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The x-ray photoemission spectra (XPS) of simple metals are investigated by using the methods of many-body

perturbation theory. Several features of the XPS, such as the infrared catastrophe effect, the effect of intrinsic and

extrinsic plasmon production, etc., have previously been considered in different approximations by various authors.

In this paper, a unified theory, using a nonseparable core-hole conduction-electron scattering potential, is proposed

to describe these features with special attention to the interference effects. The evolution of the shapes of the main

line and the first plasmon satellite along with the background is considered as a function of the incident x-ray

energy. Numerical results of the intensity and the shape of these lines are presented for Na and A1 for the incident

photon energies of 5' and 90co .

I. INTRODUCTION

In recent years there has been a great deal of
interest in both theoretical and experimental stud-
ies of the x-ray photoemission spectra (XPS) of
metals. ' " In particular, several papers have
appeared on the study of XPS in the ultrasoft-x-
ray region. " At these low energies (~150 eV),
as the energy of the incident x ray varies, the
XPS exhibit certain interesting features, e.g. ,
attenuation of the plasmon satellites, variation
in the background intensity, as well as the varia-
tion in the widths of the main line and the plasmon
satellites.

Theoretically the XPS of metals have been treat-
ed from several different points of view. The
asymmetry in the main line due to the infrared
catastrophe has been studied by Doniach and
Sunjic' (DS). However, because of the nature of
the approximations involved, their theory is valid
only very close to the emission edge. The varia-
tion in the intensity of the satellites due to quan-
tum interference effects between the intrinsic
and extrinsic plasmon excitations has been treated
by Chang and Langreth' (CL) and others. In this
theory the dispersion and the damping of the plas-
mon has been neglected. The DS and CI theories
are valid in two different energy regions and there
is no simple connection between them.

In this paper we propose a unified theory of the
XPS of metals, which is valid in both the main
line and the pla. smon sate11ite regions. %e extend
the DS theory by using a realistic potential to de-
scribe the core-hole conduction-electron scatter-
ing. The satellite intensities are calculated by
keeping the dispersion and t;he attenuation of the
plasmon excitations. Another new feature of our

calculation is that from the dynamic part of the
effective interaction we also calculate the energy
dependence of the background XPS intensity. In
short, in this paper we ca,lculate the width and the
asymmetry of the main line on one hand and the
plasmon satellite and the background on the other
hand.

There is a variation in the shape and size of
these quantities as a function of the incident x-ray
energy. At very low energies of the incident pho-
ton (photoelectron energy approaching zero) the
situation is similar to the x-ray photoabsorption
(XPA) case where the quantum interference term
practica. lly cancels the satellite intensity due to
both plasmon excitations. In the XPA, the can-
cellation is so strong that the calculated plas-
mon structure is negligible, except at the upper
limit of the plasmon frequency where a structure
of approximately 5% intensity is calculated and

observed. " A similar cancellation is observed
in the low-energy XPS. However, in the XPS,
as the incident photon energy becomes large, the
interference effect decreases since at these ener-
gies the intrinsic and the extrinsic plasmons can
be considered to be produced in different spatial
regions. At these high energies the distribution
of the satellite intensities can be obtained by a
classical approach (Poisson theory). ' Our unified
theory is valid in any photon-energy range and is
in agreement asymptotically with the existing theo-
ries in the various energy limits.

The effect of electron-electron interaction is
calculated in the random-phase approximation
(RPA) in the present theory. We limit our atten-
tion in the spectral region extending from the main
line to the first plasmon satellite. %'e a,ssume the
usual jellium model for describing the motion of

1981 The American Physical Society



EXCITATION ENERGY DEPENDENCE OF THE PHOTOEMISSION. . .

the electron in the metal. The only parameter
in the problem is the electron density parameter
r, . Thus, contrary to various other theories,
our study can be considered to be an ab initio cal-
culation. We will apply our theory to the specific
cases of Na with x,= 3.993 and Al with z, = 2.0737.

We consider a simple geometrical situation
where the metal is taken to be semi-infinite in ex-
tent. We consider those photoelectrons which
escape normally from the surface. Our theory,
however, can be applied without any major mod-
ifications to more complicated situations. For
example, this theory can be used to study photo-
emission at other angles, photoemission in a thin-
film metal, and also in the case where the core-
hole density would depend on the distance from the
surface.

It should be mentioned here that in the present
paper we have not included two important effects
which may also contribute to the XPS intensity.
These are the secondary effects related to the
sudden creation of the core hole as well as its
finite lifetime (its structure does not play a
significant role), and the surface effects due to
the surface structures and surface modes. We
are aware that there is considerable interest in
these problems especially in the surface effects
which have been calculated in detail by Chang
and Langreth. " These authors have shown that
the surface effects become important at lower elec-
tron energies, and are comparable to the inter-
ference effect even at high energies. However, our
aim here is to consider the bulk effects as com-
pletely as possible, by using a model with a mini-
mum number of parameters. Thus we calculate
the XPS intensity in the jellium model with a sharp
surface (the only parameter being r,). The only
role of the metal surface that we consider here is
the cutoff of the interaction between the photoelec-
tron and the metal after a time 7', the time needed by
the photoelectron to reach the surface after its
production inside the metal. However, our theory
does not exclude the possibility of further study of
the neglected effects in the framework of the pres-
ent model.

