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The bond-orbital model for calculating properties of semiconductors utilizes nearest-neighbor universal matrix

elements in a minimal-basis tight-binding formulation. It also neglects the coupling between bond orbitals and

neighboring antibonding orbitals. The accuracy of these two approximations is tested by making only the first and

calculating the bands, densities of states, and dielectric susceptibilities without further approximation. y, (0) is

calculated for 30 semiconductors andy, (u) is calculated for silicon. Errors in the conduction bands shift the E, and

E, peaks (seen to be associated with sp and pp coupling, respectively) to higher energy and cause an underestimate in

y, (0) by a factor of about 2 for all semiconductors. The calculations described were based upon the Gilat-

Raubenheimer scheme with tetrahedral decomposition for both zinc-blende and wurtzite structures. The calculation

for zinc blende was greatly simplified, at some cost in eAiciency, by use of hexagonal or quadrangular Brillouin

zones. This also allowed a direct calculation of the photoelastic tensors, carried out for 30 cubic semiconductors and

apparently the first values, theoretical or experimental, for most of these.

I. INTRODUCTION

Tight-binding theory was utilized many years
ago in the study of the properties of covalent
solids by Coulson, Redei, and Stocker' and by
Leman and Friedel. More recently a bond orbital
model (BOM) based upon this approach was intro-
duced by Harrison and by Harrison and Ciraci
and a similar approach was used by Lannoo and
Decarpigny. These simplified approaches made
the bond orbital aPproximation of neglecting the
coupling between bonding and antibonding orbitals
and gave very crude energy bands, but they
allowed elementary calculations of a range of
properties.

Use of a similar simplified tight-binding approx-
imation, but without the bond orbital approxima-
tion by Chadi and Cohen, gave greatly improved
valence bands and even meaningful conduction
bands. The largest errors had been removed by
the elimination of the bond orbital approximation.
Similarly, full tight-binding calculations of elastic
constants in semiconductors by Chadi and Martin'
gave significant improvement over those obtained
with the bond orbital approximation. The present
study makes a similar comparison for dielectric
properties. A. second aspect of the problem is the
origin of the matrix elements which enter the cal-
culation. They can be calculated from first prin-
ciples, ' but the studies cited above all obtained
them by fits to band structures known either from
experiment or more complete theories. More
recently a universal set was obtained by Harrison
by examining the systematics of fitted values.
This set has been utilized in the calculation of a
wide range of bonding and dielectric properties of
insulators as well as semiconductors. Most of
these calculations utilized the bond orbital approx-

imation and it is of interest to know what part of
the errors arise from these simplest parameters
and what part from the bond orbital approximation.
By carrying out the calculation of the dielectric
properties with and without the bond orbital ap-
proximation and then comparing with experiment
we can find the errors introduced by each approx-
imation.

In Sec. II we present universal parameters and

outline the method of calculation. In Sec. III we

give the bands for ZnS in both the zinc-blende and

wurtzite structures obtained with these matrix
elements. In Sec. IV we give the method for cal-
culation of densities of states and the results for
silicon. In Sec. V the matrix elements of the
gradient are evaluated and the susceptibility cal-
culated. In Sec. VI we introduce lattice strains
and evaluate the photoelastic constants, both in
full calculation and in the bond orbital approxima-

tion.

II. THE FORMULATION

We follow Harrison' in assuming that the elec-
tronic states can be represented by linear combi-
nations of valence orbitals alone, that is to say,
the corresponding s orbitals and p orbitals in co-
valent semiconductors. Next, only the nearest-
neighbor matrix elements are included. There are
then four independent matrix elements. V„„V,~„
V»„and V», . Harrison found empirically that
these matrix elements were approximately given
by

V g
——q ~I /md'.

