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Results of measurements of the resistivity p and the dielectric constant K of the one-dimensional organic
semiconductor methyltriphenylarsonium ditetracyanoquinodimethanide are described. Large single crystals of the
highly purified compound were grown and p determined as a function of temperature T; K was measured over a
range of both 7" and frequency. The activation energy for both p and K is found to be the same, 0.41 eV. The
resistivity is non-Ohmic and the dielectric constant is quite large. We develop a model which explains the magnitude
and temperature dependence of both the non-Ohmic conductivity and the dielectric constant in terms of charged
barriers resulting from imperfections (including impurities) in the crystal. The presence of these barriers is verified

semiquantitatively using nuclear and electron-spin resonance.

I. INTRODUCTION

Two of the more interesting macroscopic phe-
nomena observed in TCNQ salts (and in one-di-
mensional conductors in general) are non-Ohmic
electrical conductivity’™*® and an extremely large,
highly anisotropic dielectric constant.'*72! A large
number of publications have appeared recently
discussing possible explanations for both phenom-
ena.

Explanations for the non-Ohmic behavior include:
solitons of pinned charge-density waves,*"?'13
depinning of charge-density waves,'! space-charge-
limited current,’** and phonon-assisted hopping
through random barriers.® The giant dielectric
constant has been explained in terms of several
mechanisms: displacement of charge-density
waves,'**!® disorder,*®*!" and interruptions of the
conducting strands.!®~2°

We have observed both a giant dielectric con-
stant and non-Ohmic conductivity in methyltri-
phenylarsonium ditetracyanoquinodimethanide
Mep,As(TCNQ),, a highly one-dimensional semi-
conductor?? with a Peierls crystal structure.?®> We
have evaluated our observations in terms of the
published models and find that none of them ade-
quately explain our data.

We propose a model, based upon electrostatic
barriers along the conducting TCNQ strands,
which explains both the non-Ohmic behavior and
the dielectric constant. Measurements of the elec-
trical conductivity and the dielectric constant to-
gether with electron and nuclear magnetic reso-
nance provide very strong corroborative evidence
for the model.

II. CRYSTAL GROWTH

We have grown large (up to about 2 X 2 x 0.4
cm?®), high-quality, single crystals of Me¢,As

(TCNQ), using the method of Melby et al.?* but
incorporating a number of refinements. Examples
of the crystals grown are shown in Fig. 1. The
TCNQ was multiply gradient sublimed, and the
methyltriphenylarsonium iodide was multiply re-
crystallized from solution. The final single crys-
tals were grown from highly purified acetonitrile
in a dry argon atmosphere. Details of the crys-
tal-growing procedure will be published else-
where.?® The structure of these crystals® was
confirmed by x-ray analysis; the relationship be-
tween crystal-axis directions and the external
surfaces of the macroscopic crystals is shown
in Fig. 2.
" III. NON-OHMIC CONDUCTIVITY
A. Data and comparison with previously published models

We have observed deviations from Ohm’s law in
the single crystals of Me¢,As(TCNQ), grown as
described above. A number of experimental~!°
and theoretical®*!*~*® papers have appeared in re-
cent years discussing such deviations in one-di-
mensional conductors. The explanations thus far
offered for this behavior include: the excitation
of solitary waves in a weakly pinned charge-densi-
ty wave (CDW) system,****13 depinning of charge-
density waves,’' space-charge-limited current,®+
and phonon-assisted hopping through random bar-
riers.® One of the goals of this research has been
to determine which, if any, of the published mod-
els properly describes the non-Ohmic conductivity
observed in Me ¢,As(TCNQ),.

We have made both two- and four-probe resis-
tivity measurements on more than a dozen of our
single crystals of Me¢,As(TCNQ),. Electrical
contact to the crystals was made with silver paint.
We find that in the high-conductivity direction, the
current increases more rapidly with increasing
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FIG. 1. Two typical crystals of Me¢3;As(TCNQ), as
described in the text and used in this study.

voltage than predicted by Ohm’s law. The devia-
tion from Ohm’s law occurs at applied fields of
about 7 V/cm; this is a very small field in terms
of most atomic-scale processes. The electrical
behavior of several crystals is shown in Figs. 3-7
and Table I. Note that the conductivity is activated
and deviates from Ohm’s law only in the high-con-
ductivity direction. It has been suggested that the
non-Ohmic behavior observed in TTF-TCNQ is
caused by Joule heating®; in order to rule out

this possibility, a simple pulse technique with
variable duty cycle was used at room temperature.
A potential was applied for 20- usec intervals
separated by 20 msec; when the “on” time was
doubled, no change in behavior was observed.