II, FORMALISM

The process of x-ray photoemission in a metal
is represented by the diagram in Fig. 1. In this
figure the incident photon of energy v is described
by the wavy line. The double line pointing down-
ward represents the propagator of a core hole of
energy e~ (negative) created by the ejection of the
photoelectron in the core state, and the single
line pointing upward indicates the propagator of the
photoelectron of energy e„=k'/2m, inside the met-

al. All possible excitations due to many-body ef-
fects in the metal are represented by the lines of
chain (the RPA effective interaction). The black
dot on the photoelectron lines depicts the exit of
the photoelectron from the metal surface. The
time elapsed between the creation of a photoelec-
tron and its exit from the surface is &. This
implies that the photoelectron does not inter-
act with the metal beyond thi's time; i.e., no
interaction lines are to be attached to the photo-
electron line above the black dot.

In the RPA the effective interaction (represented
by the line of chain) is given as

V(q, (u) =v(q)/e(q, (u),

where v(q) =4ve'/q' is the bare Coulomb interac-
tion and e(q, ~) is the I indhard dielectric function.
We separate the potential into two terms as

'U(q, (u) = V(q, (o)+ U(q, co) . (2)

The first term V(q, e) takes into account the
short-range part of the effective Coulomb interac-
tion as shown in Fig. 2 and we call such a term
the single-pair term. 'The contribution of this
term can be written as

( V(uq) = v, (q)+ [v, (q)]'[-a(q, (u)],
where v, (q) is the screened Coulomb potential

v, (q) =v(q)/e(q, 0) (4)

and -B(q, u) is the contribution of the bubble dia-
gram corresponding to the single particle-hole
pair creation. It is related to the RPA dielectric
function as

FIG. 1. Diagram representing the x-ray photoemission
process accompanied by various (intrinsic, extrinsic, and
interference terms) many-body excitations in a metal.
The wavy line represents the incident photon of energy cu

and the directed double line and single line are the prop-
agators for the core hole and the photoelectron, respec-
tively. The lines of chain represent single-pair and
plasmon production.
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vs mi level, due to scattering by the core-hole poten-
tial, and ean be related to the phase shifts by

vs (2i + i)(—) (8)

FIG. 2. Short-range part of the effective Coulomb in-
teraction which includes the statically screened Coulomb
interaction and t'he dynamic contribution due to single-
pair production (-B).

e(q, (o) =1+v(q)B(q, (u) . (5)

III. LOW-ENERGY PAIR PRODUCTION

The effect of Low-energy electron-hole pair
creation on the x-ray emission and absorption
spectra of metals was first treated by Nozieres
and deDominicis (ND). " Such excitations were
found to be responsible for the anomalous behavior
at the emission and absorption edge. This theory
was then applied to the XPS by DS. ' By a direct
application of the ND theory, these authors showed
that the XPS intensity is also given by a power law'

and the result could be expressed as

The second term U(q, ar) of Eq. (2) can then be ob-
tained from the difference

II(q, (o) =V(q, (d) —V(q, (d)

where '0(q, a&) and V(q, u) are given by Eqs. (1)
and (3), respectively.

In the next section we consider the many-body
interaction effects due to the single-pair potential
V(q, (d), which are known to introduce the infrared
catastrophe already studied in a simplified model
by DS. In Sec. IV we consider the many-body
effects related to the complete dynamical poten-
tial 'U(q, &u) of Eq. (2). This term accounts for the
occurrence of the plasmon satellites and the low-
energy background intensity. In Sec. V we pre-
sent the results of our theory for Na and Al with
special attention to the ultrasoft XPS.

Note that it differs from the ND exponent in the
XPA by the absence of a. term -25(/v which is
related to the replacement effect. In the XPS,
the photoelectron energy is quite different from
the Fermi energy and hence no infrared catastrophe
due to sveak pair-replacement effect can occur.
The role of the replacement term in the simplif-
ied DS model for the photoemission is simply to
multiply P(e} by a constant vertex correction term
and it is thus disregarded. In our detailed theory
this term is no longer constant. However, since
its behavior is nonsingular at e —0, we postpone
its discussion until Sec. IV.

If, in Eq. (7), the width A. is taken to be zero,
one has

P(e) = —' 6(e) s inn n,
r (1 —n)

w$, e
(9)

,( )
r(1 —n)

+~a(~2+ ~2) ((-u) /2

wheree is the step function. This expression thus
replaces the line shape I'(e) = 5(e) which would be
obtained in a one-body calculation. Note that
I'(e) given by Eq. (9) is nonintegrable for large
values of e (this is true even for a nonvanishing
A, ). This is due to the simplifications involved
in the DS model which is valid only for e «e~. For
a realistic model, however, I'(e) must be inte-
grable for all e. This also emphasizes that the
DS theory must be modified in order that it may
be valid at lower photoelectron energies (large
e). Such an expansion of the DS theory requires
an e dependence of n, g„and X, which have so
far been considered to be constants.