Here d is the distance between the nearest-neigh-
bor atoms, and the dimensionless coefficients are
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q„,= -1.40, gpss,
——3.24,

g p,
——1.84, gpss,

= -0.81 .
(2)

Finally the diagonal matrix elements of the Ham-
iltonian are approximated by the calculated orbital
energies, that is, the calculated. atomic term
values. It has been found more recently that the
form, Eq. (1), and the coefficients, Eq. (2), can
be approximately derived by matching the free-
electron energy bands to the tight-binding energy
bands. "

From these universal matrix elements we can
construct and diagonalize the Hamiltonian matrix
of any covalent semiconductor. From the diago-
nalization we obtain' approximate energy bands and
the electronic states expressed as linear combi-
nations of the atomic orbitals. Most properties
of solids are determined by the electronic struc-
ture, so the introduction of the universal param-
eters makes it possible to study properties sys-
tematically and, in some sense, from first prin-
ciples. Here we undertake a few such studies and

can thereby obtain a measure of the validity of
this simple approximate description of the elec-
tronic structure.

III. THE ENERGY BANDS

The calculation of energy bands is almost im-
mediate once the matrix elements are given. For
the zinc-blende structure, for example, there are
two atoms per primitive cell and four orbitals per
atom, thus one Bloch sum for each orbital

where
~

o', n& is the orbital of type o' on the atom
at R„. The eight-by-eight Hamiltonian matrix
based upon these Bloeh sums is readily construct-
ed in terms of the nearest-neighbor matrix ele-

ments given in Eqs. (1).and (2) and atomic term
values. ' The corresponding bands for ZnS in the
zinc-blende structure are shown in Fig. 1, where
they are compared with the empirical pseudopoten-
tial method (EPM) calculation by Bergstresser and

Cohen. " These two calculations are completely in-
dependent. Note that we used no parameters from
ZnS but the bond length. Ours is unquestionably
less accurate but vastly simpler in the sense that
no experimental information about zine sulfide is
required and that the use of a computer of power
greater than a hand-held calculator is completely
inessential. For the same reason the calculation
of a variety of other properties in terms of this
electronic structure becomes elementary and re-
quires no empirical input.

The largest discrepancy between the two sets of
bands is seen in the conduction band from I' to X.
The tight-binding bands are seen to rise along
this line while the EPM bands are seen to drop,
running approximately parallel to the topmost
valence bands along this line. The behavior of the
EPM bands is correct in this regard and this er-
ror in the tight-binding bands will cause errors in
all of our calculations, in addition to any errors
we introduce by further approximations.

Although our main purpose is not to calculate
the energy-band structure of semiconductors, the
electronic structure calculated as the present
approximation is considerably improved over that
of BOM. In Table I we listed the energy gaps of
several semiconductors using BOM and the pres-
ent calculation. Furthermore, the upper valence
bands and conduction bands of cubic semiconduc-
tors in BOM are flat; however, in'the present
approximation reasonable valence bands and mean-
ingful conduction bands are obtained. The im-
provement in calculated electronic structure would
affect the calculations of other related physical
quantities.

The calculation of bands for the wurtzite struc-
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FIG. 1. Energy bands for cubic ZnS. Part {a) shows the bands as determined by Bergstresser and Cohen {Ref. 12);
part {b) shows the tight binding bands obtained with universal parameters.
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TABLE I. Energy gap in bond orbital model and in
present approximation in eV. E:Band gap in bond
orbital model. E~: Band gap in present tight-binding
approximation. E~~: Experimental band gap from Ref.
10, p. 253.

Material EBQM Eexyt

C
Si
Ge
GaAs
ZnSe
ZnS

20.55
5.42
3.53
4.34
6.65
8.03

13.88
3.68
1.91
2.89
5.49
6.76

5.5
1.13
Q.76
1.52
2.82
3.8

ture is only slightly more complicated than that
for the zinc-blende bands. There are four atoms
per primitive cell and the tight-binding band cal-
culation requires diagonalization of a 16x16
matrix. The Brillouin zone for this structure is
a hexagonal prism. Bands for ZnS in the wurtzite
structure are shown in Fig. 2(a).