FIG. 2. Sketch of a single crystal with conventional
crystal-axis designations indicated. The crystal cleaves
on the plane indicated by the dashed line near the top.
Thin wafers obtained from our large Me¢3As(TCNQ),
crystals correspond in orientation to the region above
the cleavage plane indicated here. In this case the high
conductivity axis b is approximately perpendicular to
the plane of the cleaved wafers.
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FIG. 3. Current versus voltage near the b (high-con-
ductivity) direction. The dashed line represents Ohmic
behavior with resistance determined at one volt. The
solid line is taken from Eq. (9), with V(=0.2 eV, A =10,
¢=270 cm™. The plot of i(V)/i(1 volt) is for both room
temperature and 174 K. This a “two-probe” measure- -
ment on a crystal 0.17 cm thick with cross-sectional
dimensions 0.18 x0.45 cm?.

As shown in Fig. 3 and Table 1, the proportional
deviation from Ohmic behavior R(V)/R(1 volt) is
temperature independent. Generally, the non-
Ohmic behavior observed by others is tempera-
ture dependent, with the deviation from Ohmic be-
havior becoming more pronounced as the tempera-
ture is lowered.

The model based on the depinning of charge-den-
sity waves and that based upon phonon-assisted
hopping through random barriers both predict the
behavior of current ! to be of the form5*

I=1 e 2k sinh%, (1)
where E is the electric-field strength, A is the
activation energy of conduction, and A is a char-
acteristic length. In the CDW model, X is the
Peierls wavelength (=~12 ﬁ); in the phonon-assisted

TABLE 1. The data in this table come from four-
probe resistivity measurements on a crystal of
Me ¢3As(TCNQ), which was 1.2 cm long with cross-
sectional dimensions 0.1 X0.2 cm?. The high-conducti-
vity axis was approximately parallel to the long di-
rection. The current electrodes were separated by 1.2
cm and the voltage electrodes were separated by 0.3
cm. Resistance is measured at 7 V/cm and 24 V/cm at
several temperatures; the ratio of resistances is given
below.

Temperature (K) R (24 V/cm)

R (7 V/cm)
294 - 0.59
245 0.62
170 0.66
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hopping model A is the distance between bar-
riers (strand interruptions). For Meg,As-
(TCNQ), the dependence on temperature of cur-
rent versus applied voltage (cf. Fig. 3 and Table I)
is functionally different from Eq. (1). This is
true for any value of the variables in Eq. (1); thus
there appear to be no circumstances under which
our data are described by Eq. (1), and we con-
clude that the depinning of CDW’s and phonon-
assisted hopping do not play an important role in
our investigation.

The basic properties of space-charge-limited
currents (SCLC) can be approximately determined
quite readily for the case of a flat planar geom-
etry.?”*?® The space charge @(SCLC) injected into
a crystal of thickness d, is given roughly by the
product of its geometrical capacitance (C =< ,KAd™!,
where ¢, is the permittivity of free space, K the
dielectric constant, and A the cross-sectional
area) and the applied voltage V; thus @(SCLC)
~Ve,KAd™'. The time required for the injected
space charge to cross the crystal is the charge-
carrier transit time 7=d?/u,V, where iy is the
time-of-flight mobility. The space-charge-limited
current is the injected charge divided by the tran-
sit time of #(SCLC) ~ ¢, KAV ?u,d3,

We may crudely estimate the mobility required
for the onset of the SCLC non-Ohmic behavior to
occur at a given threshold field E; by equating the
space-charge density with the charge-carrier
density at zero field. If the conductivity at very
low field is given by 0 =neu,, where % is charge-
carrier density and e is electronic charge, 0/
=ne and u;~0d/(e,KE;). From the data of Fig. 4
at room temperature 0~3X107* (Qcm)~?, d=0.17
cm, and as discussed below, K=~5Xx10% Since
from Fig. 3, E;=~7 V/cm, a mobility of order

— — N
o ) o
T T T

In [R (1 VOLT)]
5
T

(&) - /R |

|

|
4.0 5.0 6.0
10%/7 (k™

FIG. 4. Plot of In (R) (R=1 volt/i) versus reciprocal
temperature for the case of one volt applied. The solid
line is obtained using Eq. (9) with V¢ as given in the
caption of Fig. 3 and A=0.41 eV. The data are from
the crystal of Fig. 3.