To extend the DS theory beyond the close neigh-
borhood of e —0, i.e. , to determine the functions
n(e) and $,(~), we will proceed in the following
way. When the integration in Eq. (7) is carried
out one obtains

P(e) =—Re dsy(s) e' """",
0 jl' G

x cos —(1 —n) tan '—
2

(10)
with y(s) = (i$,s) and 2=—&u+2s —e2 (see notations
of Fig. 1). The width X is related to the damping
of the final states and is treated in detail below.
The factor e "' appears in Eq. (7), essentially
because the photoelectron final states are not re-
laxed. Indeed, the photoelectron is detected be-
fore being completely damped. This does not oc-
cur in the XPA, where the golden rule includes
al/ final states. Exponent n is a function of the
phase shift of the conduction electrons at the Fer-

which is then expanded up to first order in n and
A. to find

I'(e) =5(e)+ n 5(e)ln, ——e(e)
i@I I' x d P

e $o 6 7T

(y=0. 577 is the Euler constant).
Let us now carry out a calculation up to first

order in simple pair interaction V(q, (d). Such a
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lowest-order calculation can be performed com-
pletely and will yield an expression of I'(e) which
can be formally identified with Eq. (11) giving
e-dependent expressions for n, $, and A.. Such
expressions, linear in V(q, e), are not singular
for g-0 and can be considered to be quite satis-
factory for all values of e. When these functions
are calculated, they ean be substituted for the
constants n, t', and A. in Eq. (10). This gives an
expression of P(e} which has a power-law char-
acter for small e and is also physically correct
for large e, since for large e the first-order cal-
culation is known to give good results. Before
proceeding to more explicit evaluation of these
functions we mould like to make some comments.

In their theories Nozieres and deDominicis, "
and Doniach and Sunjic' (ND-DS) neglect the effect
of particle-hole pair creation due to scattering by
the electrons (or holes) in the conduction band.
ND-DS are mainly concerned with the effect of
particle-hole creation due to scattering by the core
hole via a static screened Coulomb interaction.
They include the multiple scattering effects by
summing ladder diagrams (K matrix). In this
paper however, we are interested in incorporating
all possible many-body effects in terms of the
RPA effective interaction'U(q, ~) given by Eq. (2)
(see Sec. IV). The interactions considered by
ND-DS are essentially contained in the single-
pa, ir part V(q, m) given by Eq. (3) and represented
in Fig. 2. Referring to Fig. 3, which depicts
the basic photoemission process along with various
single-pair processes, we have to point out that
RPA calculation does not describe multiple-vertex
loops and open lines, e.g. , elements a and b, but
includes only two vertex loops like e and one-ver-
tex open lines like d. In other words, our ap-

proach consists of replacing the K matrix used by
ND-DS (ladder diagrams) by the screened Cou-
lomb interaction given by Eq. (4).

This approach is justified, however, and at the
end of this section we will show that this is equiv-
alent to calculating the phase shifts ~, 's appear-
ing in the exponent n [Eq. (8)] in the Born ap-
proximation. Such a first-order calculatiori of the
phase shifts in the Born approximation has been
found to be quite satisfactory. " 'These phase
shifts satisfy the Friedel sum rule, and the dif-
ference between these and the actual phase shifts
is never more than 10%%u~. We must also point out
that, unlike the case of the replacement term of
the x-ray band spectra, the scatterings corre-
sponding to large q values do not play any essen-
tial role in the photoelectron spectra. " Thus the
pseudopotential corrections for large q values
(short-range correction) can be neglected and the
structureless potential given by Eq. (4) can be
used for all values of q (or equivalently one can
use plane waves instead of Bloch waves for the
conduction states). These points are discussed
in greater detail towards the end of this section.

Our next comment is regarding the neglect of
the conduction-electron interaction effects by
ND-DS. These authors have neglected contribu-
tions from the open particle-hole lines and the
closed self-energy parts, such as the elements
f and g of Fig. 3. However, in the present gen-
eral theory we must include the contributions from
these diagrams. Note that the self-energy part
f is responsible for the finite lifetime of the
photoelectron, which in turn gives rise to the width
A, appearing in Eq. (7) and in the last singular
term of Eq. (11}. In DS such a width is introduced
as a parameter to obtain a realistic line shape and
is related to the core-hole lifetime. However, the
width of the core hole, in general, is much weaker
than the width of the photoelectron occurring due
to single particle or plasmon excitations. In fact,
the width X is related to the imaginary part of the
self-energies of the electrons and the holes of the
final state. I et us write A, = A.„+A.„where X, is
the core-hole width and A.„the photoelectron
width. In the RPA, one has

~, f djIm'U, (q, o)=0,

and the width of the photoelectron

1
dqim'U, (q, e, —e„-;) . (12)

FIG. 3. Diagrammatic representation of the basic pho-
toemission process along with various single-pair exci-
tations.

The core-hole damping is strictly zero as long as
we do not consider its Auger width, which is also
negligible in comparison with A, Thus, it is '

quite reasonable and consistent that in our model



716 BOSE, KIEHM, A5 D I OSAGE

we relate ~ essentially to the photoelectron damp-
ing and not to either the core-hole damping or to
some undefined instrumental width.

We now proceed to the main point of this sec-
tion which is the explicit evaluation of the function
n(e) and $,(e). The correlation function
y(s)e '")' 's" appearing in the integrand of Eq.
(7) can, in a first-order calculation, be related
to the four diagrams of Fig. 4.

As indicated before, we consider contributions
of only those parts of these diagrams which cor-
respond to the singular terms of Eq. (11}. The
total contribution of the zeroth order diagram 0
is given by the first term of Eq. (11). Diagram
A. will have two parts corresponding to the two
terms of 'U(q, (d) given in Eq. (2). In this section
we consider the contribution from the first term
V(q, (v) since, as mentioned before, this is the
term leading to the singularity of the second term
of Eq. (11). The contribution of the second term
U(q, (v) of Eq. (2) is nonsingular and will be treat-
ed in the next section. Diagrams B and C do not
introduce any singularity and hence we consider
them in the next section. Note that in the XPA
diagram B would be related to the replacement
effect.

