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Collective modes of spatially separated, two-component, two-dimensional plasma in solids
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Longitudinal collective spectrum of a spatially separated, two-component, two-dimensional plasma is investigated

using a generalized random-phase approximation. Such plasmas can be realized in semiconductor heterojunctions,
superlattices, and inversion or accumulation layers. In general two modes are found to exist: the on.e with energy
proportional to ~q at long wavelengths is the usual optical plasmon and the other with energy proportional to q at
long wavelengths is the acoustic plasmon. It is shown that the spatial separation between the two charge components
makes it possible for the acoustic branch to move out of the electron-hole continua of both the components provided
it exceeds a critical value. Consequently the acoustic-plasmon mode is totally undamped at long wavelength. The
dynamic structure factor of the system is analyzed and the feasibility of observing an acoustic plasmon in GaAs-

Ga„A1, „As double quantum well is discussed.

I. INTRODUCTION

Recently there has been a great deal of interest
in the properties of two-dimensional electronic
systems. ' The metal-oxide-semiconductor (MOS)
system and the electron gas trapped by image po-
tential at the liquid-He surface have, in the past
decade, offered opportunity for the study of some
new and novel areas of physics in fewer than three
dimensions. Current interest in two-dimension-
ally-confined charge carriers has been enhanced
by the recent advances" made in the experimental
realization of such systems in quantum wel]s,
heterojunctions, and superlattice structures made
up of lattice- matched semiconductors. These
new systems offer not simply another means of
achieving two-dimensional el.ectron and hole gas,
but of creating situations with potentially new

physics. The two systems on which most of the
studies have been reported so far are the QaAs-
Gagl, „As and InAs-GaSb structures. Both of
these systems offer in very different mays possi-
bilities of creating two-dimensionally-confined
and spatially- separated charged multic omponent
plasmas. The former system has been combined
with the notion of modulated doping to create
electrons confined within the QaAs layers due to
the barriers provided by the adjacent Ga„Al, „As
layers. In the InAs-QaSb system, a spatial sep-
aration of electrons and holes is found to exist
in the heterojunction. This has been attributed to
the transfer of charge (-10"cm ') from GaSb to
InAs due to an unusual line-up of the bulk energy
bands: At the 1" point, a band line-up based upon
the prevalent electron affinity rule shows that the
valence band of QaSb lies approximately 140 meV
above the conduction-band edge of InAs. Thin
(C125 A) superlattices of InAs-GaSb are found to
be semiconducting and they also exhibit spatial

separation and confinement of electrons (in InAs)
and holes (in GaSb). However, superlattices of
thicknesses between -125 A and the appropriate
depletion l.ength have been reported to be semi-
metall. ic in character normal to the interface.
Parious aspects of these superlattices in this in-
termediate thickness regime remain to be clari-
fied. However, it is clear that the quantum wel. l
structures of GaAs-Ga„Al, ,As and the InAs-GaSb
heterojunctions offer systems which give rise to
spatially- separated two-dimensionally-confined
charged plasmas. In addition, one can obtain
spatial. ly- separated, multicomponent, two-dimen-
sional plasmas in the MOS inversion layer by hav-
ing. more than one subband populated. This is
easily achieved in InSb inversion layers at mo-
derate densities. In the inversion-layer situation,
one is, however, limited in the freedom to man-
ipulate the spatial separation between the charge
components of the plasma. In this paper we re-
port the results of a study of the collective elec-
tronic modes of such a multicomponent, spatially-
separated, two-dimensional plasma. Even though
in the true, repeated superlattice structure there
would be very many charge components of such a
plasma, we restrict our study to a two-component
system to illustrate the essential physics involv-
ed. Thus our results will be strictly valid for the
double quantum wells of GaAs-Gagl, „As, hetero-
junctions of InAs-QaSb, and an inversion or ac-
cumulation layer with two subbands occupied by
the charge carriers. Generalization to systems
with more than two charge components is, how-
ever, straightforward within the scheme we de-
velop here.

It has long been known' that a two-component
plasma has two branches to its l,ongitudinal-os-
cillation spectrum. In the higher-frequency
branch, the two carriers oscillate out of phase
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(in phase) with the long-wavelength limit at the
square root of the sum of the squares of indivi-
dual plasma frequencies of the two components,
while in the lower branch the carriers oscillate
in phase (out of phase), exhibiting at long wave-
lengths a linear dispersion like that of a sound
wave, assuming the two carriers have opposite
(same) charge. Pines' first discussed the rel. —

evance of these modes to multicomponent, solid-
state plasmas as occurring, for example, in bulk
semiconductors. The high-frequency branch has
been called "optical plasmon" (OP) and the lower
branch "acoustic plasmon" (AP), referring to its
soundlike long-wavelength dispersion. Even though
the mode corresponding to AP was observed"
in ionic plasmas more than fifteen years ago, no
such acoustic branch has been detected in sol. id-
state plasmas in spite of considerable experimen-
tal efforts. ' The reason lies primarily in the
large damping associated with AP." In bulk
plasmas where all the experiments so far have
been carried out, AP lies in the low-frequency
regime and is inside the single-particle excitation
spectrum of the faster moving charge carrier and
is thus severely Landau damped (apart from any
collisional damping associated with phonons and
impurities, which can be reduced by working at
low temperatures and by using sufficiently pure
samples).

