modes alone.

To obtain a formula applicable to real crystals,
it is assumed that in the propagation region, in-
dependent scattering mechanisms contribute by
addition of reciprocal relaxation lengths. The re-
sultant mean phonon relaxation length may then be
expressed as

A(ar) =A,/[1+A, /A (~)+A,/A, (&u)+A,/A»(~)]

(35)

to account for boundary (5), anharmonic (an},
dislocation (d), and Rayleigh scattering (HS), re-
spectively. All terms of Eq. (35) are approximated
as polarization averages and A, is taken as a sim-
ple frequency- and temperature- independent
length. From Eqs. (30) and (21), we have

A~=Ac J(l&o6), A»=cg[n(5/ks)'&o']. . (36)

It is assumed that the parameters A~, 5, and n
can each be adjusted to account for the proper
polarization and velocity averages. Application
of the mean phonon definition of Eq. (33) to the
anharmonic relaxation length of Eq. (1V) implies
that the mean Gruneisen constant y„of Eq. (19);
which will also be taken as adjustable, is defined

by

3c./v.'= c.h'+-2"/~'

ty. These latter modes were taken as the trans-
verse modes lying between the first plateau of the
dispersion relations (i.e., the reservoir threshold
&b'av) and the cutoff frequency v~ for the propaga-
tion modes. The reason for this procedure is that
most transverse modes above this first plateau of
the dispersion relation have nearly zero group
velocity, while the longitudinal modes above it
tend to be nondispersive. Thus, the fraction f„
of "flat" acoustic modes was estimated on the .

basis of a spherical wave-vector surface as
3 [1—(~av/~~) ]. Including op™d-,these
assumptions imply that the total specific heat of
flat modes is

3Rps(ksT/R)
4Cy'"' —— . (f~+n —1)[J2(xac) 2(xav)] ~"ac ~av)

f" exp(f)dt
Jo [exp(f) —1]2 ' (38)

As noted in Sec. IIC, towards low temperature,
extrinsic resistive processes begin to couple ad-
ditional modes that lie below the U-process plateau
into the reservoir. These modes begin at xR

era/ksTas'longasva~a&av, and their specific
heat is

'CD
~

g [~4(xav) ~4(xa)] ~

~) BRps(T
(40)

Since this 'Debye tail" of the reservoir involves
only acoustic modes, T~ has been used in place of
T~. However, it was found computationally con-
venient to reduce all frequencies to the scale of
the conventional Debye frequency by means of the
dimensionless numbers h, f, and g defined as

&=4&D/-av~ f = -D/-act g --D/-p (41)

With these definitions, the total reservoir specific
heat becomes

(38)

where J~(x) is a member of the family of Debye
integrals

I

(„) 3Rsp — T n —-', ——', (g/b)~ T
ACa" = 3 —[J4(xav) —J4(xa)l~(xa xav)+ -& y-i T [Zt(xac) Jt(xav)]

v 8
(42)

where A(x„,x„„)is equal to 1 if xa~x„„and to 0
if x„&x„„.Although procedures for estimation of
xR were outlined in Sec. IIC above, for simplicity
we take x„ to be a temperature-independent ad-
justable parameter. The error this introduces,
as well as that of the discontinuous low-tempera-
ture reservoir onset used in Eq. (42), will be
treated later.

A procedure to estimate 7., which is expected to

7(~„) '= r, '[1+2N'(&oa/2)] (43)

as the reservoir relaxation time, where 70 which

l

decrease uniformly with T,33 is available from the
approximation that the reservoir phonon energy
g~„»k~T so that reservoir relaxation is domi-
nated by the decay of optic phonons into acoustic

.phonons of roughly equal frequencies. The theory
for this process 4 3 suggests the use of
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will be used as an adjustable parameter, is in-
dependent of T. %e now replace ~R by —,'~D as a
crude average to obtain an interpolation formula
for 7. Phonon- linewidth information provides an
experimental estimate of r(&u„) as (4&@„) ' where
g~„ is the width of the dispersion curve. s~ The
corresponding value of 7.

0 in units of (do is given
by Eq. (43) as

AD, as inferred from the fits to K, will be com-
pared to the experimental linewidth, where avail-
able, by use of this relation. The rhs of Eq. (44)
will be referred to as A, (exp).