The correlation function can now be calcu1.ated
by using diagrammatic rules. One obtains

y(s) =1+, „dq d(v', , V(q, (o),(2n)4 (d (d —g5

where the first and second terms correspond to
contributions from diagrams 0 and &, respectively
(5 is an infinitesimal constant). The intensity
I'(e), given by Eq. (7), can then be calculated up
to the first order in X using the relation

8 Rem, (q, u)) =— „ Imz, (q, (v') .(
"dc@'

/CO ~~ p 7T p (d

One obtains

I'(e) = 5(e) — d(d'n((v') &
0 QP

Il (tv —r)

)
(14)

with

e(rv')—= —
( ), , f dr()mq, (q, rv'),

where the subscript + means that part of the V
function which is analytic in the upper half of the
complex (v plane (Im(d & 0). Equation (14) will
have the same form as Eq. (11), if we let

, n((v'), e "(,(e)d(v, -=n(e) ln
(d) —e I e I

But now n and $, are no longer constants but are
e-dependent functions given by

e(e)=, f dq[v. (q))')ma, (q, r) (16)

(,(r) =
(
r I exp (v + q r(rv'

n((v')
n t CO

(17)

ImB, (q, e —0) "-6(2k& —q) .
2 7TQ'

Henc e from Eq. (16)

m
n(0) =, dq q[v, (q)]'.

These functions and x given by Eq. (12}can finally
be substituted in Eq. (10) to obtain the XPS inten-
sity. The procedure of this section thus enables
us to extend the DS calculations to lower energies
by using a realistic core-hole potential.

Before proceeding to the next section, where we
consider the effect of extrinsic losses on XPS, let
us demonstrate that n(0) does correspond to the
DS exponent [Eq. (8)] where 5, 's are the Born
phase shifts. For small frequencies, ImB, (q, ~}
= Ime(q, e )/v(q) has the form

Using the Born expression for the phase shifts

h +

dq qv, (q)P, 1—
1T + p

it can be shown" that

2

n(0) =2+(2I+ I) L

IV. BACKGROUND AND PLASMON PRODUCTION

FIG. 4. Diagrams in zero and first order in effective
Coulomb interaction contributing to the x-ray photoemis-
sion spectra of metals.

As we have alluded to before, there are two
types of energy losses (due to electron-hole pair
creation and plasmon production) in the photo-
emission process: the intrinsic losses which can
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be considered as an integral part of the photopro-
duction process, and the extrinsic losses which
correspond to the loss of energy by a photoelec-
tron during its flight to the metal surface. More-
over, there is a quantum interference between
these intrinsic and extrinsic processes, which pro-

ducess

a cancellation effect that be comes particularly
important when the initial photoelectron energy
e, = &@+as is weak (of the order of a few &up's).

In Sec. III, the calculation of the intrinsic loss
has been carried out by the method of linear re-
sponse only for the V part of the effective inter-
action U(q, ~) [see Eq. (7)]. This method is suit-
ed to calculate the effect of low-energy pair pro-
duction during the XPS process. A broadening
effect due to the nonrelaxed nature of the photo-
electron state has also been introduced in Eq.
(7) as an "external correction. " Thus, the linear
response formalism of Sec. III has incorporated
only those extrinsic processes which are due to
the final state width. Such a formulation cannot
calculate the change in the intensity and the shape,
due to extrinsic processes. In other words, it
cannot calculate the extrinsic part of the plasmon
satellite and the continuum. Indeed, these ex-
trinsic excitations depend on the depth z at which
the photoelectron is created (or the time r= -z/
V, taken by the photoelectron to reach the sur-
face). This fact plays an essential role in the cal-
culation of both the extrinsic processes and the
quantum interference term.

Calculation of the extrinsic energy losses and
their quantum interference with the intrinsic ones
presents real difficulties since it should, in prin-
ciple, include multiple convolutions between suc-
cessive excitations along the path s. However,
in this paper we are mainly interested in that part
of the continuum and satellite production which
mostly depends on the initial energy of the photo-
electron &„=~+ e~. Thus, the most relevant ex-
trinsic loss to consider is the jirst loss which oc-
curs right after the phototransition process. It
is also this loss (pair or plasmon production)
which will be most affected by the interference
with the intrinsic loss and thus wi11 strongly de-

pend on ++e~. We thus consider the spectral
region covering the main line and the first satel-
lite, where the effect of the quantum interference
term on the first-order extrinsic process is par-
ticularly important.