Results presented in this paper" indicate that
the ideal solid-state systems to look for the AP
are these new and novel two-dimensionally-con-
fined, spatially-separated, multicomponent struc-
tures, in particular the quantum wells arid the he-
terojunctions. We find that when the spatial sep-
aration between the charge components exceeds
a critical distance (d,), such a system is capable
of supporting a mode of collective oscil. lation
which exists in the high-frequency regime (out-
side the electron-hole continua of both the com-
ponents), is undamped up to some critical wave
vector, and has a frequency in the l, ong-wave-
length limit which is proportional to the wave
vector q with a proportionality constant (i.e. ,
phase velocity c) which is higher than the Fermi
velocities of both the components and also the
sound velocity. In this regime of separation
(d& d, ), there is no low-frequency collective mode
of the system lying between the two electron-hole
continua. Thus by virtue of the spatial separation
between the two components, the AP becomes a
high-frequency undamped mode at long wavelengths
coming out of the single-particle regimes of both
components. This is further borne out by an an-
alysis at small separation where we find the usual
AP lying within the electron-hole continua of the
two components. However, the phase velocity of

this low-frequency AP is greatly enhanced by the
spatial separation, thus indicating that at large
enough separation the phase velocity of the AP may
exceed the Fermi velocity of the faster moving
charge component, thus bringing the mode out of
the Landau damping region. The QP, which goes
as q' in two dimensions, remains unaffected by
spatial separation in leading order and obviously
is undamped at long wavelength. (See Fig. 1.)

The possibility of having a high-frequency
mode with linear dispersion in a two-com-
ponent, two-dimensional plasma was earlier an-
ticipated by Equiluz et al." in the context of silicon
inversion layers. They numerically obtained the
dispersion curves for the coll.ective modes of a
double-inversion-layer geometry for various
values of the separation between the two layers.
Qur calculation, which is compl. etely analytic,
shows the connection of this linear mode to the
usual acoustic plasmon. In addition, our analysis
manifestly shows the importance of the spatial
separation with respect to the damping of the AP.
In particular, the fact that one can have an un-

damped AP mode when d exceeds d is emphasized
in our work. Our analysis clearly suggests a
possible experimental realization of the linear
mode in the new and novel. semiconducting hetero-
junctions, quantum wells, and superlattices. In

this sense our work is a generalization of that in

Ref. 12 to include collisiona, l. damping a,nd arbi-
trary separation (including zero separation) be-
tween the two charge components.

An alternative way of visualizing this linear

2kF q

FIG. 1. Shows schematically the wave-vector depen-
dence of the different collective modes with respect to
the single-particle continua of the two charge compon-
ents. OP refers to the optical plasmon, whereas AP
is the damped acoustic plasmon in the normal situation.
AAP is the undamped (anomalous) acoustic mode in the
situation of large spatial separation between the two
charge components. Note that for any given separation
only one of the two acoustic plasmons can exist,
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mode in the coupled, spatially-separated two-
component, two-dimensional plasma is provided
by the collective electronic modes of a thin me-
tal. lic film. At large separation the OP and the
AP are analogous to the symmetric and the anti-
symmetric coupled surface plasmons of a thin film
localized at the two surfaces, respectively. For
small separation or when d =0, these modes, how-
ever, become the usual OP and the damped AP
of homogeneous tmo-component systems. %e
shall, however, refer to the high-frequency (going
as q"') mode as OP and the low-frequency mode
(going as q) as AP in this paper for all separa-
tions.