C. General computational formula

D 2
o= o= aQ ~xp(T )(4Ti) 1) ~ (44) Equations (34)-(37) yield the final computational

formula for K:

A~k~T "p x4 exp(x)dx
2&2k~et

0 [exp(x) —1]~[1+B„xtan '(Ax)+B~x+BRsx4] (45)

The coefficients in this expression are defined by

B = [A,y T-nC" (k /k)]/(2pc ),

B~ = A~T5/c

BRS=Abnr'/c (46)

Although an isotropic approximation, Eq. (45)
provided sensible agreement with experiment for
all anisotropic as well as isotropic crystals in-
vestigated over appropriate temperature regions.
Consequently, comparisons will be presented for
cubic, hexagonal, tetragonal, and trigonal struc-

2A„Z/r,A= ksT7'/h=
1 2[,[

"
/( ) ) q, (47)

where ACR"' is given by (42). We have replaced
xD by xp in the upper limit of the integral in Eq.
(45) since it will be adjusted to cut off the propaga-
tion modes in the presence of dispersion and con-
tributing optic modes. Although suggested by the
experimental dispersion relation curves, ~R„will
also be adjusted in view of the neglect of the tem-
perature dependence of the Griineisen gamma, and
polarization of the approximate final-state density,
and to reflect the average effect of anisotropy
(since a&„„ is strongly dependent on the direction
of phonon propagation). The cutoff &o„c was not
varied; it was taken from experimental dispersion
curves.

Equation (45) was numerically integrated with
48- order Gaussian quadrature. ~~ The calcula-
tions, programed in FORTRAN IV, were carried
out interactively under the VM/370 CMS oper-
ating system on IBM Model 145 and 158 computers.
The parameters were adjusted by subjectively
changing input data to the program at the terminal
until agreement was achieved between the com-
putation and the experimental data for a given crys-
tal.

IV. COMPARISON OF THEORY AND EXPERIMENT

A. General considerations

tures. Comparisons for orthorhombic ZnSO4, for
natural and isotopically enriched Ge, and for Si02
are given in Ref. 10, along with further discussion
of the cases considered here. The densities,
Debye mean sound speeds, and Debye tempera-
tures were obtained, with one exception, from the
compilation of Anderson. ' For He, T~ and p
were taken from Berman et al. to match the
specimen on which K(T) was measured, and c
was estimated from the results of Crepeau et al.
These material properties for all crystals studied,
along with the adjustable parameter values obtained
from fitting the theoretical curves to the data, are
collected in Table I. The letters (a), (b), etc. , for
certain crystals listed in the table refer to curves
of the figure showing K(T) for different composi-
tions or directions [curves (b), (c), and (d) for
LiF are for specimens 2, 3, and 5, respectively,
of Ref. 17],

Thermal-conductivity data for LiF and 4He were
read from the graphs in Refs. 1V and 3V, respec-
tively. For the case LiF (a), datum points were
kindly supplied by Dr. Philip D. Thacher. '~ For
Al&03 and TiO&, data were taken from the compila-
tion of Touloukian et al.

The RS strength n was used as an adjustable
parameter in spite of the availability of theoretical
values as a test of the present theory and fitting
procedure. Comparison of inferred and theoreti-
cal values was generally reassuring. The results,
discussed in Ref. 10, ranged from essentially pre-
cise agreement for LiF (b) and Si02 to a maxi-
mum 50/0 discrepancy for Ge and TiO&. A com-
parison is also given there of inferred xR values
with theoretical xR values as computed from
Eq. (29) using inferred n values. This compari-
son, although quite good in several cases, shows
only qualitative agreement in others, which is at-
tributed to the variation of T~ with T. The speci-
fication of T~ for the low-temperature reservoir
may be particularly sensitive to this variation,
especially since these reservoir modes span only
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TABLE g. input data (left-hand side) and inferred parameters (right-hand side) of the thermal conductivity curves of
Figs. 4 8. c and T are the Debye sound speed in km/sec and temperature in K, respectively. f, b, and g are di-
mensjonless ratios of the Debye frequency to frequencies of, respectively, the spectrum limit, U-process reservoir
threshold, and propagation mode cutoff. p is a Gruneisen constant, ~~ the boundary length in mm, 6 the dislocatj. on
strength in sec- K-, Ao the reservoir relaxation time in reciprocal Debye frequency units, & the Bayleigh scattering
strength in sec K, and xa —= 8 &z/kz T, where ~z is the onset angular frequency of low-temperature reservoir modes.