Let us consider a semi-infinite metal occupying
the region z ~0. Let J(z, e,) be the intensity of the
photoelectron produced in a shell of unit thickness
at a depth g and leaving the metal (at @=0) with
an energy e~. For simplicity we assume that the
photoelectron path is normal to the surface and its
energy is large enough (at least a few u& p's), such
that the motion across the metal is quasistraight
and uniform. Under these conditions the observed
intensity is given by

where p(z} is the density of the core holes, which
in our calculation is assumed to be constant and

equal to one.
We first consider a model in which the excita-

tion produced by a photoelectron has only one pos-
sible energy. Writing the effective potential in

the form

(19)

we see that each term in this "sum" is related to
such an excitation and that

c(q,.(u') = -(l/w)&(u' Imv, (q, (o')

is the square of the electronic coupling constant.
As an example of such a model consider the ex-
citation of an undamped dispersionless plasmon
where

c (q, u& p) = aupv(q) for q & q,

Ignoring the internal interaction lines of Fig. 1,
we find that the S-matrix element related to photo-
emission accompanied by n excitations (n exter-
nal interaction lines) has the form

(20)

with

v„=~'+ca-~~5,; I

——&u'+(2% j„-q'„}/2m
where t is the time at which the photoelectron is
produced and t+ 7' is the time of its exit from the
metal ~ Function g(t) is the adiabatic function

and

S,(r, ~,) = df g(f)—e.' "~ 's- g(t)=1 for Ifl &fJ2
=0 for lfl ~f./2,
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with to» 7 and such that

J
2

dt g(t)e'" = 2vt, 6(v) ~ ~ ~

~„( , „)= ,
' Q IS„( , „)I',

Tf tQ f
where N is a normalization constant. The sum-
mation over the final states

(21)

''' =n~ dq dq1 nf
gives

(22)

Expression (20) contains an approximation which
was first used by Chastenet and Longe in a recent
paper. " Propagators 1/(()' and 1/v, are related
to the core hole and the internal photoelectron
lines, respectively. In calculating the photoelec-
tron propagator, they make the assumption that
the photoelectron energy co+ eB remains unchanged
across the excitation vertices even though the mo-
mentum is conserved at all vertices. For the core
hole, however, the fact that eB remains constant
across the intrinsic vertices is physically exact
since it is recoilless. Thus a property of the
core-hole propagators is attributed to the photo-
electron propagators. This approximation is bet-
ter than in the previous papers. Indeed, for vir-
tual states the requirement of energy conserva-
tion is not as crucial as the requirement of mo-
mentum conservation which must be satisfied,
especially for small k's.

It is easy to show, however, that the main line
(n=0) and the first plasmon satellite loss (n= 1)
are not affected at all by this approximation, al-
though it will slightly affect the spectrum for n ~ 2.
The approximation of using 1/v„ for the internal
photoelectron propagator introduces a relative er-
ror in Eq. (20) given by

n

4Sf1 ~ +V~

n

with &v„=&kq, /m & &kq, /m and v, = ~'. Since the
error in the energy transferred by the pth inter-
nal, line is &««=k&k/m=(p, —1)&u', one has &v„/
v„& (p, —1)q,/k; hence 4S„/S„&n(n —1)q,/2k. Thus
Eq. (20} is exact for n = 0 and n = 1 and for higher-
order losses it can be considered that the ap-
proximated energy transfer will give excellent
results even for small k's. We conclude from this
discussion that even though the photoemission in-
tensity in the main line and the first p.asmon satel-
lite regions is governed by all such higher-order
losses, the effect of the above approximations on
these intensities will be small.

The photoelectron intensity with n excitations is
then given by the 7'-dependent golden rule

T(r, e«) = p -f(g«) + F(e«)r,

with

1
P =—, „„dqc(q, (u ),(2') 4)

f(e«)=- (, , P dq
c(q, (o')

r(e, )-=2, fdie(q, w') (v;))),

(26)

(26a)

(26b)

(26c)

which correspond to the intrinsic, the interfer-
ence, and the extrinsic terms, respectively. The
intrinsic term (26a} and the extrinsic term (26c)
are in the forms, respectively, suggested by
Lundqvist' and by Chang and Langreth' for the dis-
persionless plasmon. However, these latter
authors have calculated the interference term only
in a lowest-order expansion. As already men-
tioned the calculation in the present paper is exact
at least for n = 0 and 1.

Finally, the normalization constant N in Eq. (23)
is calculated by using a sum rule

r
4) +6B

d'«Z dn(~) '«) = 1 )
6p n

which is required by the conservation of the num-
ber of photoelectrons. For practical reasons,
we evaluate N approximately by making it e„de-
pendent and writing

(27)

K= exp T*(7,e„), (26)

with T"=p-f +I'*r. The starred functions are
obtained from the unstarred ones given by Eqs.
(26b) and (26c), by replacing k and k+ q by k —q
and k, respectively. This means that the starred
expressions are related to the decay of an electron
from a state k to a state k —q, whereas the corre-
sponding unstarred quantities are related to the
creation of an electron in state k fiona a state
k+q. In both cases an excitation of momentum

q is produced. Expression (28) for N can be in-
terpreted as follows. First it satisfies the con-
servation requirement (27). Moreover, the ex-
trinsic production (r-dependent part of J ) takes

f7

the form (I'„r)"e r&'/n!, which is an approximate
solution for the classical Poisson equation dJ'„/dr

d (r, e«) = 5(e«+ n(u' —ea —(u)(Nn! ) '[T(~,e«)]",

(23)
where T(&, e«) is a T-matrix element given by

T(&, e«) = ), dq c(q, (u')1,1 1 —exp(jv«7)
«2~)3 CO v

(24)

For r~~»1, a condition always satisfied (except
for ultrathin films), T(r, e«) takes the form
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= I"„J„,—I'„*J„,where I'„and I'„* depend on n,
i.e. , on e~, the exact solutions of this set of
Poisson's equations satisfying the sum rule (27).
The total photoemission intensity from a uniform-
ly ionized semi-infinite metal can then be calculat-
ed using Eq. (18). One obtains

(30)

Ii(E( ) = 5(E'~+ ('u —fa —(u)

For the ma. in line (n= 0) and the first satellite
line (n= 1—), expression (29) becomes

f,(e, ) = 6(e„—e~ —(u)[V,/I'*(e, )]e '

d4
(31)

~ [P'(~,)]~ I'(~, ) &
"-~

with P (e~) —= P —f(e,}.