The advantage of this new class of tmo-dimen-
sional systems discussed above is the controlla-
bility of spatial separation and the possibility of
having d' exceed d„so that the AP becomes un-
damped and the main difficulty in observing this
acoustic branch is circumvented. There is a more
subtle, but associated advantage as mell. This has
to do with the masses and the Fermi velocites of
the charge components composing the plasma. In
the bulk three-dimensional unseparated plasma,
the Fermi velocities as well as the masses of the
two charge components need to be very different'
from each other for the existence of the AP. For
the case of spatially-separated plasmas (d)d, )
such that the AP is undamped at long wave-
lengths, the acoustic branch exists as a well
defined mode outside the single-particle spec-
tra even when the two separated charge com-
ponents are identical (i.e. , same mass and Fermi
velocity). This remarkable feature, which is
totally absent in unseparated plasmas makes
the QaAs-Qa„Al, „As structures perhaps the most
suitable candidate for the experimental realization
of the AP. In Fig. 2 a schematic representation
of the energy diagram of the QaAs-Qa„Al, ,As
quantum-well structure is given. The formation
of two-dimensional. ly confined bands arises from
the band-edge discontinuities mhich provide po-
tential barriers to motion normal to the interface
between QaAs and AlAs. By doping AlAs layers
only, it is possible to transfer el.ectrons from the
donor states in AlAs to the quantized two-dimen-
sional bands in the QaAs layers. Tmo such struc-
tures side by side produce a double quantum well
with the two two-dimensional electron gases
separated spatially by the AlAs layer. The value
of d, needed for the existence of undamped AP can be
experimentally achieved in QaAs-Qa„A1, „As
double-quantum-well structures. In the next sec-
tion me give an analysis within-the generalized
random-phase approximation (RPA) to obtain the
collective modes and their existence criteria. In
Sec. III we discuss the results with particular
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FIG. 2. Shows schematically double quantum well of
GaAs-GaA1As structure. The two-dimensional subbands
in the conduction and valence bands of GaAs are shown.
Modulation p-type doping of AlAs layers populates the
conduction subbands in GaAs in both of the quantum wells,
giving rise to spatially-separated, two-component, two-
dimensional plasma.

emphasis on the experimental observability of the
AP. We conclude in Sec. IV by summarizing our
results.

II. THEORY

For a one-component plasma the collective
modes are given by the poles of the inverse di-
electric function, or equivalently by the zeros
of the dielectric function. ' For a multicomponent
system the collective modes are given by the poles
of the inverse diel. ectric tensor q ', which is a
straightforward generalization of the ordinary
dielectric function of the one-component plasma.
Denoting the two-dimensional bands in which the
charge carriers move by i,j, etc. (as shown in

Fig. 2) we can write the i jcompon-ent of the di-
electric tensor within. RPA to be

&,~ (q, &u) = 6,, —V, ,(q) Ilo, ,(q, ~) . (1)

In Eq. (1), q is the wave vector parallel to the
two-dimensional plane of confinement (i.e. , pa-
rallel to the interface) and v, the frequency, is
implicitly understood to carry a small positive
imaginary part so that all dynamic quantities are
retarded functions. 5, is the usual Kronecker
delta function and II'. .(q, v) is the intraband nonin-
teracting polarizability function for the jth two-
dimensional band. V„.(q) stands for the Coulomb
interaction vertex V, ,,,(q) in which an electron in
ith band interacts with another one in band j with
two-dimensional momentum exchange gl'. In gen-
eral, the Coulomb vertex V,.» (q) is a fourth-rank
tensor, al. loming for the possibility of interband
scattering of electrons. But in our analysis we
make the so-called diagonal approximation, in
which we neglect any interband component of
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Coulomb interaction by assuming V,.&, to vanish
unless i =j and 1 =nz. The diagonal approxima-
tion is exact in the limit of q -0 due to the ortho-
normality of wave functions describing the var-
ious bands. Even for finite Q, the off-diagonal
elements are usually much smaller than the dia-
gonal elements. " We should point out that it is
a consequence of the diagonal approximation
(along with the generalized RPA) that the dielectric
tensor can be written in the simple form given by
Eq. (1). In general, the dielectric function is a
tensor of fourth rank and the general structure of
a theory of collective modes in this multicompon-
ent system including both interband and intraband
contributions is much more complicated (Appen-
dix A).

The actual bound- state wave functions for the
quantization of motion along the z direction (nor-
mal to the interface) in these systems are not
known. We can thus only make qualitative remarks
about the effect of the finite width of the wave func-
tions on the properties of the collective modes
discussed here. One-electron wave functions des-
cribing the carriers in these systems can, in

general, be written as

2pe
v„(q) = v..(q) = -„ (5)

2Fe
v„(q) = v„(q) = ~ e-" -" . (6)

In writing Eqs. (5) and (6), we explicitly consider
the two-component case, letting i =1,2 denote
the two different charge carriers in the two bands.

We note that the spatial separation between the
two carriers gives different strengths to different
components of Coulomb interaction. - In purely
two-dimensional plasma, the magnitude of Coul-
omb interaction would be 2me'/71q for all the com-
ponents. The separation ~a —b ~, in effect, re-
duces the strength of interaction between the
components by the factor exp(-qua —bl). Since
this interaction between the two components is
responsible for the AP, one can already antici-
pate drastic effects on the properties of AP by
the introduction of the new parameter qd, where
d =

~
a —b

~

is the separation of the two charge
components.