Species Cm TD Ao

LiF (a)
(b)

(c)

4He (a)

4.963

0.29

734

28.7

0.77

0.65

1.45

2.46

2.8

2.2

1.4

9.6
4.6

4.6
4.6

(7)

200
500

1000
4000

1000

100

0.0015
0.0019

0.30
1.18

8.2
8.0

6.0
5.8

20-25

(b)

Al,O, 7.026

5.557

1020 0.82

0.62

0.925

1.378

3.31

2.78

4.6
1.88

0.65

(4)

4 0

2.0

1500

0

10

100 0.0083

0.24

7.8
5.7

I I I I li~ I I I I I I I

100.0— SPECIMENS

CO
Q)
S

CD
10.0—

U

O

tg

1.0

0.1
1.0 10.0 100.0

I I I I I I

1000.0

FIG. 4. Comparison of theory and experiment for LiF. The experimental points are from Thacher (g; Ref. 23) and
from Herman and Brock (6, specimen &, k specimen 2, x specimen 3, CI specimen 5; Ref. 17). The theoretical curves
correspond to different values of the scattering strength e and other adjustable parameters as given in Table I of the
text.
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a high-frequency subset of the spectrum.
Since the reservoir relaxation parameter Ao

enters through the arctangent function, R is not
very sensitive to its magnitude unless Ao & -10.
The computation is also somewhat insensitive to
the precise value of the dislocation strength (a
feature shared by prior analyses).

B. Cubic: I,ip

Figure 4 for LiF shows the comparison between
theory, Thacher's experimental measurements
[curve (a), ; these data correspond to curve A
of Pigs. 1 and 4 of Ref. 22], and measurements of
Berman and Brock" [curves (b), b, ; (c), &&; (d), O].
The 5 value of 2.8 required for the fit corresponds
to a U-process reservoir threshold somewhat be-
low the TA branch zone-boundary intersections
(but not as low as was obtained in the Berman-
Brock and Thacher-Calloway fits). The BZB in-
tersections occur at b =2.5 in the [111]direction,
and at b =2.0 in the [001] and [110] directions 8.
This lowering may be due to compensation for the
constant Gruneisen gamma (the inferred y was
1.45 compared to 1.63 for the thermal-expansion
value) of the fit. The behavior of the conventional
elastic-constant gammas as functions of T could
produce a similar effect to that of increased b (as
b increases, the peak value of K drops).

ln cases (b) and (c), significantly lower values of
5 were required than those adopted by Herman and
Brock. Our values are in the range 10-15 times
smaller that would produce agreement with
Klemen's predicted values according to the dis-

cussion of Berman and Brock. Such anomalously
large 5 values characteristic of Callaway f&ts"
may arise from the missing dependence of 7 „ in
that theory on isotopic composition. The propaga-
tion-mode cutoff frequency vr = vn/g =11 THz ex-
hibits excellent consistency with the maximum LA
frequency of -12 THz which begins to show sig-
nificant dispersion above about 10 THz.

The four curves of Fig. 4 exhibit a significant
discrepancy in the vicinity-of the onset of the low-
T nondispersive contribution to the reservoir.
Therefore, it is of interest to determine the error
introduced by the straight-line approximation to
the nondispersive reservoir boundary. Two fur-
ther cases out of the measurements made by
Thacher —. the data shown on curves B and D of
Fig. 4 of Ref. 23—were selected for a numerical
experiment to infer the exact reservoir boundary
on a point-by-point basis. First, an initial fit was
made to the K data, as in Fig. 4 herein, to deter-
mine optimum adjustable parameter values. Then
a second calculation was performed using these
parameters as obtained from the fit excePt for n
and x„. The theoretical values given by Thacher
were used for n, and the value of x„was calculated
that produced exact agreement between the experi-
mental and theoretical values of E (to the three
figures determined in Thacher's experiments).
Use of nonzero 6 did not seem to improve the fits,
so dislocation scattering was neglected. Figure 5
shows as open circles the results of this point-by-
point inference of x„(7') as plotted in the frequency-
temperature plane for Thacher's case I3, with o.