(29)

The last step consists in investigating the realis-
tic model where all excitations appearing in Eq.
(19) are considered. In such a case, Eqs. (20),
(22), (23), (24), and (28) are respectively replaced
by the following extended forms:

=1 . (, , „), 1 ~ -"
~ 1 e(q„, (u'„) '~',.„, 1 1 —exp(iv„r)

n & k 0( "' i (2))) v„
(20')

(22')

n n

J (rc;)=())n!) '( , Jd~', )'(v, e„~'„) d e, -d —~ —Q~',), (23'}

l, e. ]

40= iV '5(e~ —ea —(u),

J =N ~ d(d T 7', q„, co 0 e~ —e~ —40 —M

T(T) t& (d }=, —

3 dq Im'U+(q) (u )
))'(27) CO .

1 —exp(iv;7)
V

—)m)', (q, td') „),

(23a')

(23b')

(24')

and

N=exp d(o T 7, 6„,40' . (28 )

An important comment regarding the connection
between the calculation of the present section with
that of the preceding section is in order. In Sec.
III we have evaluated the contribution of the V part
of the effective interaction in the linear approxima-
tion and have found that it gives rise to the in-
frared catastrophe. 'The shape of the main line
differs from the zeroth-order shape (5 function)
over a small energy range (a small fraction of the
Fermi energy). The calculations of both sections
are now combined in a unified theory by including
the function I' of Sec. III into the 6 functions of
Eqs. (23a') and (23b'). These 5 functions can then
be considered as quasi-5 functions.

However, to avoid duplication of use of the V
part of the potential 'U, we must subtract the V

part from the intrinsic contribution in the T (or
T*) function. This is precisely the reason for
introducing the second term (-ImV, /(u ') in Eq.

(24'}. This theory is thus consistent in that the
ND-DS structure of the main line has been retained
and that function T is not singular for co'-0, as it
would have been if the second term in Eq. (24')
were missing. Function T thus describes the ex-
citation of the first satellite and that part of the
continuum which occurs due to a single excitation
of the particle-hole pair. 'This function appears
as the sum of the following contributions: the in-
trinsic contribution

p(q (u') =-, , „dq Im['U(q, (u') —V(q, &u )],

the extrinsic contribution

r( ~ )r= —
d( ), f mu( 'dt)~)')5(~d'+e, —s;, ;),

which is 7 dependent and is written for +~~»1;
and finally the negative interference contribution
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2 Imp, (q, (u')
f(f»y )

(2 }3 & q (26b')

It is interesting to note that for 7'-~, the first
term of Eq. (24') becomes similar to the basic
expression describing the x-ray spectra

X d(a) Is -6&+ Q7 + 6&+cd

V. DISCUSSION AND RESULTS

Before we present our results, let us reiterate
some of the salient features of our theory and its
connection with previous theories. Our theory has
been termed unified in the sense that it describes
the XPS intensity over the spectral range, includ-
ing the first plasmon satellite and the main band.
The validity of the theory is exemplified by the
fact that it is in "asymptotic" agreement with three
previous theories which have successfully de-
scribed the spectral structures in different spec-
tral regions in various electron and x-ray spec-
troscopies. Let us recall that these three theories
are

(a) the theory of soft-x-ray spectra, """(emis-
sion and absorption) using a first-order expansion
of the RPA effective potential,

(b) the theory of edge effect"' (x-ray emission
and absorption, photoemission, and Auger emis-
sion) using an all order expan-sion with a sep-
arable static potential (ND-DS theory), and

(c) the theory of plasmon production in high-
energy photoemission, "' using electron-plasmon
interaction effects to all orders.

Let us make some comments on the validity
and limitations of these theories and their rela-
tionship with our work. The linear theory (a) is,

which is valid as long as v s do not vanish. This
emphasizes the fact that our calculation is valid
up to the ultrasoft-x-ray regime.

Let us finally give the expressions for the total
photoemission intensity from a semi-infinite
metal. Using Eq. (29), and expression (28') for
N, one obtains

I,(»») =1 (-e»+ ea + ~)V»
e xp[ Jd-(u'P'*(c„(u'}]

d(d 1 6~(d

(20')

and

expt —J d(u'P'*(e„(o')]
~ '» —

» p~'I *(, ~i)

in principle, valid in the entire spectral region of
the x-ray spectra. It is particularly suited to de-
scribe the cancellation effects between the intrin-
sic and extrinsic effects, which become important
when the energies involved are of the order of
Fermi energy or the plasmon energy (weak ener-.
gies). Consequently, this theory describes the
low-energy features" (tailing and the plasmon
satellites) with excellent agreement with the ob-
served spectra. However, this theory partially
fails to describe the edge effect" which appears as an
inf rared catastrophe that cannot be described by a lin-
eartheory. Indeed, inthislineartheorythepower
law ($,/&) describing the edge effect becomes linear
in the interaction potential and logarithmic in the en-
ergy, i.e. , 1 —el n((, /e). Itis interesting tonote,
however, that the coefficient e of in& is in agree-
ment with the exponent of the edge theory (b), but
it is expressed as a function of the phase shift
6, 's calculated by the Born linear approximation. '"'