10* ¢m?/V sec would be required for SCLC to be
the cause of the non-Ohmic behavior. To the best
of our knowledge,?® no mobility larger than about
10 cm?/V sec has been reported in the literature
for organic materials. Thus SCLC is not likely to
be the cause of the non-Ohmic conductivity,

The SCLC model predicts a characteristic tran-
sient response® to a pulse of applied voltage. The
transient (for the planar geometry discussed ear-
lier) includes a cusp, or a maximum, at approxi-
mately a transit time after the application of the
pulse. Using a sampling scope and a pulse gener- .
ator with about a 1-nsec rise time we were unable
to observe the predicted transient. On the basis
of the dc and transient experiments we conclude
that space-charge-limited currents do not con-
tribute significantly to the observed non-Ohmic

behavior.

The discussion of Cohen and Heeger® suggests to
us that if the non-Ohmic conductivity is caused
by solitons, the deviations from Ohm’s law should
appear gradually as the temperature is lowered.
In systems where the soliton model is appropriate
the activation energy of conduction is a function of
applied field. As can be deduced from Fig. 3 and
Table 1, this is not the case for Me$,As(TCNQ),.
Thus the soliton model used by Cohen and Heeger
appears to be not applicable to Me¢,As(TCNQ),.

The activation energy for conduction derived
from Fig. 4 is 0.41 eV. Figures 5, 6, and 7 dis-
play, respectively, ¢ vs V near the stacking di-
rection b and near the two directions a and ¢ per-
pendicular to it.

B. Theory: Tunneling model

We propose a tunneling model, based upon elec-
trostatic (Coulomb) barriers caused by charged
imperfections distributed along the conducting
TCNQ strands. The Wentzel-Kramers~-Brillouin
(WKB)3! approximation is then used to calculate
the current in a single, imperfect strand.

The height of the Coulomb barriers is obtained
by taking the Coulomb repulsion energy (e2/7)
equal toothat of two electrons separated a distance
7 of 10 A (the same as that between the ends of a
TCNQ molecule). A value of about 1 eV is ob-
tained. When one takes into account the effect of
the associated cations (Me¢,As)" a somewhat
smaller value would be expected. LeBlanc3? es-
timates that the presence of these heterocyclic
cations reduces the repulsive energy of two elec-
trons on one TCNQ molecule by a factor of about
5. Our situation is fundamentally similar; we
assume the height of the barrier to be approxi-
mately 0.2 eV, A rough estimate of the width of
the barrier can be had by realizing that the poten-
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FIG. 5. Current versus voltage from a “four-probe”
resistivity measurement at room temperature. The
crystal is 0.8 cm in length with cross-sectional dimen-
sions 0.1 x0.1 em? The current leads are separated
by the length of the crystal (0.8 cm). The voltage leads
are separated by 0.2 cm. The high-conductivity direc-
tion in the crystal corresponds to the direction in which
it is 0.8 cm long. The dashed line represents Ohmic
behavior with resistance determined at 0.91 V. The
four probe measurement shows that the non-Ohmic
behavior is not a result of non-Ohmic electrical con-
tacts.

tial will be of the general form €?/». Assuming
that the distance of closest approach between the
conduction electrg)n and the electron on the im-
perfection is 10 A, a reasonable width is of order
20 A. The model barrier is illustrated in Fig. 8.
In addition, the bandwidth is assumed to be con-
siderably smaller than the barrier height; Con-
well®® apparently considers 0.04 eV a reasonable
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FIG. 6. Current versus voltage near the a direction.
This is a two-probe measurement taken at room temp-
erature on a crystal 0.08 cm thick with approximate
cross-sectional area 0.57 X0.45 cm?. Note that in this
direction, Ohm’s law is obeyed up to at least 100 V/cm.
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FIG. 7. Current versus voltage near the ¢ direction.
This is a two-probe resistivity measurement taken at
room temperature on a crystal 0.31 cm thick with ap-
proximate cross-sectional dimensions 0.20 x0.16 em?.
Note that in this direction Ohm’s law is obeyed up to at
least 140 V/cm.

estimate in similar compounds. The effect of
screening on the barriers will be taken into ac-
count using the Thomas-Fermi model.