The noninteracting polarizability II', ,(q, &u) in
two dimensions has the following limiting forms"
in the high- and low-frequency regimes:

q, (r) —e"'"»t,.(z), n. —+P.—for &u»qv .
Q' g
(d ' (d fi (7)

where ry 1
is a two-di mensi onal position vector in

the plane of free motion of the carriers and $,.(z)
is the envelope wave function describing the con-
finement in z direction for the ith band. For a
two-component system we need consider only two
bands and for algebraic simplicity, we assume

l $,.(z) l' to be delta functions located at z = a and
b for the two bands without any loss of generality.
Changing $,.(z) to more complicated localized func-
tions does not change the conclusions of this pa-
per in any qualitative fashion. The interaction
vertex V, ,(q) is given by

v, ,(q) =&ill v(q;. , ")~»),

where V(q, z, z') is the two-dimensional Fourier
transform of Coulomb interaction. It is given by

277e. V(q z z r) —+ e-ql z-z' I

gq
(4)

where the + (-) sign refers to interaction between
the same (opposite) types of charge. Since the
static- lattice dielectric constants Tc~ and g2 of the
semiconductors used in the systems (InAs-GaSb,
GaAs-AIAs) are very close,"we use an average
dielectric constant 71 in Eq. (4) to avoid unneces-
sary complication. From Eqs. (3) and (4) and us-
ing the delta-function forms for. the envelope func-
tions, we can write down the various components
of Coulomb interaction as follows:

IIO, (q, (u) =

where

l

I+i for ~«qv&, , (8)
teal,.

7l'Il
lI Q'Vf .

m,.vf,.
2 lTIl Vl i

(9)

3m .v . 3vN .h
p — - i fi-

8nIl' 2m'. -
(10)

Here rn, , vf, , and N,. are, respectively, the band

mass, Fermi velocity, and particle density for
the two-dimensional motion parallel to the inter-
face in the ith band. For our purpose, the limiting
forms [Eqs. (7) and (8)] for the polarizability would
be sufficient since we are interested in the leading-
order wave- vector dependence of the collective
modes of the system. We should remark that it
is only in this long-wavelength limit (q -0) that
BPA is known to be valid.

The condition for the existence of a collective
mode is given by the pole of the function & ',
which is equivalent to the vanishing of ~e ~, the
determinant of the dielectric tensor defined by

Eq. (1). Thus, collective modes are obtained by
solving the determinantal equation

is( = I&„-v„(q»;, (q ~)l =o

For a two-component system, Eq. (11) becomes
(Appendix 8)



CO LLECTIVE MODES OF SPATIA I. LY SEPARATED, T%0-. . . 809

1 —V(q) [II'„(q, ~)+ II,', (q, &u) j
+ V(q)'(1 —e 2~)II'„(q, (u)11202(q, &u) =0, (12)

where use has been made of Eqs. (5) and (6) to
write V»=V»=V and V»=V»=+Ve . Note that
Eq. (12) indicates that the sign of the charge com-
ponents forming the plasma has no effect on the
dispersion relation of the collective modes of a
two-component system. Using Eq. (7) or (8) in
Eq. (12), we may seek the high- or low-frequency
collective mode of the system. It is apparent
from Eq. (8) that there could be no meaningful so-
lution of Eq. (12) in the region qvf„qvf2 &&li. This

is understandable, since this region is within the
electron-hole continua of both the components.
We want to point out that Eq. (12) is completely
equivalent to Eq. (9), derived in Ref. 12 under
the approximation /(g Q2 p( and in the nonretarded
limit (Appendix B).

Thus we shall seek solutions in two regimes:
the high-frequency regime (a»q2lf„qvf2) and the
low-frequency regime (qvf, » &u» qvf, ). We take
v» &v». If the two Fermi velocities are equal (as
would be the case for GaAs-Ga„Al, ,As double
quantum wells), we are left with only the high-
frequency regime.

A. High-frequency regime (u ))qvf, ,qvf2)

Using Eqs. (5)-(7) in Eq. (12), we get the following two solutions:

+2 —I/Q V2 Q V2 1 I +~ 1 I Q1Q2 fl f2P 2 I(Q1 fl Q2~f2)]
1 fl 2 f2i (Q,1 f', + Q.~g, )'

(13)

where

p =1 —e '&.

2 3
Q1Q2 ff1 f2 4(Q1 fl Q2 f2)

fl Q21if2
(21)

Q,. is the Thomas-Fermi wave vector in the ith
two-dimensional band and is given by

Q,. = 2m,.e'/Z)2 '. (15)

1. Intermediate-coupling limit (qd ((I)

In this situation, P is given by

P —2qd ~ (16)

Using Eq. (16) in Eq. (13) and looking at the lead-
ing order 1I dependence (as we are interested in
the q -0 limit only) of the collective modes, we
get

u =Cq.
The coefficients C, are given by

(@ q )1/2
C =~ ~ V2 +~V2

( 2 y' 2 y')

2n'e ~N N2

(17)

(18)

(19)

(20)

Equation (13) gives the symmetric and the anti-
symmetric modes of a two-component plasma in
the long-wavelength limit, but with qd as an arbi-
trary parameter. Since we are interested in the
long-wavelength (q -0) behavior of the collective
modes, we shall consider the long-wavelength
limit of Eq. (13) in the intermediate- (qd«1) and
weak- (qd» 1) coupling limits.