7.0

6.0—

5.0

ZB

0 P

v = 5.67 THz

0

4.0
N
Z
I—

3.0

LiF

o THACHER CURVE B
n = 0.126 sec "K

2.0

1.0

0
0 10 20 30 40

I

50
T( Kj
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I
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I
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I
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FIG. 5. Inference of "exact" reservoir boundary frequencies and comparison with theoretical boundaries {solid and
broken curves) of the two-Quid model. The open circles are boundary frequencies for which the theoretical formula
for K reproduces the experimental values as measured by Thacher {curve I3 of Ref. 23).
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fixed at 0.126 sec ' K . The lowest BZB fre-
quency is marked on the figure as well as the in-
ferred high-temperature reservoir frequency of
5.67 THz. The solid sloping curve gives x„(T)
computed from Eg. (29) for the value Q/a =1.86
K ' that most closely matches the experimental
points. The dash-dot straight line beside the x„(T)
curve has the slope 6,9 selected in the initial fit.
This selection was made before the second calcula-
tion was done so that the results of the latter did
not influence the choice. Similar results were ob-
tained for Thacher's case D.

In general, Fig. 5 confirms the reservoir con-
cept formulated above. The high-temperature
points (i,e., above the low-temperature reservoir
onset -40 K) slowly drift upward relative to a
horizontal line —probably due mainly to tempera-
ture variations of the Gruneisen gamma and U-
process combination threshold. This drift, plus
the smooth transition region between the two
reservoirs, is clearly responsible for most of the
error in the fits, which are highly sensitive to the
reservoir boundary.

Below about 12 K, the inferred boundary fre-
quencies begin to increasingly drop below the
theoretical HS curve. Variation of T~ with T may
contribute to this effect along with dislocation
scattering and a possible frequency-dependent
component of the boundary scattering. An espe-
cially interesting feature of Fig. 5 is the persis-
tence of a smooth, well-defined reservoir bounda-
ry below the thermal conductivity maximum,
which is at 15 K for this crystal. ~' Thus the
reservoir determination appears independent of
the boundary scattering, which exceeds the an-
harmonic scattering in this temperature range.
The last two points shown on the figure, at 4.6 and
4.0 K, have begun to fluctuate because the size of
the anharmonic contribution has reached the error
in the fit to the data. Therefore, it is not possible
to confirm whether or not all modes become re-
sistive in the reservoir sense before the reservoir
loses significance.

C. Hexagonal: 4He

Figure 6 gives the comparison with experimental
data taken from Berman et al. 3' for heat flow 78'
to the c axis [0, curve (a)], and flow 6' to the c
axis [, curve (b)]. The inferred h values are
2.2 and 3.7, respectively, while the observed U-
process combination thresholds in the [1010] and
[0001] directions are about 0.24 and 0.18 THz,
respectively, corresponding to 6 values of 2.5 and
3.3,4'4' (the Berman et al. crystal had molar vol-
ume 20.2 cm~). Thus, our U-process reservoir
threshold for c-axis flow is below the lowest ob-
served zone-boundary intersection as in the case

10.0

1.0—

0.01—

pp01i I I, I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

T {K)

I

1.8 2.0

FIG. 6. Comparison of theory and experiment for hcp
4He with molar volume 20. 2 cm3. The experimental
points from Berman, Day, Goulder, and Vos (Ref. 37)
are for heat flow 78' to the c axis (o) and 6' to the c axis
(o).

of LiF above. Our y =2.46 for flow at 78 to the
c axis is comparable to the thermal-expansion
value. Herman et al. obtain 5 values of 2.53 and
4.64, corresponding to still lower thresholds than
ours. Because of the inapplicability of our theory
in the region of the maximum, due to the onset of
Poiseuille flow, it was not possible to infer n
values below the temperature of the maximum and
the boundary lengths used in the fit are enclosed
in parentheses in Table I to indicate their unreli-
ability.

Heese et al .~' have measured linewidths for the
LA and LO branches for the c-axis direction in
He at 16 cm~/mole. The frequency scaling with

molar volume which they discuss indicates that
.the values of A, (exp) =3-5 obtained from their
measurements should also pertain to our case.
The inferred value of Ao =10 for nearly parallel
flow provides reasonable agreement for this direc-
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FIG. 7. Comparison of theory and experiment for sapphire. Data points marked 6 ~ 0 are from curves 1, 7, 19,
and 25, respectively, of Fig. 15 of Ref. 40. The theoretical curve parameters are given in Table I of the text.

tion. For the transverse directions they obtained
only upper limits on the linewidths, which are
considerably broader than the width implied by
our inferred value A, =100.