Using the WKB method to determine the charge
tunneling through the barrier, we assume that
the total voltage applied across the crystal is the
sum of equal drops across each barrier in any
chain (see Fig. 8). The current flowing in a TCNQ
stack will be proportional to the difference be-
tween the transmission coefficients in the “for-
ward” and “reverse” directions. In the forward
direction, the WKB method gives a transmission
coefficient

o 1¥(x=a)?

P P(x=0)
=exp (— }% fao [BﬂzmAV(x)]l/zdx). (2)
o]

K|
N Yo |

FIG. 8. Electrostatic barriers along the conducting
chains are represented as rectangular and of height
V, above the electronic energy (band) level. When a
potential is applied across the conducting strand, the
potential drop is assumed to take place across the bar-
rier as shown. (The dashed lines schematically indicate
the narrow conduction band.)



756 PATRICK M. LENAHAN AND T. J. ROWLAND 23

We evaluate the integral using AV(x) =V, - ax,
where a=ee/ca,, a,is the barrier width, c is the
number of barrier imperfections per unit length
along the chain, and e is the absolute value of the
electronic charge. The parameter ¢ is the voltage
applied across the crystal divided by the length of
the crystal in the chain direction, and # is the
electronic mass.

We consider the case ax< Vs thus, expanding
in ax/V,, the integrand may be expressed

2 1/2 _._a__ _ELZZ__...]
(8m*mV ) [1 <2V0>x 2<2V0> x .

(3)
and the value of the exponent is approximately
(ﬁ Ll 1)
\av,c 2aviez =)
where
_2 8w 2m)l/ 2t/ 2
y_ﬁ( m*m)t 2V %a, . (4)

We have a forward transmission coefficient of
the form

ee e?e?
b7 exp [Y(mm‘?- 1)] - )

The electronic energy levels on the low side of
the barrier will be approximately aa,=ec/c lower
than on the high side. The first-order approxima-
tion used in deriving Eq. (5) also was used to ob-
tain the reverse transmission coefficient. In this
case AV(x)=V, +ee/c— ax. Thus

—ee  eZ%¢?
(2 =exp[y<—+-—————— 1)] (6)
2 4V,c 24vZc? ’
and

A9=(6, - 6,)

_[1 exo(=22€ Yo ( ec _e’e’ 1>]
U TP av,e ) )P M\av,e Taavier T )
(M

The current will be equal to the product of A9
and the number of charge carriers incident on
the barrier per unit time. A zero-order estimate
of the magnitude of the current can be obtained
by considering the electron velocity to be of order
v=(3kT/m)*/? and the concentration of charge car-

riers per unit length n=(2d)™" exp (- A/kT), where
A is the activation energy of conductivity. The
cations donate one electron per every two TCNQ
molecules; the latter are spaced about d=3.3 A
apart. In a length 7 of a conducting strand there
will be about 7! electrons, each of which will im-
pinge on the barrier at roughly the frequency v/I.
We obtain an admittedly crude estimate for the
number of charge carriers incident on the barrier
per unit time 7#v, and thus have an approximate
expression for the current in a conducting strand:

. =A -
i=nev Ag=C,T? exp(ﬁ) [1 - exp({fi)]
0

» ec e?e? (8)
expy4Voc+24V§c2 ’

where

e 3k \t/2
- (Ga)%)

The current in a single strand is given by Eq.
(8). To find the current in a crystal of cross-sec-
tional area A cm?, we multiply ¢ by the product of
the number of strands per square centimeter
(=~10") and the area A. Thus,

I(€) =A10"%, (9)

It is worth pointing out that the model predicts
non-Ohmic behavior to occur in semiconductors,
not metals. The Coulomb potential will be
screened to some extent by a redistribution of con-
duction electrons. One may take the Thomas-
Fermi screening length® A~4 x1075L"Y/¢ ¢m!/?,
where L is the number of charge carriers per unit
volume, as an extremely rough estimate of the
range of the screening. We assume an unscreened
barrier on the order of 20 A in width. If the num-
ber of charge carriers per unit volume were that
of copper (L =8.5x10% cm™), A~0.55 A; if L
=10°' cm™, A=~1,3 A, Clearly, a 20-ACoulomb
barrier would be virtually obliterated by screen-
ing if L=~10*' em™. However, if L=10" cm™,

» Xx=~19 A and the barrier would be essentially un-

screened.