IV; INTEGRALS OVER THE BRILLOUIN ZONE

D(E)
(2 )' „-„,, v„Ei„' (4)

where ~ is the volume of this system and the inte-
gral is over the surface S in wave-number space
it which the band energy is E and V„E

~ „ is the
component of the gradient normal to S. There
are many different methods for calculating such
integrals. We use the Gilat-Raubenheimer meth-
od, but based upon tetrahedral cells, as done by
Rath and Freeman" and by Jepsen and Andersen. '

In order to calculate properties of a solid in
terms of its electronic structure, we frequently
need to calculate integrals over the Brillouin zone.
For example, the electronic density of states is
obtained from the following integral:

This method is especially convenient for the wurt-
zite structure because the Brillouin zone in this
case is a prism. For semiconductors in the zinc-
blende or diamond structure, the customary Bril-
louin zone is a truncated octahedron, which shows
the full symmetry of the crystal. The corre-
sponding irreducible Brillouin zone is 48 of the en-
tire Brillouin zone. There are two pyramids in
one irreducible Brillouin zone, and the tetrahedral
decomposition is more complicated. For wurt-
zite, because of the lower symmetry, the irre-
ducible Brillouin zone is 24 of the Brillouin zone,
but it is a prism, and application of the Gilat-
Raubenheimer method is simpler. The irreducible
Brillouin zone is divided into identical triangular
prisms and each is divided into three tetrahedra.

Several authors have given the formulas for cal-
culating the densities of states using the tetra-
hedron method ' in terms of the energies at the
four corners, assuming them all unequal, E&

&E2 &E3 &E4. We have generalized these to the
case Ei - E2 - E3 - E4 and obtained

D(E) =0 if E E~ or E & E4,

v(E —E~)
(E4 —Ei)(E4 —E2)(E4 —E3)

~(E —E,)'
(E4 —E,)(E —Ei)(E) —E )

3v(E —E,)'
(E E )(E E,)(E E,)

3v(E —E2)'
(E2 —E()(E)—E2)(E4 —Eg)

if E, -E-E, and E, ~E„

(E —Ei)(E4 —Ei) E —Ei E —E

if E2 ~E ~E3 and E& —E2.

-10 -10

-20- ~)
L M O' H K

-20-

density oF states

FIG. 2. (a) Tight-binding bands for wurtzite ZnS obtained using universal parameters. (b) The density of states for
wurtzite ZnS, obtained using universal parameters.
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FIG. 3. (a) Hexagonal Brillouin zone for the zinc-
blende structure. (b) Quadrangular Brillouin zone for
the zinc-blende structure.

Here g is the volume of the small tetrahedron.
The density of states obtained for the wurtzite
ZnS is shown in Fig. 2(b}. (294 tetrahedra in the
irreducible zone were used but there is little
change if only 75 are used. ) Note that the same
program can be used for zinc-blende-structure
semiconductors. That is, we can construct a
hexagonal Brillouin zone, oriented along [111]as
shown in Fig. 3(a). Each is displaced from the
other by a lattice wave number and they fill all of
the wave-number space so they may be used for
integration over the bands. However, we must
integrate over 12 of the full Brillouin zone because
the [111jdirection here is an axis of three fold
rather than sixfold symmetry. %e have also
another choice, a quadrangular Brillouin zone
shown in Fig. 3(b) and with it we need to calculate

integrals over 16 of this Brillouin zone. Neither
of these two Brillouin zones takes full advantage
of the symmetry of the crystal, so more computer
time is required in calculating integrals to the
same accuracy. The advantage of choosing them
is that only a slight modification of the simple
program for the hexagonal Brillouin zone is re-
quired. In addition it.is possible to study the var-
iations of physical properties under uniaxial
strain because the symmetry of these Brillouin
zones is not changed under uniaxial strain. Fig-
ures 4(a) and 4(b) are the electronic densities of
states in silicon calculated by using the hexagonal
and quadrangular Brillouin zone with the matrix
elements of Chadi and Cohen. Both of them give
essentially the same results as those obtained by
Chadi and Cohen. The electronic densities of
states in zinc blende ZnS with universal param-
eters is also shown in Fig. 4(c). lt differs little
from that shown. in Fig. 2(b) for the wurtzite
structure.