D. Trigonal: A1203

The fit of Fig. 7 for Al&03 is remarkably good,
partly due, no doubt, to the broad expanses of
temperature range without data. The data are due
to ( ) Koenig, (Q) Kingery and Norton, (8) Ber-
man, and (O) Herman et al. , as referenced in Fig.
15 of Touloukian et a/. for curves 1, 19, 7, and
25, respectively. The U-process reservoir thresh-
old vo/b =7.65 THz lies above the lowest zone-
boundary TA frequencies at about 6 THz." The LA
branches appear to be more dispersive than the TA
in this crystal. Our inferred propagation-mode
cutoff of 11.3 THz agrees precisely with the BZB
frequency of the highest nondispersive branch

which is TA.
The inferred y=1.378 is close to the thermal-

expansion gamma value 1.32. At the time the
curve was drawn, the points ~ from 600 to 1100 K,
due to Kingery and Norton, had not been found by
the author, so they did not influence the choice of
parameters. It was, therefore, a pleasant sur-
prise after discovering these data upon a closer
examination of Ref. 40, to find that they fitted so
well on the already drawn curve.

E. Tetragonal: TiO2

The comparison for this crystal is given in Fig.
8, which includes data due to Thurber and Mante
(0), Charvat and Kingery ( ), Kingery and Norton

(p ), McCarthy and Ballard (), and Berman,
Foster, and Ziman (b). An interesting apsect is
the unambiguous presence of nondispersive optic
modes" which may be expected to contribute to the
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FIG. 8. Comparison of theory and experiment for rutile. The data points marked 6 V ~ p p are from curves 4, 11,
17, 21, and 29, respectively of Fig. 36 of Hef. 40. The parameters of the theoretical curve are given in Table I of the
text.

propagation group. This is confirmed by the fit;
the propagation-mode cutoff parameter g has the
value 0.75, the smallest by far of the cases ana-
lyzed herein. Although this corresponds to 19.8
THz, almost 8 THz above the highest acoustic
modes, it is consistent with the neutron scattering
data. As in the case of Sia& above, the inferred
y =3.31 is much larger than the thermal-expan-
sion gamma 1.3, tending to support the optic- mode
involvement in propagation. Our inferred U-pro-
cess reservoir threshold at 3.2 THz (b =4.6) is
just above the lowest zone-boundary modes44 at 3
THZ.

The dashed curve in Fig. 8 has been drawn for
the theoretical value of n =0.46 sec ' K 4 for iso-
tope scattering. It provides a better fit on the high-

temperature side of the maximum at the expense of
some of the points in the boundary scattering re-
gime.

V. CONCLUSION

The two-fluid theory presented herein has the

advantage of possessing a fundamental basis in the
variational principle while at the same time ex-
ploiting dispersion and density-of-states complexi-
ties that commonly hinder the implementation of
prior approaches. It also provides a more precise
definition of the contribution of N processes to
thermal resistance than previously available, and
results in a more intimate connection between iso-
tope and/or impurity scattering and anharmonic
scattering than has been realized before. The
combination of N- and U-process transition rates
into a single anharmonic term conveniently re-
duces the number of potential adjustable param-
eters, and, while a large number is still employed
in the approach as presented herein, reduction can
be made by further refinements. The two-fluid
theory appears to unify thermal-conductivity phe-
nomena over a considerably broader temperature
range than individual prior approaches, with a
single set of parameters determining the conduc-
tivity from the boundary scattering regime to above
the Debye temperature.
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APPENDIX A: HIGH-TEMPERATURE
ASYMPTOTIC FORMS OF K

K = 0.04138(ks/8)'Ma& g/(& y T) . (A2)

This result is similar to that of Houfosse and
Klemens33 who obtained 0.03491 for the numerical
coefficient. For a lattice with n= 1 (no optic
modes), the two-fluid model requires a region of

dispersive acoustic modes to produce a finite value
of K. If the fraction f„of flat acoustic modes as
used in the text [cf. Eq. (38)] is employed to de-
scribe these, we may take, e.g. , ~p=~~
= (6m )'~ c„/a for the maximum frequency of a
nondispersive longitudinal mode, and a frequency
~» ——(6& )' „c(/2'~ aS) near the Debye zone bound-

ary (Ref. 3, Sec. 1.11) as the point where the
transverse modes become dispersive (viz. , for
co & &» we take them as nondispersive, with a
plateau at &u =~„„). For these values, g= 1, 6
=-,', we obtain

K = 0.2566(ks/8)'M aT ~/(w'y'„T ) .'