This crude argument predicts that the non-Ohmic
behavior would not be observed in one-dimensional
metals. Experimentally, the non-Ohmic behavior
is not obserbed in one-dimensional metals. In
one-dimensional metals which undergo a metal-to-
semiconductor transition [tetrathiofulvalene tetra-
cyanoquinodimethane and quinolinium (tetracyano-
quinodimethane), ], the non-Ohmic behavior ap-
pears only below the transition to semiconducting
behavior.>*®:!° In one-dimensional semiconductors
with very small activation energies of conduction
(in which the charge-carrier density at high tem-
peratures might approach that of a metal) the non-
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Ohmic behavior appears only gradually as the
temperature is lowered.* The model presented
thus qualitatively predicts the behavior previously
observed in other one-dimensional systems.

The Me¢,As(TCNQ), crystals have relatively
modest conductivity. Even at room temperature,
where 0 =3 X107 (2 cm)™!, we would not expect
screening to affect significantly the shape of .the
barriers proposed in our model.

C. Experimental measurement of imperfection
concentration

We measure the unpaired electron concentration,
which we associate with imperfections, by means
of low temperature (2.0 to 4.2 K) proton spin-lat-
tice relaxation time T, measurements, and also
by electron-spin-resonance absorption amplitude
measurements.

Using the scheme of saturating and subsequently
sampling the proton spin magnetization, we find
T,= 100 sec in single crystals at 4.2 K; T,
changes little as the temperature is lowered to
2.0 K. Essentially the same T, is found in crys-
tals in which the hydrogen sites on the TCNQ mo-
lecules are deuterated. The effect on T, of para-
magnetic impurities in diamagnetic insulating
crystals is to decrease T, through nuclear spin
diffusion. The impurities act as energy sinks to
the crystal lattice. Bloembergen®® has calculated
the spin-diffusion coefficient D~a?/(507,), where
a is the separation distance of the active nuclei
and T, is the nuclear spin-spin relaxation time.
The relationship between paramagnetic impurity
concentration per unit volume N and T, is approxi-
mated®® by T,"'~4nNaD; therefore N=~50T,/
(4ma’T),).

From cw NMR line width measurements, we find
T,=2.1x107°% sec. If we take a~2.5 A, we obtain
N ~5,3x10' ¢em~3 and we estimate the fraction f of
TCNQ sites with negatively charged imperfections
to be f~1.4X1075.

We have also obtained a rough measure of the
imperfection concentration through ESR mea-
surements on several single crystals of Me¢p,As
(TCNQ), at 95 K. The major portion of the ESR
signal in Me¢$,As(TCNQ), has been attributed to
triplet excitons.’” As the temperature is lowered,
the exciton resonance first broadens, then splits.
Generally some small intensity remains at the
center. This center resonance is attributed to
“impurities” in TCNQ compounds.®® The triplet
resonance intensity is an exponential function of
temperature with an activation energy J; the ex-
change integral J=~0.062 eV. We estimate the
fraction of electrons in the excited state to be
3 exp(~J/kT),* and compare the integrated inten-

sity I of the imperfection resonance to that of the
exciton resonance. Assuming (from the NMR
measurements on selectively deuterated crystals)
that half of the imperfections are on the conducting
TCNQ chains, and that there is one unpaired elec-
tron for every two TCNQ molecules at high tem-
perature, we estimate the fraction f of TCNQ
sites with unpaired electron impurities to be given

by
exp(k:T{ ) . (10)

A typical ESR spectrum is shown in Fig. 9; this
crystal was grown in the same batch as the one
used for the conductivity measurements plotted
in Figs. 3 and 4. From that spectrum (obtained
at 95 K) we find f~1.2 X1075,

Both the ESR and NMR yield approximately the
same results: a concentration of unpaired elec-
tron imperfections of about 1075, The measure-
ments should be regarded as accurate to no better
than a factor of 2.

fo 3 [imperfection)
4 I(exciton)

D. Quantitative evaluation of model

Having experimentally determined the approxi-
mate number of charged imperfections, and esti-
mated the values for V, and a,, the value of every
quantity in Eq. (9) is approximately known: ¢
=£/(3.3x10%)~ 300 cm™, V,~0.2 eV, a,~20 A,
and y=10. If we let y=10, f=9X107% (¢ =270
cm™!), and V,=0.2 eV in Eq. (9), a good fit to the
data of Figs. 3 and 4 is obtained.