It is also of interest to obtain integrals over the
bands with an appropriate weighting factor F(k),
such as oscillator strength. Gilat and-Bharatiya'
have given formulas for these which we rewrite.
We define F(E) as the average of F(k) over a con-.
stant energy surface in the tetrahedron, and Ff,
F2, F3, and F4 as values of F(k) at the corners 1,
2, 3, and 4; when generalized from Ef &E2 &E3 (E4
to Ef -E2 E3 E4, the formulas of Gilat and
Bharatiya become

F(E)D(E)=0 if E ~E( or E ~ E4,

E41 E42 E43 E41E42E43 E4 1E42E43

F E —E~
F(E}D(E)= F(D(E) + + + ( ' jf E ~ E1,

41 E31 E21 E42E32E21

)22 g' 43 ) V (F44 VF24 VF24) v(F Zl) (F42V F32 V F22)) v(F E ) 8 (FE2-2)Fv2FEDEg=F)DE +
31 E21j E2(E3(E41 E42 E32 E21/ E21E4)2E42 E2(E31E41

if E2 &E &E3 and E2 +Ef,

31 4f ( E31 E3fE41 E41

+3(E-E()l — I+3F~( if E&~E&E3 and E2 E1.&F42 F&2&

)1E41 E3(j

Here F,&

——F, —F&, E,&

——E, —E&. This then pro-
vides all the parameters and formulas needed to
calculate properties in the tight-binding context
and to test various approximations which have
been used.

V. MATRIX ELEMENTS OF THE GRADIENT
AND THE SUSCEPTIBILITY

In terms of one-electron wave functions, the
susceptibility can be expressed as'
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TABLE II. Susceptibility of covalent semiconductors.

Material
Experimental

values
Values calculated with
universal parameters

Estimated value,
scaled by 2

C
BN
Si
Alp
Ge
GaAs
ZnSe
CuBr

'Sn

InSb
CdTe
AgI
SiC
BP
BeS
BAs
BeSe
CuF
BeTe
AlAs
GaP
ZnS
CuCl
Alsb
InP
CdS
GaSb
InAs
Z nTe
CuI

0.37
0,28
0.87
0.56
1.19
0.79
0.39
0.27
1.83
1.17
0.49
0.31
0.45

0.64
0.64
0.33
0.37
0.73
0.68
0.33
1.07
0.90
0.50
0.36

0.19
0.18
0.38
0.3Q

0.51
0.39
0.22
0.13
0.69
0.48
0.24
0.14
0.24
0.25
0.19
0.29
0.21
0.09
0.24
0.33
0.33

. 0.19
0.12
0.41
0,33
0.18
0.48
0.38
0.26
0,15

0.37
Q.35
0.76
0.59
1.01
0.77
0.44
0.26
1.38
0.95
0.48
0.27
0.48
0.51
0.39
0.57
0.43
0.19
0.50
0.66
0.66
0.38
0.23

, 0.81
0.60
0.36
0.96
0.76
0.51
0.31

40-

experimental

5 10 15
photon energy(ev)

I

20

FIG. 5. Experimental and calculated frequency depen-
dence of the imaginary part of the dielectric function for
silicon. The experimental one was from Phillipp and
Ehrenreich (Ref. 18). The calculated one was obtained
using the hexagonal Brillouin zone and universal para-
meters.