This coefficient is close to the result 3(4)'~~/20

1. Intermediate high-temperature limit

At high temperatures, one can neglect all but the
anharmonic processes. Using J„(x)= x" '/(n —1),
and setting 7 —= [n ——,

' —f (g/k) ], K [Eq. (45), text]
becomes

(ks/f) Mc T ["x xaexp(x)dx
3v'y'6: Jo [exp(x) —1]2tan '(Ax)

(A1)

where M=m/(Ls) is the mass of a unit cell with &

designating Avogadro's number. We obtain an in-

termediate temperature limit if T is sufficiently
large that the above approximations are valid, but
not so large that Ax is small over the contributing
region of x. In this circumstance, tan '(Ax) = &/2,

and the conventional T ' high-temperature limit
follows. If also the acoustic modes are assumed
to be nondispersive so that g=b=n'/', and we con-
sider only the simplest lattices with optic modes,
n=2, Eq. (Al) yields, with a—= 5t

=0.2381 of Liebfried and Schlomann" and cor-
rected by Julian. " Smaller values of ~„„cor-
responding to a larger region of dispersive modes
decreases K (by increasing f) relative to the Lieb-
fried-Schlomann magnitude toward the Houfosse-
Klemens result. Thus, as would be expected, the
coefficient depends sensitively upon the amount of
dispersion present in the acoustic modes and/or
the presence of optic modes.

(A3)

where (r)„signifies an average over the reservoir
specific-heat factor C„'"&' as defined in Eq. (36) of
Ref. 31.

We use the high-temperature U-process ~ of
Roufosse and Elemens,

r =$2 Mc /(47ry~ak+T+ ),
and estimate (v 2),„ in the Debye approximation. '0

Estimating u&ac as 1.3am, setting &u~ =+~/g
/nn'~ 3and assuming y and c of Roufosse and

Klemens are the same as our y„and c, we obtain
from Eq. (A3)

K =3 Imac ps.n' 'It/(w6:), (A5)

a result that is independent of temperature. Slack'
has discussed this very-high-temperature leveling
off of K and derived a similar limit that agrees
with the scanty experimental data available. Using
Slack's data (Table X&III of Ref. 7) for the ma-
terial constants of these crystals, and the esti-
mate % = 2.5 (n =3), Eq. (A5) yields K = 29 mW/
cmdeg for Zr02 and 25 mW/cmdeg for Th02, in
reasonable agreement with the experimental data
cited by Slack. It should be noted that no artificial
assumption has been made regarding the mean
free path of either the optic or acoustic phonons
in the above derivation.

2. Very-high-temperature limit

At still higher temperatures, the reservoir re-
laxation time is expected to become small, pos-
sibly approaching a minimum value. ' Because
propagation frequencies cannot exceed the fre-
quency of the highest nondispersive modes of the
lattice, &up7 may ultimately become small (since
r ~ T ') such that we can set tan '2&or =2&or in
Eq. (17) of the text. [ The WE theory rather than
LR theory justifies Eq. (17) in this limit; however,
we assume that the temperature and velocity shifts
defined by WE will vanish for such very high-fre-
quency waves. It would not be meaningful to define
temperature and velocity differences over the
scale of a few lattice spacings. ] Thus, the very-
high-temperature" limit of Eq. (Al) is



898 BAXTER H. ARMSTRONG

APPENDIX B: LOW-TEMPERATURE
N- AND U-PROCESS RELAXATION TIMES

jk. N-process relaxation time

The low- temperature reservoir theory pre-
sented in Sec. IIC of the text can be compared to
conventional results for the Callaway N-process
relaxation time. The parameter usually quoted is
(v„'(x))„where the angular bracket ()„is the
specific-heat-weighted modal average as defined
in Appendix A. Performing this average on
v„„'n(x) of Eq. (27) of the text yields

( v „'„,(x)),=5'(x„)T'g(5)/p(4) =4.7903QH(x„)T'.