In view of the approximate nature of the calcu-
lation, the fit between theory and experiment is
good; furthermore, our data do not appear to be
adequately explained by any of the models referred
to earlier.!*™® In addition, the model may qual-
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FIG. 9. Electron spin resonance absorption derivative
spectrum taken at T=95 K and »=9.1 GHz. The small
signal in the center is generally associated with imper-
fections. The two larger resonances are due to triplet
excitons on the TCNQ as discussed in Refs, 37 and 38,
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itatively describe much of the non-Ohmic behavior
observed by others, including its disappearance
as temperature is increased.

IV. DIELECTRIC CONSTANT

A. Experimental results

The dielectric constant of Me¢,As(TCNQ), was
measured in the high-conductivity direction as a
function of frequency and temperature. It is pos-
sible to obtain thin wafers of Me¢,As(TCNQ), by
cleaving larger crystals. The plane surfaces of
the cleaved wafers are approximately perpen-
dicular to the high-conductivity direction as in-
dicated in Fig. 2.

The dielectric constant of these wafers was
measured over a range of frequency and tempera-
ture using an rf bridge and cooled He gas in a
shielded chamber. For the case of a thin slab
of dielectric between two flat-plate conductors,
and neglecting geometric effects, the capacitance
C is given by C = (¢,K/d)A; the quantities appear-
ing are defined below Eq. (1).

The capacitance is determined from the rf
bridge measurement: The crystal is treated as a
resistor and capacitor in parallel. From the real
p’ and imaginary @’ parts of the impedance, both
the resistance R and the capacitance C are readily
determined:

wonlB)1. e ()T

where w is 27 times the source frequency of the
rf bridge.

The dielectric constant determined from these
measurements is thermally activated and fre-
quency dependent as illustrated in Figs. 10 and
11. The activation energy for the dielectric con-
stant is found to be the same as that for the elec-
trical conductivity.

B. Comparison of results with predictions of previously
published models

As mentioned earlier, a large dielectric con-
stant in the high-conductivity direction is frequent-
ly observed in quasi-one-dimensional conductors.
It has been attributed to several mechanisms: the
displacement of the charge-density waves %15
disorder,'®!7 and interruptions of the conducting
strands.18"20

Disorder does not seem to be an important fac-
tor in Me$,As(TCNQ), crystals. In quasi-one-
dimensional systems where disorder (i.e., molec~-
ular misorientation) plays an important part, the
conductivity as a function of temperature is pre-~
dicted to be of the form o« exp[—(T,/T)!/2].3° The

6.5~
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FIG. 10. Plot of InC versus reciprocal temperature.
The solid lines were obtained by the method of least
squares. The activation energy, determined from the
slope of the lines is 0.41 eV. The crystal used had a
thickness of 0.14 c¢m, and cross-sectional dimensions
0.57 X 0.43 cm?. The dielectric constant versus frequency
of this crystal at room temperature is illustrated in
Fig. 11 by means of triangles.

conductivity versus temperature for Me¢,As
(TCNQ), has been reported in the literature sever-
al times and such a temperature dependence has
not been observed.?>»%° Furthermore, the expres-
sion of Bush for the giant dielectric constant in
disordered systems is essentially temperature
independent.!®r1?

A dielectric constant resulting from a pinned
charge-density wave would be expected to change
relatively little with temperature far below the
Peierls transition temperature. In fact, the phe-
nomenological expression of Rice!* for a giant
dielectric constant caused by the displacement

T T T T T
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FIG. 11. Dielectric constant versus frequency for
three crystals at room temperature. The triangles
illustrate data of a crystal of thickness 0.14 cm and
cross-sectional dimensions 0.57 x0.43 cmz; the behavior
of the capacitance versus temperature of this crystal is
illustrated in Fig. 10. The circles illustrate data of a
crystal of thickness 0.13 ¢m and cross-sectional dimen-
sions 0.61 x0.23 cm?.  The squares illustrate data on a
crystal of thickness 0.11 ¢cm and cross-sectional dimen-
sions 0.69 x0.21 cm?®.



of the charge-density wave has no explicit tem-
perature dependence if the concentration of “su-
perfluid” electrons is taken as constant. Our
measurements of the temperature dependence of
the giant dielectric constant are not consistent
with the predictions of the CDW model of Rice
or the disorder model of Bush.

C. Barrier model

Rice and Bernasconi!®"?° developed a phenomeno-
logical model based upon barriers interrupting
conducting strands for the case of a quasi-one-
dimensional metal. We have adapted this model
to the case of a semiconductor and found that it
predicts a dielectric constant with the same acti-
vation energy as the conductivity. A simple de-
rivation of the static dielectric constant is pre-
sented below.