A. detailed analysis of the spectrum confirmed
the expected result that the E2 peak is dominated
by transitions from the p-like valence bands to
the p-like conduction bands, at an energy near the
Ff5 F» energy difference. It also suggested that
the E& peak is dominated by transitions from the
p-like valence bands to the s-like conduction
bands, though at an energy higher than the F;—F»
difference which is to be associated with the Eo
threshold. Then the shift of the s-like bands, and
therefore of the E, peak, to lower energy for the
heavier semiconductors arises directly from the
fact that the sp splitting does not vary from ele-
ment to element as d ' while the interatomic ma-
trix elements do. These trends, which are most
clearly seen in the bands given by Froyen and
Harrison, " explain why the bond orbital approxi-
mation underestimates the increase in suscepti-
bility with increasing atomic number.

We may also note that even in calculations of
the susceptibility based upon more accurate bands,
there is disagreement with the experiment by as
much as a factor of 1.4. ' It has been pointed
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TABLE III. Photoelastic tensors: BOM values were calculated from Eq. (15) or (16) using experimental values for
4xXff. Tight-binding values were calculated by integrating Eq. (7) over the Brillouin zone before and after uniaxial
strain is applied. All experimental values except b, c, were derived from pf f and pf2 according to the following
equations: T(gfiff+ 2~1122) 3 Vif+ A2) 2,(Off ff ~f122) 2 +ff ~f2) ~

.1 1 2

&ffii + 2~1122 ~ifff + ~f122 ~ifif + ~fi22 &fiii &1122 &ifff &1122 91111 &1122Material BOM TB 3 exyt BOM TB 2 exyt

BN
Si

AlP
Ge

ZnSe
CuBr
Sn
Insb
CdTe
AgI
SiC
BP
BeS
BAs
BeSe
CuF
BeTe
A]As
GaP
ZnS
CUC1
AlSb
InP

,
CdS
GaSb
InAs
ZQTe
CdI

1.6

0.4
37,

-1.3
5.0

-1.2

-3.9
-4.0

7.7
-3.3
-6.5
-4.8
1.4
1.6

-2.2
2.0

-2.3
-2.6
-2.6
-1.0
-1.5
-3.3
-5.5
-0.8
-3.0
-4.0
-1.1
-3.3
-4.8
-5.2

2.0

1.1
10

3.4
30

9.7

0.3
-1.3

110
18
0.5

-1.6
2.7
3.1
1.0
4.0
0.6

-1.0
0.8
5.1
5.7
0

-1.9
8.1
5.3

-0.6
19
9.1
1.4

-1.25

0.54
4.0

4.3'
2 +7

63~
36'
11.8'
18g

2 0h

-3.8

26'
-0.64
-8.9

-4.6

4.7

3.5
11

7.0
15

9.9

4.9
3.4

23
14.7
6.2
3.9
5.7
6.4
4.9
7.1
5.4
2.4
6.2
8.1
8.1
4.2
4.7
9,2
8.6
4.2

13
11
6.3
4.5

5.5

4.2
8.7

6.4
-0.5

5.5

4.5
3.2

55
5.5
5.4
3.6
6.2
6.7
4.5
6.7
5.3
2.3
5.9
6.7
3.6

4.4
5.9
6.6
3.9
3.6
6.7
5.4
4.1

10
45

8.6b

7.7 '

90"
33'
3 9f

1.V-5.1'
1.4'

5.v'

2.2

2.1'

Reference 22, X= 0.59@.
b Reference 21, A,= 1.152'.
'Reference 21, &= 3.391p.
Reference 22, X= 10.6p. Values for Ge were changed in sign froxn Ref. 22 to accord with our prediction and with

Ref. e since the original Bef. 24 gave no signs.
'Reference 22, X=.0.34@.
'Reference 23, X=~.
~Reference 23, X= 0.115'.
"Reference 23, &= 0.0633p.
'Reference 22, X= 0.63@.

out that the electron-hole interaction which is
not included in one-electron calculations may play
an important role.