If the low-temperature reservoir boundary in the
v-T plane is approximated as a straight line, H(xa) is
independent of T, and Eq. (Bl) has the form ob-
tained in some orevious studies of LiF, NaF, and
solid 3He- He mixtures. " ' The only free pa-
rameter here is the reservoir boundary slope xa,
so it is of interest to calculate the value of x„ that
produces numerical agreement with (v„')„ofpre-
vious studies.

From an analysis of Thacher's LiF thermal-
conductivity data, Quyer and Sarkissian ~ ob-
tained (v„')„=0.5T' sec '. This corresponds to
H(x„)=0.6 and xa = 10.3 in Eq. (Bl) with @=0.16
sec 'deg ~ as used earlier, in qualitative agree-
ment with curve (b) of Fig. 2 of the text.

Numerical computations of H(xR) were performed
for LiF to assess the error of the straight-line
approximation to xa. For Thacher's curve B (Fig.
4 of Hef. 23) with a=0.126 sec 'deg 4 for isotope
scattering, it was found that H(xn) varied approxi-
mately as T '~~ for T between 10 and 100 K.
Thus, (v „„'a) actually goes as T4 ~ rather than
T5. This may account for the finding by Herman
and Brock" and Rogers" that they could fit their
data with (v„') ~ T rather than the more canonical
T' form.

2. Apparent U-process relaxation time

It is of interest to reconcile the lack of a sepa-
rate U-process transition rate in the two-fluid
theory with the conventional approach. By defini-
tion, the high-temperature reservoir lies above a
constant angular frequency co«. Thus, it turns out
that use of &u„v=~v/5 as the lower limit of inte-
gration for the specific heat &C~~' causes this quan-

tity to exhibit the behavior of the conventional U-
process factor exp[ —Tv/(bT)] in the appropriate
temperature range. The anharmonic transition
rate v„„'„, given by Eq. (19) of the text, is pro-
portional to bCR so it, in turn, exhibits this
same behavior. To show this, we use the Debye
approximation to compute 4C„'"' because this ap-
proximation was used in the analyses with which
we compare. Thus, Eqs. (26)-(29) of the text
provide 4C„'"' and 7.„„Rin terms of the comple-
mentary Debye function H(xav). Its asymptotic
expansion, ~v valid for x„v=h&u„v /(ksT) somewhat
greater than unity, is

H(xav) = exP( xav) (xav+4xav+12xav+ 24xav+ 24),

(B2)
where only the first term in powers of exp( —x»)
has been retained. Thacher~3 fitted his data with
Tv /& =186 K, and the value used by Berman and
Brock" was similar. Thus, we set xa =186/T,
again use @=0.16 sec 'deg ~ and obtain

v „'»(x)=x exp(—186/T)(6.6 x 104T ~+714T4+ ~ ~ ~ ),
(B3)

where only terms in T3 and T4 are explicitly dis-
played since these correspond to the temperature
dependence of the U-process terms used in Hefs.
17 and 23. The first term of Eq. (B3) is similar
to Thacher's term 5.3 x 104x~Ta exp[ —186/T],
and the second is similar to that of Berman and
Brock, which was 600x2T4 exp[ —170/T]. The x2

dependence of their expressions is not well estab-
lished or unique; other authors have used the x
dependence of Eq. (B3).' " Thus, v„„'a con-
tains terms that behave like conventional U-pro-
cess rates. In the example above, the last term of
Eq. (B2) becomes important for temperatures
above 100 K, where it causes 7„„'„to decrease
less rapidly with T than a single-term expression
such as used in Ref. 17. This explains why the
two-fluid expression continues to represent K
towards higher temperatures better than, e.g. , the
Herman-Brock fit. Towards low T, the extrinsic
reservoir causes the lower limit of integration of
&CR" to drop in such a way that the exponential
behavior shown above ceases, and is replaced by
the behavior conventionally associated with the
N-process rate. In other words, 7.„„'„becomes
the N-process rate in the low- temperature limit
and contains the conventional U-process rate, in
addition to other terms, in the high-temperature
limit.

*Part of this work was carried out while the author was
on temporary assignment to the Department of Aero-
nautics and Astronautics, Stanford University, Stan-
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