A distribution of barriers along the conducting
strands (as discussed earlier) essentially gives a
crystal consisting of linear sequences of one-
dimensional conducting “boxes” or wells. Solely
for the sake of mathematical simplification we
now consider the barriers to be insulating.

On application of a constant field E parallel to
the conducting strands, the charge carriers in
each box initially begin to move so that a net cur-
rent is produced. After some characteristic time
Tgr, corresponding to the time taken by a carrier
to traverse an average box length I, charge build-
up at the barriers will reduce the current flow
to zero.

Phenomenologically, we may write the current-
density transient just described as!®2°

§(t)=0,E[1 —exp(=t/T,)]exp(~t/T¢), (11)

where 0,=n,4(2 /b)ezTo/m * denotes the intrinsic dc
conductivity of the conducting strands (in the ab-
sence of defects), 7, intrinsic carrier scattering
time, z the number of charge carriers per one-
dimensional lattice site, b the distance between
lattice sites in the high-conductivity direction,
and 7, the number of conducting strands per unit
area perpendicular to the high-conductivity axis.
The carrier effective mass is m * and the current
density is denoted by j(¢).

Rice and Bernasconi, considering a one-dimen-
sional metal with about 1% imperfections, make
several assumptions to estimate the two adjust-
able parameters 7, and 7. They assume that a
reasonable time 7, for the conducting segments
to come into equilibrium after the application of
an applied field would be T~ 1/vp: the time re-
quired for a conduction electron traveling at the
Fermi velocity vy to traverse the length 7 of the
conducting segment. They also assume that 7,
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>> 7o, that the intrinsic scattering time of elec~
trons is much longer than 7,. These approxima-
tions lead to a static dielectric constant K(»)=1
+4no, T3 /T,

The foregoing assumptions are not appropriate
for the crystals dealt with here. Our crystals are
semiconductors, not metals. The level of im-
purities considered to form barriers (as discussed
earlier) appears to be of order one part in 10° as
opposed to one part in 102, Also a more reason-
able estimate for the relaxation time 7 may be
obtained from the relation (D,7)*/ 2= 1, where
Do=kTu0/e, with u, being the intrinsic mobility
of the charge carriers within the conducting
strands. We find that T~ el?/kT 1,. This 7 is

- almost certainly much longer than 7,; we assume

To<Tr. Thus, we arrive at the phenomenological
expression

j(#)=~ 0, E exp(~t/Tg) . (12)

Consider a capacitor upon the sudden applica-
tion of a field E; we know that {=d@/dt and @
=CEd, with the capacitance given by C = (¢, K/d)A.
Thus §= (¢, EA)dK /dt or j=(E€,)dK/dt.

Using Eq. (12), we see that

§(t)= 0y E exp(~t/T5)= E€,(dK/dt) (13)
so /
dK = (0,/€,)exp(—=t/Tg)dt . (14)

To find the static dielectric constant we integrate
both sides of Eq. (14) from zero to infinity:

K(»)=K(0)=(0,/€,)T5 - (15)

The value K(0) corresponds to the value of the
dielectric constant at extremely high frequency.
In the limit of extremely high frequency, the di-
electric constant equals one. The value K(~) cor-
responds to the static dielectric constant. Sub-
stituting 7, el?/kT i, we obtain

K(=)= 1+ (0,el?)/ (€T ) . (18)

The expression for the mobility u, consistent
with the definition for 7, is p,=er,/m*. Substi-
tuting the expression for both 7, and u, into Eq.
(16), we obtain the final result for K(»):

ze?\ I?
K(o)~ 147 (.__)__ an)
A\be, JrT

If we assume that the number of charge car-
riers per unit length (z/b) is given by

zZ

b=%e-(o.41 aV)/hT(3'3x 1078 cm)-l ,

we may obtain an approximate value for [, the
length of the conducting strands using the data
of Figs. 10 and 11. This is the assumption made
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earlier to estimate the magnitude of the non-Ohmic
current. (As mentioned before, n,~10*/cm?.)

At room temperature, from Eq. (17) we have
K(©)=~1+7%(8.0x 10° cm™), If K(~)=~5.0x10%,
1=8.0x 10" cm=~10° A. On the basis of the elec-
tron and nuclear magnetic resonance results [

was estimated to be about 3x 10° A. Considering
the approximate nature of the dielectric-constant
calculation, the agreement between theory and
experiment is quite good.

