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Dynamic Jahn-Teller effects in the photoluminescence of Fe2+ in KMItFs
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The low-temperature zero-phonon lines and the corresponding phonon replica establish the
energies of the J = 2 and J = 3 spin-orbit states to be 28 and 102 cm ', respectively, above the
ground J =1 (I"&g) state. The Jahn-Teller coupling is to both T2g and Fg modes, which are de-
generate at a frequency corresponding to 288 cm '. These results help to clear up a long-
standing controversy about the strength and type of Jahn-Teller coupling for the T2g state of
this paramagnetic crystal.

The electronic states of Fe'+ in perfect octahedral
coordination consist of a ground 'D term, which is
split by the cubic crystalline electric field into a T2g
ground state and an excited 'Eg state at approximate-
ly 10000 cm ' for Fe'+ substituting for Mg + in

KMgF3. Higher terms include 'H and 'P, and for the
above crystalline electric fields one finds' that the
lowest state is a 'T» with energy approximately
14500 cm '. The 'T2g state is split in first order by
the spin-orbit coupling into a ground J = 1 state
above which lie the J =2 and J =3 spin-orbit states
at 2A. and 5A. , respectively, where A. is the spin-orbit
interaction (—100 cm ). Second-order spin-orbit
corrections via the excited 'Eg states remove some of
the remaining degeneracy, the splitting of the J = 2
states for the above crystal field being -6 cm '. The
energy levels and corresponding irreducible represen-
tations are shown in Fig. 1, where the second-order
corrections are neglected. The corresponding levels
of the excited 'T» are also included for later discus-
sion. As Ham2 first predicted, a strong dynamic
Jahn-Teller coupling between the T2g orbital state
and the normal modes of the crystal may reduce con-
siderably both the spin-orbit splitting and the g factor
of the ground spin-orbit I 5g state. For instance,
from the infrared absorption of Fe'+ in MgO by
Kong the I 3g and I 4g states of J =2 are considered
to be degenerate at 105 cm ' (absorption linewidth 9
cm '). In the strong-coupling limit the correspond-
ing reduction in the orbital contribution to the g fac-
tor of the 15g state would also be -50/o giving
g =3.25 which disagrees with the experimental value,
g = 3.428.4 The discrepancy was removed by Ham
et al. ' by coupling to both Eg and T2g modes in the
weak Jahn-Teller coupling limit and adjusting the
coupling to agree with the infrared results.

To date the experimental situation for Fe'+ in

KMgF3 is less clear. The strain coupling coefficients
suggested a Jahn-Teller coupling considerably
stronger than that in MgO, ' although the g factor of
the I 5g state was found to be 3.36 by Vallin and
Piper but 3.44 by Kim and Lange. ' Frankel et al.
assigned the infrared absorption at 87 cm ' to the
I 3g I 4g states of J = 2, while Ray et al. chose the
main peak at 52 cm ' for this assignment. More re-
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FIG. 1. Relative energy levels of the ground T2g and ex-
cited T» states for Fe + in KMgF3.
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cently, Hjortsberg et al. ' using both near infrared ab-
sorption at high temperatures and laser resonance in
the far infrared in the presence of a magnetic field
predicted the I 3g I 4g states to be at -30 cm '. In
addition, there is considerable uncertainty about the
type of Jahn-Teller coupling. From far infrared stud-
ies Ray et at. prefer equal coupling to T2g and Eg
modes; the Mossbauer studies of Regnard et al. " in-
dicate primarily T2g coupling, while the acoustic re-
laxation data of Kim and Lange" was interpreted as
evidence for coupling to T2, modes only. The pur-
pose of this report is to provide for the first time
through photoluminescence accurate data on the fol-
lowing: the strength and type of Jahn-Teller coupling
in the ground state, the frequency of the coupled
normal modes, and the Jahn-Teller coupling strength
in the excited 'T~„state.