The ~, mode is the optical-plasmon mode with its
frequency given by the square root of the sum of
the squares of the individual plasma frequencies
of the two components. In two dimensions it has
the well known"'" q' ' behavior at long wave-
lengths. We point out that in the leading order,
the optical plasmon is independent of the separa-
tion d and always exists as the high-frequency
symmetric mode of the two-component system.

The other mode, ~, is the antisymmetric mode
of the coupled system and is, in fact, the acoustic
branch going as q in long wavelengths. By virtue
of having a separation d between the components,
the AP now lies in the high-frequency regime and
is outside the electron-hole continua of both charge
components. Clearly, for d-o, the ~ mode is
unphysical, since C becomes pure imaginary.
Thus AP can exist as an undamped, stable mode
in the long wavelengths only for spatially-sep-
arated multicomponent plasma.

Since our analysis is valid only in the high-fre-
quency regime (1d» qadi&, qvf 2), we must demand that
the velocity C of the acoustic branch exceed v&,
(we assume v& &vf2). This is the consistency cri-
terion essentia1. for the existence of co mode in
the high-frequency regime. We note, however,
that no such problem of consistency arises for
the optical branch co, which goes as (d, = C,q'~' in
the long wavelengths and hence co, &qv& for suf-
ficiently small q. Thus the necessary and suffi-
cient condition for the existence of the acoustic
branch w in the high-frequency regime is



8lo S. Das SARMA AND A. MAD HUKAR

C &v

Using Eq. (21) for C we get
' '/ '„(1+-. ,/ '„)

i

Q2 Ql ) '

(22)

(23)

Thus the separation d between the charge compon-
ents must exceed a critical length d, determined
by the screening lengths and the Fermi velocities
of the system for the mode to be a phys-
ically meaningful mode in the high-frequency re-
gime. We consider two special cases of interest: M = (d~ —2~~, (3o)

this regime, we find that there could be just one
solution of Eq. (12) satisfying qvf, )e &qvf2. This
solution is necessarily complex (indicating the

mode to be a damped one), since II»(q, &u) has an

imaginary part in this regime due to single-par-
ticle excitations. For the collective mode to be
physically meaningful, damping has to be small
and we shall assume that in our analysis. We
write the solution to Eq. (12) in this low-frequency
regime in the form

(a) vf, = vf, .
(24)

where co~ and 5„are given by

For this case we have d, =-,'a„where

2a, = 1/Q, +1/Q,

is a Thomas-Fermi screening length.

(b) v&»vf, and m2»m, .

(26)
and

X/2

1

1 ( pQlQ2vf 2+ll Ql~~
2~~(Q+Ql) k

(31)

(32)

Here

/——vyj/ vf2Q 2+0 y (26)

We again consider the intermediate- and weak-
coupling limits.

with a„.= Q,. as the screening length of the indi-

vidual charge components. We also emphasize
that the above analysis is quantitatively valid for
wavelengths (I/q) greater than the separation d,
since we must have qd«1.

2. Weak-coupling limit (qd )& 1)

4 I(Q1 fl Q2vf 2) (Qlv fl Q2 f 2)l

(q 1/2

(2'f)

(29)

Thus we obtain the intuitively very satisfying re-
sult that in the weak-coupling limit the co, modes
are simply the respective two-dimensional
plasma frequencies of the two components.

B. Low-frequency regime (qvf& &) w )&qvf2)

Using the appropriate limiting forms for the
two polarizability functions [Eqs. ( t) and (8)j in

This limit is mathematically achieved by letting

d become very large first and then we take the

q -0 limit of the resulting dispersion relations
to obtain the long-wavelength behavior of the solu-
tion. In this limit, the parameter p of Eq. (14)
becomes almost unity and using that in Eq. (13)
and keeping only the leading-order q-dependent
terms, we get

1. Intermediate-coupling limit (qd ((1)
In this limit (p = 2qd), the long-wavelength be-

havior of ~„and 6„are given by

u)A C„

where

(33)

CA = ' +Q2lf
~

vf2
2m, )

and
2

m2 vy2

4m, v„q' (35)

Equations (33)-(35) give the leading-order energy
dispersion and damping of the ordinary A P, which
lies within the single-particle excitation spectrum
of the faster moving charge component and is
thus damped. Some of these results for the ordi-
nary AP were earlier obtained" by Takada in the
context of inversion layers.