VI. PHOTOELASTIC TENSOR

Since the calculation of susceptibility can be
carried out for crystals under uniaxial strain, we

can directly calculate the photoelastic tensor.
This tensor is defined by

'

(10)~~If ~igkfeat ~

where 5a, ~ is the change in the dielectric tensor
due to the strain e„,.

In the cubic semiconductors, there are two
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independent nonvanishing coefficients, q««and
q«22. Because we can use the quadrangular Bril-
louin zone even for the cubic semiconductors in
which a uniaxial strain is applied, it is straight-
forward to calculate the q««and q«22 by calculat-
ing the susceptibility tensor before and after such
a strain is applied; we used a strain of e33

——0.05.
It would seem that a calculation of 6X,&/X, &

is more
reliable than 5X,&

directly. Correspondingly, we

scaled each calculated- g&,.~
= 4p5X,

&
by the ratio of

the experimental to the calculated susceptibility.
The calculated results for —,'(q f 1f f + 2$ f 122) and

2(fI f f f f fI f f 22) appropriate to isotropic and volume-
conserving strains are listed in Table III, along
with the available experimental values.

There are not very extensive data for compari-
son and not so consistent values where more than
one measurement exists. One might say that our
predictions of an experimental value are about as
close as the value of an earlier measurement.

We have also estimated the photoelastic constant
using the more approximate bond orbital model.
In that model the susceptibility may be expressed
for a cubic semiconductor as the function of dis-
tance d between nearest-neighbor atoms as indi-
cated in Sec. V,

X=Ne y'd &, /( 12V 2}.

Here N is the electron density, V2 = 2. 16)2 /md
is the covalent energy, and &, is the covalency

(i2)

with the polar energy V, =(t~ —e~)/2 independent
of d. Under a uniform compression, the nearest-
neighbor distance d changes, and along with it N

and V2. By differentiation we obtain

——=6m —5
dex
xed

but also

sffff fIff22 f(6/2 6}
+2

3x4mx&

Under a strain pgg 822 and other strains zero,
d is not changed to first order in the strain, nor
are therefore V2, &„ or N H.owever, d /3 in
Eq. (11) becomes d„ for fields and polarization in
the x direction. Thus

+Xf1/Xf 1
= 2811

and since &Xff/Xff (I/4ffXff)(fIff111 ffff 2)28 ff we
have

91«1 qf122 =1.
4@x()x2

(16)

These bond-orbital-model results, Eqs. (15) and

(16), are also listed in Table III.
As predictions they are less accurate than the

full theory but the simple formulas predict the
principal trends. The volume-dependent coeffi-
cient given in Eq. (15}suggests that (q f 1f 1 + 2q f f22)/
12zX~ should equal 3 for the homopolar semicon-
ductor, ' the average of the experimental values
for C, Si, and Ge are 0.48, 0.31, and 3.3, a sig-
nificant discrepancy only for Ge. Equation (15)
suggests that the coefficient should drop as the
covalency decreases and indeed the averages of
the experimental values for Ge, GaAs, ZnSe, and
CuBr are 3.3, 1.5, 0.41, and -1.1. However,
the formulas overestimate the trend; they would

suggest negative values for almost all compound
semiconductors. The volume-conserving coeffi-
cient is suggested to be unity, independent of both
covalency and of row in the Periodic Table. The
experimental values for Ge, GaAs, ZnSe, and
CuBr are 0.41, 0. 2V, 0.69, and 0.41, respec-
tively. For C, Si, and Ge they are 1.5, 0.75,
and 0.41. As for many properties most trends
and general magnitudes are correctly given by the
simple theory with universal parameters. How-
ever, significant improvement comes from the
full calculation, even if universal parameters are
again used.

&X &«f 1 &d

4ffX 4ffX
~

We obtain immediately
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