The dielectric-constant model just discussed
predicts that the time required for the conducting
strand dipoles to form is 7. In measuring the
dielectric constant versus frequency, one would
expect the dielectric constant to drop above some
critical frequency v, =~ T3 ~ (kT 1,/I%).

The intrinsic mobility y, is not known and the
model is crude. All that can be said about the
frequency dependence of the dielectric constant
is that with any reasonable value for the mobility
the dielectric constant will decrease above a
critical frequency of order v, in the radio fre-
quency range. From Fig. 11, this is clearly the
case.

Attempts were made to measure the dielectric
constant in the a and ¢ directions (see Fig. 2).

In both of these directions K <40. Thus the di-
electric constant is highly anisotropic and the
direction of high dielectric constant corresponds
to the direction of high electrical conductivity.

V. CONCLUSION

Quite large, well-formed single crystals of
Me¢,As(TCNQ), have been grown. Using these
crystals it has been shown that Me¢,As(TCNQ),
has a large, highly anisotropic dielectric con-
stant and a non-Ohmic conductivity. The non-
Ohmic conductivity and a large dielectric con-
stant have been observed in a number of quasi-
one-dimensional conductors and semiconductors;
a number of models have been proposed to ex-
plain these phenomena. None of the published
models adequately explains the non-Ohmic con-
ductivity observed in Me¢,As(TCNQ),. Here we
have developed a model based upon charged im-
perfections in the conducting (TCNQ) strands
which explains the data quite well. The charged
imperfections act as barriers in the .conducting
strands. Rice and Bernasconi explain the large
anisotropic dielectric constant observed in quasi-
one-dimensional conductors in terms of a model
based upon barriers in the conducting strands.
Their model, with several modifications, explains
our dielectric constant measurements very well.

The concentration of charged imperfections was
assumed to be equal to the concentration of para-
magnetic impurities, which were measured using

magnetic resonance techniques. Reasonable
agreement between the measured imperfection
level and that required to explain the non-Ohmic
behavior and the dielectric constant was found.
A rather wide range of experimental techniques
(conductivity and dielectric constant measure-
ments, nuclear and electron spin resonance) all
yield data which are consistent with and support
the proposed model.

As mentioned earlier, the proposed model may
also qualitatively explain much of the non-Ohmic
conductivity observed by others working with
similar materials. The model is consistent with
the fact that non-Ohmic behavior should only occur
in materials like tetrathiofulvalene tetracyano-
quinodimethane (TT F-TCNQ) below the metal-to-
insulator transition. As also discussed earlier,
the observation that non-Ohmic behavior appears
gradually as temperature is lowered in materials
with small activation energies of conduction is
also consistent with our model.

The model proposed may also qualitatively ex-
plain the dielectric behavior observed in some
other quasi-one-dimensional materials. For ex-
ample, Holczer ef al.?! have recently reported
that the dielectric constant of quinolinium ditetra-
cyanoquinodimethanide [Qn(TCNQ),] can be greatly
reduced by increasing the number of imperfections
through neutron irradiation. They also report a
temperature dependence of the dielectric con-
stant which roughly corresponds to the tempera-
ture dependence of the conductivity. It should be
pointed out that the model proposed herein does
not appear to be consistent with some of the pub-
lished dielectric constant work in one-dimensional
conductors. Khanna et al.***2 observe a nearly
temperature-independent dielectric constant in
TT F-TCNQ and its disubstituted selenium deriva-
tive DSeDT F-TCNQ. A charge-density-wave mod-
el'**1® may be more appropriate for these systems.

Thus, a very simple model, with essentially all
parameters at least approximately measured or
calculated, is in agreement with an extremely
wide range of data obtained on high-quality crys-
tals of Me¢,As(TCNQ),. In addition, the model
may explain a wide range of observations in other
quasi-one-dimensional conductors.

Note added

Regarding the applicability of a barrier model
for non-Ohmic conductivity and giant dielectric
constants in other one-dimensional systems, men-
tion should be made of a talk given by G. Griiner
shortly after the submission of this work to Phys-
ical Review. )

At the March 1980 American Physical Society
meeting G. Griiner discussed the giant frequency-
dependent dielectric constant and the non-Ohmic
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conductivity of quinolinium (TCNQ), in terms of a
barrier model which is somewhat similar to (but
not the same as) the model described herein.
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FIG. 1. Two typical crystals of MegpzAs(TCNQ), as
described in the text and used in this study.