However, the Born phase shifts are in approximate
agreement with the phase shifts calculated by
means of more elaborate methods. " Such an
agreement is not surprising since the Born phase
shifts also satisfy the Friedel sum rule, the form
of which is not modified by the linearization.
Furthermore, 6, 's for L ~ 1 are calculated with
satisfactory accuracy in the Born approximation
(at most 10% error for &,) since only the periph-
eral of the potential is involved in such cal-
culations. The same accuracy can also be at-
tributed to the Born 6„because of the validity
of the Friedel sum rule. It appears as if the small
error in the Born approximation due to linear use
of the long-range part of the potential (I ~ 1) is
exactly compensated by the error due to the sim-
plified treatment of the short-range structure.
Such a compensation is normal in view of the phys-
ical significance of the Friedel sum rule. The
linear theory thus gives valuable results not only
for the low-energy structures of the spectra but
also regarding the exponent of the ND-DS power
law. 'This theory also shows that the short. range
structure of the potential, in general, plays a neg-
ligible role" (i.e. , the core hole can be treated
as a point charge) except in one term. This is the
term that describes the replacement effect related
to the factor -25,/n of the ND exponent (for the
theory' of x-ray spectra) for which larger momen-
tum transfers play an important role. " However,
as we have discussed in Sec. III, in XPS this ef-
fect does not occur at all as the photoelectron ener-
gy is too high compared with the Fermi energy to
give rise to weak pair replacements. This jus-
tifies the use of the dynamically screened Coulomb
potential to describe the core-hole interaction in
XPS studies.
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The validity of theory (b) is limited in the fre-
quency regions presenting spectral discontinuities
(x-ray edge frequency, photoemission line fre-
quency), where the cumulative effect of the weak
pair creations becomes important. However, this
theory neglects the realistic form and the dynami-
cal nature of the core-hole potential as it uses a
separable potential instead. The inelastic scat-
terings of electrons and holes (self-energies) are
also neglected. The ND-DS theory thus gives
nothing more than the correct expression for the
exponent of the power law. However, this gives
us a sufficient clue to introduce nonlinear cor-
rections in theory (a), which make it consistent
with theory (b) in the regions of spectral discon-
tinuities. Thus our theory gives good results in
the low-energy regions where the cancellation ef-
fects are important, as well as in the main line
region which shows the spectral discontinuity.

Theory (c) deals with the problem of multiple
plasmon productions (satellite series} during photo-
emission for high incident photon energies. In
general, the photoelectron is treated semiclassi-
cally as an external potential. " The most com-
plete treatment of the multiple plasmon produc-
tion is due to Langreth et aE. ' They give the rates
of intrinsic and extrinsic plasmon productions and
the effect of their interference, for the case of
high energy of the incident photons. Chastenet
and Longe" have extended this theory to include
all incident photon energies and have shown that it
is in agreement with theory (a) for low energies.
The calculation of the latter authors, which bridges
theories (a) and (c), has been extended in the pres-
ent paper by including not only the effect of plas-
mon production but also that of the single-pair
creation. Unlike the previous authors, we have
also included the effect of dispersion and attenua-
tion of the plasmon in our calculation.

The intensity and the shape of the photoemission
spectra in the main line and the plasmon satellite
regions can be obtained when one considers Eq.
(10) of Sec. III together with Eqs. (12}, (16), and
(17), as well as Eqs. (30 ) and (31') of the pre-
ceding section.

We have carried out numerical computations
for Na (r, = 3.993}and for Al (r, = 2. 0737) for
two values of the incident photon energies co+q~
=5m&~and 90&uJ. For Na (&v~=5. 91 eV} these ener-
gy values correspond to 29.5 eV and 531 eV, and
for Al (e~= 15.8 eV) these correspond to 78.9 and
1420 eV, respectively. Let us emphasize that the
excitation energies and the electron density param-
eter x, are the only two parameters appearing in
our calculation and as such it can be considered
to be an ab initio calculation. The results of our
calculation are shown in Figs. 5 and 6. In these

Na
Q)p- 5.9 e'Lr'

iIL

tl}

C

, (tot

(gP + 6 8
-clP P CO+ E 8

Na
Q)p =5.9 eV

4)+6 =9o W: I0

powers

FIG. 5. (a) x-ray photoemission intensity in the main
line and the first plasmon satellite region in Na at the
excitation energy of 5~~ (29.5 eV). The total intensity is
given by curve u. Curves b, c, and d are the main line,
the background due to single-pair excitation, and the sat-
ellite due to one-plasmon production, respectively. (b)
x-ray photoemission intensity of Na for the incident pho-
ton energy of 90z (531 eV). Note that due to the higher
excitation energy, the interference effect is smaller in
this case and the plasmon contribution is larger than that
in (a) (see Refs. 10 and 11).

figures, the total intensity is given by curves a
which contain contributions of both Eqs. (30 } and
(31'). The contribution of Eq. (30') is given by
curves b and that of Eq. (31') by curves c and d.
In calculating the contribution of Eq. (31'}we have
separated the contributions related to the single-
pair part and the plasmon part of Im'U, (q, a&). It is
well known that the single-pair region of Imu, (q, &o)

is a two-dimensional region defined by max(0,
q(q —2k+)}& 2m&v & q(q+ 2k~}. The other nonzero
region is the one-dimensional plasmon region
given by the plasmon dispersion curve ~~(q) with
q& q . We have first attempted to compute the
contribution of Eq. (31 ) by making a simplification
in which I' is replaced by a 5 function. This gives
curve c for the single-pair contribution and curve
d for the plasmon contribution. This simplifica-
tion is quite satisfactory for the single-pair curve
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+&-15.e

4)+BE)=5

Al

&P-15.8 eV

~.~, -9O~,

pc:I1

(gf+f e QJp

cU+ f e
—cop

tot-0:I

corresponds to the difference between 'U and V,
describes higher-energy transfer (high-energy
pair creation), as well as the plasmon excitation
in the electron gas.