The consistency criterion that must be satisfied
is that qvf 2«v„&qv&. From Eq. (33) we find that
we must have

C& ~v» .
Using Eq. (34) in the inequality (36), we get

(36)

1& +Q d&
2m, ' vf,

(37)

If m, &2m„ the lower limit is always satisfied,
even for an unseparated plasma (d = 0). Otherwise,
there would be a lower limit on d below which the
low-frequency AP does not exist.

Thus,
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(38)

and

(C) )~~~
S

[ v ~k&&S

E2&
(4O)

must be satisfied for the existence of AP. This
condition is not very important, since one always
looks for ordinary low-frequency AP in a system
with m, » m„vyy» vf 2 so as to make damping
[cf. Eq. (35}]very small. It is to be noted that
the ordinary AP exists even when m, = m„pro-
vided d &1/2Q, = a„/2 (obviously, v& still has to
be greater than v&, to define the mode). In three-
dimensional bulk systems this would have been
impossible.

The upper limit on d is imposed by requiring
that C„&v& for the low-frequency condition.
From (37) we obtain

1 (uIS m, 't
(39)

From Eq. (34) we note that the effect of the sep-
aration is to increase the phase velocity or the
slope of the acoustic branch. Thus a situation
arises when the phase velocity tries to exceed vga,
which is not allowed within this low-frequency an-
alysis (&o„&@vs, implying C„&vz). Thus ordinary
AP (lying within the electron-hole continua of one
of the two carriers) exists only for d&d,„.

However, as noted in the high-frequency analy-
sis for d &d„ there is an undamped acoustic
branch at long wavelengths lying outside the
single-particle excitations of either charge com-
ponent. We may point out that d, &d,„and hence
the two acoustic branches (damped and undamped}
never exist together.

2. W'eak-coupling limit (qd && 1)

We take the weak-coupling limit as before by
setting p = 1 in Eqs. (31) and (32) and then retaining
only the leading-order terms to obtain

5~=0 ~ (41)

Thus, as before, the acoustic branch goes into the
decoupled plasma mode of the slower moving
charge component in the weak-coupling limit.

III. DISCUSSION

The analysis of Sec. II demonstrates that the
spatial separation greatly enhances the possibility
of observing AP in the new class of two-dimen-
sional materials, since one of the main experi-
mental obstacles, namely damping, can be al-
together eliminated. Another subtle advantage is
that the acoustic branch exists in the high-fre-
quency regime independent of whether m„rn, and
5f y

vf2 are equal or not, provided, of cours e d is
greater than d, . This makes the two-component
electron plasma in the modulation-doped double
quantum well of GaAs-Ga„Al, „As structure a
good candidate for the experimental realization of
the AP.

Utilizing the appropriate values' of the relevant
parameters of the two systems discussed so far,
we obtain the following values for d, :

150 A for the GaAs-Ga„Al, „As system
400 A for the InAs-GaSb system.

A separation of 150 A can be achieved in GaAs-
Ga„Al, „As structures and hence we suggest this
as a suitable system for the experimental reali-
zation of the AP.

The actual experimental observability depends on
the oscillator strength or the spectral weight car-
ried by the particular collective mode. The spec-
tral weight of the modes are given by the dynami-
cal structure factor of the system defined by

(42)

s(k, k;&e)=kg Jdz f dz'e '"d' "&(, (z)k&(z)S, (z')(„(z')&m&r«& (&«e),
ijgm

I

S (kk„&e) = J «&e' &' «& f dr f dr'e 'SZ "&e '«d' "& (e(r &lz(r'&')),

where (k, k„) is the three-dimensional wave vector associated with the external probe and n(r, f) is the
charge-density operator with r —= (r», z) as the three-dimensional wave vector. Using standard methods,
we can express Eq. (42) as

where i,j, l, m are band indices and X,&,„(k,u)) is
the true density-density response function or the
reducible polarizability function of the tvfo-di-
mensional system. Like the interaction function
P,»„and the dielectric function f i~) it is also a ten-
sor of fourth rank in the most general case and
is given within BPA by the tensor equation

x = rr'+ rl'vx. (44)

X„=(e 'll'),-~. (45)

In the systems we are considering, it is sensible

Within the diagonal approximation for V, X is also
diagonal (i.e., X,.»„c(:5,, 5,„) and is given by
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to assume that II' is completely diagonal and then
we get

X]~ —e ) II~.1 0 (46)

Using Eq. (46) in Eq. (43}, one can estimate the
strength of the dynamical structure factor at the
various collective modes of the system. Doing that
within our simplified model, we find that in the
long-wavelength limit (q-0), the spectral weight
is mostly carried by the OP [OP goes as O(q' '),
whereas the AP goes as O(q)]~ On the other hand,
for q not vanishingly small (but still within the
long-wavelength approximation), the spectral
weight associated with the acoustic branch when
it is outside the single-particle continua may in-
crease considerably even though OP is still the
dominant one. The spectral weight of the usual
damped AP (inside the single-particle excitations
of the faster component) is rather small and is
one of the main reasons (along with the damping)
why this mode has never been observed in the
bulk.