Figures 2 and 3 show the photoluminescence of
KMgFq doped with 0.4 at. % ferrous ion. The crystals
were gro~n in the crystal growth facility, Oklahoma
State University. The crystal, which had polished
faces corresponding to the principal crystallographic
directions, was immersed in liquid 4He below the A.

point in a Janis 8 DT optical De~ar. Excitation was

by a Spectra Physics 171 krypton ion laser using 150
mW of focused light at 676.4 nrn. A 90' scattering
configuration was employed and the luminescence
was spectrally analyzed with a Jobin Yvon HG 25
double monochromator using a cooled GaAs Hama-
matsu R666S photomultiplier tube and standard
photon-counting equipment. As is well known for
similar paramagnetic crystals at 2 K, the optically ex-
cited ion thermalizes rapidly into the lowest excited
state of the 'T~„manifold, i.e., I ~„. Weak spin-
forbidden transitions are allowed only to the two I 4g

ground states as shown in Fig. 1 ~ These zero-phonon
transitions can be seen in the luminescence of Figs. 2

and 3 at 14 239 and 14165 cm '. Figure 2 shows also
the phonon replicas of the 14239 cm ' line shifted by
288 cm ', which gives. us the frequency of the Jahn-
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FIG. 3. Expanded scale of zero-phonon transitions in Fig. 2.

Teller coupled mode. At higher temperatures the I 4„
level of the excited T~„manifold will be populated
after laser excitation; consequently, other transitions
will be allowed including that to the ground I"5g state.
Figure 4 shows in addition to the low temperature
zero-phonon luminescence two extra zero-phonon
lines, one at 14260 cm ' corresponding to the transi-
tion 14„ I'qg, I 4g, and the other at 14 288 cm ' cor-
responding to I"4„ I 5g. The lower energy transition
r,„-r„,14„and I 5g corresponding to J =3 does
not appear above the background "hot" lumines-
cence. Typical temperatures corresponding to Fig. 4
are approximately 5 K but due to absorption the crys-
tal temperature is closer to 20 K. Greater laser heat-
ing effects occur when excitation is at 647.1 nm, but
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FIG. 2. Photoluminescence at 2 K of Fe2+ in KMgF3
showing zero-phonon lines at 14 239 and 14 165 cm ' and
phonon replicas of the 14239-cm transition. Resolution
+1 cm ', 150 mW at 676.4 nm,
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FIG. 4. Photoluminescence at approximately 20 K of
Fe + in KMgF~ showing zero-phonon transitions and pho-
non replicas. Conditions similar to that in Fig. 2.



10 D. WALSH AND J. LANGE 23

otherwise the luminescence is identical ~ Figure 1

summarizes the energy level diagram using the data
of Figs. 2, 3, and 4.

These results, which give approximately a Jahn-
Teller energy four times that for Fe'+ in MgO, are
consistent with our expectations, since the strain cou-
pling coefficients of Fe'+ in KMgF3 have been report-
ed" to be twice that for ferrous doped MgO. The
high-temperature zero-phonon line at 14288 cm '

was interpreted as the I 4„15g transition and not
the I 4 I 3g transition which would imply a 28-cm
separation between I 3g and I 4, for the J = 2 states.
The absence of a higher-frequency zero-phonon line
to the ground I 5g is the justification for our choice of
terminal state, although it must be pointed out that
higher-energy emitted photons will be attenuated
through absorption by phonon-assisted transitions to
the excited term. On balance, our assignment with

r3g and I 4g degenerate is more acceptable; conse-
quently, one must assume comparable couplings5 to
both the Eg and T2g modes. (The energy levels of

Fig. 1 are also consistent with the study of Hjortsberg
et al. ' which indicated that I 3g and I 4g are degen-
erate at approximately 30 cm '. ) Furthermore, the
phonon replicas imply that both modes are degen-
erate with a frequency corresponding to 288 cm '.
This would be surprising for a Jahn-Teller continuum
model but quite acceptable for a cluster model.
Luminescence in the presence of uniaxial strain as
well as electronic Raman spectroscopy is desirable
and plans for such experiments are underway. How-
ever, there is sufficient evidence already to warrant a
close reexamination of the ground state g factor of
Fe'+ in KMgF3 particularly if the experimental value
of 3.44 is correct', since the corresponding experimen-
tal value for Fe2+ in MgO is 3.428. Finally, the 21-
cm ' separation between I'4„and I'~„(in the absence
of Jahn-Teller coupling the separation is —100 cm ')
gives a measure of the strength of the Jahn-Teller
coupling for the excited 'T~„manifold, the type of
coupling for which will have to await luminescence
studies in the presence of uniaxial strain.
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