'The V part has been used to describe the ND-DS
infrared catastrophe. Our treatment is in formal
agreement with the ND-DS calculations. For
~-0 we have the XPS intensity given by a power
law where the exponent depends on the Born phase
shifts. This exponent given by" o.= —,'(1+ ma~ k~) '

can then be considered to be quite satisfactory as
the numerical values (0. 199 for Na and 0.128 for
Al) agree within a few percent with the results ob-
tained by much more elaborate methods. " For
larger e our result, which is integrable, is still
better than those of DS, which give a nonintegrable
intensity at these energies.

%e also introduce a linewidth in our calculation
which is essentially related to the photoele ctron
damping. This is the only effect which modifies the
line shape given by curves a (in Figs. 6 and 6) as the
excitation energy v+ e~ varies. This width is
roughly proportional to (u&+ as) '~', and this ex-
plains why the calculated and the observed widths
increase in the ultrasoft -XPS region. Note that

FIG. 6. (a) x-ray photoemission intensity in the main
line and the first plasmon satellite regions in Al for the
excitation energy of 5P (78.9 eV). (b) x-ray photoemis-
sion intensity of Al for the incident photon energy of 90~P
(1420 eV). In this case also the plasmon satellite has
larger intensity due to smaller interference effect (see
Refs. 10 and 11).
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c which is smooth and which extends over a large
region. However, for the plasmon curve d', this
replacement is not suitable since it gives rise to
a singularity. Thus the plasmon calculation has
to be carried out by keeping I' in Eq. (31'). In
other words, the intensity represented by curve
d has to be convoluted with intensity P to obtain
the correct intensity which is given by curve d.
'The total intensity a is then obtained by summing
contributions of curves b, c, and d.

Let us now make a digression of the method of
our calculation of the intensity and the shape of
the XPS of simple metals. Our calculation has
been carried out in the RPA, where the effective
electron-electron interaction 'U has been divided
into two parts [see Eq. (2)]. A part V, shown in
Fig. 2, contains the static part of the potential
(screened Coulomb potential) as well as the one-
pair contribution of the dynamic part. This V

part is a good approximation of 'U for short dis-
tances and low-energy transfers (low-energy
pair creation). The second part U., which merely

-0.4

-0.6. Na

0.4
py0. 26'c

0.2-
i20 40 60 80 100 120

6 k/co
I

-0.2-

0.4- Al-

FIG. 7. Evolution of the interference term -f{e~) and
the constant intrinsic term p appearing in Eq. (31) as a
function of energy in Na and Al. The dashed vertical
lines indicate the kinetic energy of the photoelectrons at
which the total cancellation of these two terms occurs.
This energy, where the XPS spectrum becomes similar
to electron-energy-loss spectrum, is slightly higher than
that calculated in Ref. 17 {see text).
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the functions o. (e) and g, (e) given by Eqs. (16) and

(17)do notreally depend upon the excitationenergy.
The U part of the potential which is related to

the high-energy pair production and plasmon ex-
citation also introduces significant change in the
intensity and the shape of the spectrum in the ul-
trasoft-XPS regime. The plasmon satellite and
the background are significantly reduced in this
regime principally due to the presence of the inter-
ference term (Etl. 26b) in the transition matrix
element. This negative interference term which
was fir st calculated by Chang and Langreth4 in a low-
est-order perturbative expansion for high energies
()300 eV) and then extended by Chastenet and Longe"
to low energies, is also roughly proportional to (to

+ es) 'i'. In Figs. 7 we show the evolution of our inter-
ference term and the intrinsic term as a function of
the incident photon energy. These curves are very
similar to those proposed by Chastenet and Longe,
the slight difference being due to the fact that in
the present paper we have incorporated the dis-
persion and the attenuation of the plasmon mode as
q tends to q, . Note that the intrinsic term remains
practically constant whereas the interference term
becomes more negative at lower excitation ener-
gies. The- energy at which these two terms can-
cel each other is represented by e, . The high-

energy pair-production term which contributes to
the background (curves c in Figs. 5 and 6) also
shows similar behavior. '

The increase in the mag-
nitude of the interference term at low energies
can be interpreted quite easily. For slow photo-
electrons, the intrinsic and the extrinsic produc-
tions occur practically in the same region of space,
e.g. , in the neighborhood of the ion which emits
the photoelectron. Thus the interference is
strongest at these low energies. ""

Finally, we would like to point out that the shape
and size of the main line and the first plasmon
satellite of the XPS of simple metals that we have
calculated in this paper are very similar to the
ones that have been experimentally. observed by
Williams et al. . ' and more recently by Norman
and Woodruff. ' To our knowledge this is the first
theory which is truly unified in the sense that the
same theory can calculate the asymmetry of the
main line, the plasmon satellite, as well as the
background of the XPS.
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