However, the undamped acoustic branch
being separated from the OP in frequency, it ap-
pears likely that light scattering experiments
may be the best available method for the observa-
tion of the acoustic branch. The mode (AP) being
a longitudinal excitation in the two-dimensional
plane parallel to the interface, the probe must
have an electric field component parallel to the
interface.

We have also investigated the effect of a width
in the electronic envelope functions $(z). We find
that allowing for a width in the wavefunctions,
while maintaining the same average separation,
tends to decrease the oscillator strength of the
acoustic branch. In that situation, the best coupl-
ing with the external probe is expected to occur
for q, = 6 ', where q, is the z component of the
probe wave vector and L is the average spread
of the wave functions.

Finally, two observations about the present
analysis and approximations are in order. First,
we have used a long-wavelength (q-0}version
of generalized RPA to obtain the dispersion rela-
tion in the high- and low-frequency regimes. This
gives the leading-order wave-vector dependence
of the collective modes correctly, but is inade-
quate for the higher-order corrections to the
dispersion relation. However, RPA is, in general,
known to be good only in the q- 0 limit. As a
matter of fact, it has been shown" that in two-
dimensional single-component plasma, RPA gives
only the leading term [i.e., the 0 (q'~') term] of
the plasmon dispersion relation correctly. Ver-
tex corrections are important for the next-order

term in dispersion. Thus the leading-order analy-
sis for the dispersion relation is consistent with
our use of RPA. However, a manifestation of its
limitation is the fact that d, &d . In a more so-
phisticated analysis one would expect d, to be the
same as d

The other point is that we keep terms up to
O(q~/A@4) in the hi:gh-frequency expansion of II(q, &o)

in obtaining the undamped acoustic branch. This
is needed for the sake of mathematical consistency
as can be realized by analyzing Eq. (12). In
order to retain the last term [which is of O(q~/~~)]
on the left-hand side of Eq. (12},we must retain
quantities of O(q4/&') in the second term as well.
This is important since the last term is crucial
in giving the acoustic branch. However, as one
can easily verify, there are two branches of the
solution in the high-frequency regime even if one
retains terms only up to O(q'/v') in the expansion
of the polarizability (Appendix C).

Finally, we want to remark that our analysis,
even though it includes Landau damping in leading
order, still neglects any collisional damping from
background impurities and phonon scattering.
One can introduce a phenomenological collision
time ~ in the analysis to account for the collisional
damping. We consider that the condition ww &1
is well satisfied (by working at very low tempera-
tures to reduce phonon scattering and by having
very pure samples to reduce impurity scattering)
so that collisional damping can be neglected. Con-
sideration of collisional damping also indicates
that the GaAs-Ga„Al, „As double-quantum-well
structure is perhaps the most suitable system
for the observability of the collective modes dis-
cussed in this paper. This follows from the fact
that in these structures, modulation doping of
Ga„Al, „As layers allows' for very high mobility
(even higher than the Brooks-Herring limit in
the bulk) in the GaAs side and consequently r is
large, minimizing the effect of collisional damping.
In fact, a typical value of v in these systems (as
extracted from low-temperature-mobility mea-
surements) is of the order of 10 " sec. This re-
stricts the frequency to the far-infrared region
for the condition ~ &1 to be well satisfied. Thus
the present theory (with its neglect of collisional
damping) is applicable in the infrared region.
Experimental techniques for observing collective
modes in this region are, however, well devel-
oped '8

IV. CONCLUSIONS
I

In this paper, we have generalized the work"
of Eguiluz et al. and have demonstrated the pos-
sible existence of a high-frequency, undamped
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acoustic mode in spatially-separated, two-compo-
nent, two-dimensional plasma. This mode lies
outside the electron-hole single-particle continua
of both charge components and is thus stable (not
Landau damped). We also find its existence de-
pends critically on having the spatial separation
between the two charge components exceed a crit-
ical distance, determined by the screening lengths
of the system. The regular AP, which lies within
the electron-hole continuum of the faster moving
component and is thus severely Landau-damped,
exists only at small separation. So we infer that in
spatially-separated multicomponent plasma, the
acoustic branch of plasma oscillation may come
out of the Landau-damping region above a certain
critical separation, and may thus become stable.
As a suitable candidate for observing the AP, we
suggest light scattering experiments on GaAs-
Ga„A1, „As double-quantum wells with separation
(layer thickness) of the order of 150 A or more.

We note that the ordinary interpretation of the
AP as the mode in which the two plasma compo-
nents undergo in-phase or out-of-phase oscilla-
tions, depending on whether they have the oppo-
site or same charges, applies more strongly to
the acoustic branch lying outside the single-parti-
cle regions of both the components. In this case,
the idea of individual collective motion of the two
components as an antisymmetric coupled mode of
vibration exists. On the other hand, when the AP
lies within one of the single-particle excitation
regions (as in the three-dimensional bulk materi-
als), such a concept is invalid due to Landau

damping from the single-particle excitations
in the faster charge component.

Recently, there has been a notable interest in the
collective properties of two-dimensional systems
and we believe that this paper shows that the new

.class of systems'" (e.g. , GaAs-Ga„Al, „As double
quantum wells) with spatially well separated, two-
component, two-dimensional plasma may be suit-
able for the experimental realization of the linear
mode discussed" first by Eguiluz et al. in the
context of inversion layers and shown in this work
to be the large-separation manifestatio~ of the
usual acoustic plasmon.
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APPENDIX A

We consider the general dielectric reponse of
a multiband (multicomponent) two-dimensional

electronic system in this appendix without in-
voking any diagonal approximation.

Dyson's equation for the dynamically screened
interaction in such a system can be written as"

where V is the fourth-rank tensor describing
dynamically screened interaction between two
electrons in a multiband two-dimensional system,
one of which gets scattered from band i to j and
the other one from l tom with a two-dimensional
momentum exchange of 5q. RPA consists of using
the noninteracting polarizability II' for II in Eq.
(Al}. We shall use RPA here. Equation (Al) can
be solved for p by introducing a dielectric tensor
& defined by

q,„(q., (u) =~„5,„—V,~,„(q) 11,'„(q, te) .
Then Eq. (A1} gives

&U=P.

Thus,

U=e 'V

(A2)

(A3)

(A4)

The tensor product in (AS) has been defined as

(&V),,r„= Q c;g„„V„,„,,„. (A5)
1 2

In writing Eqs. (A2)-(A5) we have explicitly
used the reality of the bound-state wave
functions describing the two-dimensional bands

i, j, l, m, etc. Equations (A2)-(A4) are tensor
generalizations of the equivalent relationships be-
tween bare interaction, effective interaction, and
the dielectric function for the one-component
plasma.

The collective modes are given by the
poles of e '. Thus, if for any value of (q, (o) a
particular component of e ' becomes singular,
that describes the onset of a collective mode.
The formalism described above gives both the
intraband collective modes in which carriers
oscillate in the two-dimensional plane and also
the interband collective modes (which are always
associated with interband excitations) in which
the carriers oscillate normal to the two-dimen-
sional plane. Obviously, the interband modes are
possible only when the wave functions g, (z)'s have
a certain width in z direction and they do not exist
for the purely two-dimensional delta-function mod-
els of charge density employed in the main text
of the paper. The delta-function approximation
automatically incorporates the diagonal approxi-

Unjam(q~ &}= V&gi~(q}

+g V;,„,„,(q)11.,„,(q, )U„, „, (q, ~),
(A1)
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mation in Eq. (&1).
The significance of the interband collective

modes in the context of these inhomogeneous sys-
tems was first realized by Chen, Chen, and Bur-
stein. ' There is a considerable amount of litera-
ture2' detailing various aspects of these exci-
tations. In this appendix we just depicted how
all these collective modes can be understood with-
in a unified formalism of generalized dielectric
response.

APPENDIX 8

The dispersion relation used by Equiluz et al."
in their numerical analysis (in the high-frequency
regime only) is [Eq. (9) of Ref. 12]

~
ex, + ~ + ~ coth p g 4mx, + ~ + ~ c to hp d)

t

pi po p2 po

csch' P,d. (B1)
(po&

For our system, so = e, = e, = It and p, = p, = q .
Also,

~V(q)
II,', (q) .

2'l1'q

Then (Bl) becomes

[-2V(q)II o„(q) + 1 + coth qd]

x[-2V(q) II,', (q) + 1+ coth qd]= csch' qd . (BS)

(BS) simplifies to

1- V(q)[ll'„(q) + II,', (q)]

pe e Qd )
+ ... ) V(q)'ll „(q)11.'.(q) =0. (B4)

The term within the large parentheses is simply
(1- e 2'~), whence (B4) reduces to Eq. (12) of the
text showing the equivalence of our procedure
to that of Ref. 12.

The consistency criterion (&o» qez, & qo, ) gives

d d, = —(," + ~). (C2)

%'e note that the velocity of the acoustic branch is
higher than that given by Eq. (21) of the main text,
and as a result d, given by Eq. (C2) is smaller
than that in the main text. One still, however, has
d, &d, where d „[given by Eq. (39) of the main
text) is the separation above which the regular
damped AP cannot exist.

APPENDIX C

We shall show here that retaining terms up to
O(q'/to') in II (q, &e) would still give us a high-
frequency acoustic branch in solving Eq. (12).
Keeping only the first term in the expansion of
llo(q, to) in Eq. (7) and using that in Eq. (12) we
get the following for the tu solution of Eq. (12):
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